1
|
Liao J, Sun J, Jia W, He W, Wang H, Huang W, Wang Y, Yu M, Xie Y, Chen Y. External stimuli-driven catalytic hydrogels for biomedical applications. Chem Commun (Camb) 2025; 61:3946-3966. [PMID: 39957542 DOI: 10.1039/d4cc05256k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Hydrogels, bearing three-dimensional networks formed through chemical or physical crosslinking of hydrophilic macromolecules, benefit from their biocompatibility, tunable properties, and high loading capacities, and thus hold great promise for biomedical applications. Recent advancements have increasingly focused on the integration of non-invasive external stimuli-such as light, heat, electricity, magnetism, and ultrasound-into hydrogel design. These external stimuli-driven catalytic hydrogels can dynamically respond to these stimuli, allowing for high spatial and temporal precision in their application. This capability enables in situ activation, controlled degradation, and catalytic reactions, making them ideal for next-generation clinical interventions. This review discusses the design strategies for external stimuli-driven catalytic hydrogels, concentrating on essential mechanisms of catalytic processes aimed at optimizing therapeutic efficacy. The discussion highlights the importance of precise control over the chemical and physical properties of hydrogels in response to specific stimuli, elucidating the regulatory mechanisms that dictate hydrogel behavior and deepening the understanding of their applications with enhanced spatial and temporal resolution.
Collapse
Affiliation(s)
- Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Jijun Sun
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Wencong Jia
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Weiyun Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yanmei Wang
- Department of Nursing, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
2
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
3
|
Wang Y, Lv B, Wang H, Ren T, Jiang Q, Qu X, Ni D, Qiu J, Hua K. Ultrasound-Triggered Azo Free Radicals for Cervical Cancer Immunotherapy. ACS NANO 2024; 18:11042-11057. [PMID: 38627898 DOI: 10.1021/acsnano.3c10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
PD-1 blockade is a first-line treatment for recurrent/metastatic cervical cancer but benefits only a small number of patients due to low preexisting tumor immunogenicity. Using immunogenic cell death (ICD) inducers is a promising strategy for improving immunotherapy, but these compounds are limited by the hypoxic environment of solid tumors. To overcome this issue, the nanosensitizer AIBA@MSNs were designed based on sonodynamic therapy (SDT), which induces tumor cell death under hypoxic conditions through azo free radicals in a method of nonoxygen radicals. Mechanistically, the azo free radicals disrupt both the structure and function of tumor mitochondria by reversing the mitochondrial membrane potential and facilitating the collapse of electron transport chain complexes. More importantly, the AIBA@MSN-based SDT serves as an effective ICD inducer and improves the antitumor immune capacity. The combination of an AIBA@MSN-based SDT with a PD-1 blockade has the potential to improve response rates and provide protection against relapse. This study provides insights into the use of azo free radicals as a promising SDT strategy for cancer treatment and establishes a basic foundation for nonoxygen-dependent SDT-triggered immunotherapy in cervical cancer treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Bin Lv
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Tingting Ren
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Qian Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, PR China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, PR China
| |
Collapse
|
4
|
Xu L, Mu J, Ma Z, Lin P, Xia F, Hu X, Wu J, Cao J, Liu S, Huang T, Ling D, Gao J, Li F. Nanozyme-Integrated Thermoresponsive In Situ Forming Hydrogel Enhances Mesenchymal Stem Cell Viability and Paracrine Effect for Efficient Spinal Cord Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37193-37204. [PMID: 37493513 DOI: 10.1021/acsami.3c06189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising strategy for the treatment of spinal cord injury (SCI). However, the hostile microenvironment of SCI, which can adversely affect the survival and paracrine effect of the implanted MSCs, severely limits the therapeutic efficacy of this approach. Here, we report on a ceria nanozyme-integrated thermoresponsive in situ forming hydrogel (CeNZ-gel) that can enable dual enhancement of MSC viability and paracrine effect, leading to highly efficient spinal cord repair. The sol-gel transition property of the CeNZ-gel at body temperature ensures uniform coverage of the hydrogel in injured spinal cord tissues. Our results demonstrate that the CeNZ-gel significantly increases the viability of transplanted MSCs in the microenvironment by attenuating oxidative stress and, more importantly, promotes the secretion of angiogenic factors from MSCs by inducing autophagy of MSCs. The synergy between the oxidative stress-relieving effect of CeNZs and the paracrine effect of MSCs accelerates angiogenesis, nerve repair, and motor function recovery after SCI, providing an efficient strategy for MSC-based SCI therapy.
Collapse
Affiliation(s)
- Lilan Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiafu Mu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyuan Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiahe Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Cao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shanbiao Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianchen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo University, Zhejiang 315010, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Dong HQ, Fu XF, Wang MY, Zhu J. Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy. World J Clin Cases 2023; 11:5193-5203. [PMID: 37621595 PMCID: PMC10445077 DOI: 10.12998/wjcc.v11.i22.5193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 08/04/2023] Open
Abstract
In recent years, because of the growing desire to improve the noninvasiveness and safety of tumor treatments, sonodynamic therapy has gradually become a popular research topic. However, due to the complexity of the therapeutic process, the relevant mechanisms have not yet been fully elucidated. One of the widely accepted possibilities involves the effect of reactive oxygen species. In this review, the mechanism of reactive oxygen species production by sonodynamic therapy (SDT) and ways to enhance the sonodynamic production of reactive oxygen species are reviewed. Then, the clinical application and limitations of SDT are discussed. In conclusion, current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen, exhibit biological safety, and promote the clinical transformation of sonodynamic therapy.
Collapse
Affiliation(s)
- He-Qin Dong
- School of Medicine, Shaoxing University, Shaoxin 312000, Zhejiang Province, China
| | - Xiao-Feng Fu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Min-Yan Wang
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
6
|
Dong HQ, Fu XF, Wang MY, Zhu J. Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy. World J Clin Cases 2023; 11:5187-5197. [DOI: 10.12998/wjcc.v11.i22.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 08/03/2023] Open
Abstract
In recent years, because of the growing desire to improve the noninvasiveness and safety of tumor treatments, sonodynamic therapy has gradually become a popular research topic. However, due to the complexity of the therapeutic process, the relevant mechanisms have not yet been fully elucidated. One of the widely accepted possibilities involves the effect of reactive oxygen species. In this review, the mechanism of reactive oxygen species production by sonodynamic therapy (SDT) and ways to enhance the sonodynamic production of reactive oxygen species are reviewed. Then, the clinical application and limitations of SDT are discussed. In conclusion, current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen, exhibit biological safety, and promote the clinical transformation of sonodynamic therapy.
Collapse
Affiliation(s)
- He-Qin Dong
- School of Medicine, Shaoxing University, Shaoxin 312000, Zhejiang Province, China
| | - Xiao-Feng Fu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Min-Yan Wang
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
7
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
8
|
Zheng Y, Wang W, Gao Y, Wang W, Zhang R, Wu D, Yu L, Chen Y. Nanosonosensitizers-engineered injectable thermogel for augmented chemo-sonodynamic therapy of melanoma and infected wound healing. Mater Today Bio 2023; 20:100621. [PMID: 37056919 PMCID: PMC10085782 DOI: 10.1016/j.mtbio.2023.100621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Easy recurrence and bacteria infected-wound healing after surgery excision pose severe challenges to clinical melanoma therapy. Herein, an injectable CuO2 nanodots-engineered thermosensitive chitosan hydrogel (CuO2-BSO@Gel) for enhanced melanoma chemo-sonodynamic therapy and improved infected wound healing was rationally constructed by facilely integrating the CuO2 nanodots and L-Buthionine-(S, R)-sulfoximine (BSO) with thermoresponsive hydrogel. Favored by the Fenton catalytic activity of Cu2+, the CuO2 nanodots can achieve enhanced chemodynamic therapy (CDT) by self-supplying H2O2 under acidic tumor microenvironment. Simultaneously, the CuO2 nanodots with a narrow bandgap (2.29 eV) were proven to be the efficient sonosensitizers, and the corresponding quantum yield of singlet oxygen (1O2) could be boosted by the O2 generation during Fenton-like reactions. Additionally, combining with the glutathione (GSH) depletion of loaded BSO, intracellular oxidative stress induced by SDT and CDT was further amplified, leading to the specific ferroptosis. Importantly, this multifunctional hydrogel significantly promoted the proliferation of normal skin cells and accelerated the bacteria-infected wound healing by the effective chemo-sonodynamic antibacterial activity and the enhanced angiogenesis. Thus, the engineered thermogel features the distinct chemo-sonodynamic performance, desirable biocompatibility and bioactivity, providing a competitive strategy for eradicating melanoma and infected wound healing.
Collapse
Affiliation(s)
- Yaling Zheng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Wei Wang
- Shanghai Key Laboratory of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Yao Gao
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Weiyi Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Renwu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Luodan Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
9
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
10
|
Lai C, Luo B, Shen J, Shao J. Biomedical engineered nanomaterials to alleviate tumor hypoxia for enhanced photodynamic therapy. Pharmacol Res 2022; 186:106551. [PMID: 36370918 DOI: 10.1016/j.phrs.2022.106551] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT), as a highly selective, widely applicable, and non-invasive therapeutic modality that is an alternative to radiotherapy and chemotherapy, is extensively applied to cancer therapy. Practically, the efficiency of PDT is severely hindered by the existence of hypoxia in tumor tissue. Hypoxia is a typical hallmark of malignant solid tumors, which remains an essential impediment to many current treatments, thereby leading to poor clinical prognosis after therapy. To address this issue, studies have been focused on modulating tumor hypoxia to augment the therapeutic efficacy. Although nanomaterials to relieve tumor hypoxia for enhanced PDT have been demonstrated in many research articles, a systematical summary of the role of nanomaterials in alleviating tumor hypoxia is scarce. In this review, we introduced the mechanism of PDT, and the involved therapeutic modality of PDT for ablation of tumor cells was specifically summarized. Moreover, current advances in nanomaterials-mediated tumor oxygenation via oxygen-carrying or oxygen-generation tactics to alleviate tumor hypoxia are emphasized. Based on these considerable summaries and analyses, we proposed some feasible perspectives on nanoparticle-based tumor oxygenation to ameliorate the therapeutic outcomes, which may provide some detailed information in designing new oxygenation nanomaterials in this burgeneous field.
Collapse
Affiliation(s)
- Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
11
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
12
|
Mahmudi H, Adili-Aghdam MA, Shahpouri M, Jaymand M, Amoozgar Z, Jahanban-Esfahlan R. Tumor microenvironment penetrating chitosan nanoparticles for elimination of cancer relapse and minimal residual disease. Front Oncol 2022; 12:1054029. [PMID: 36531004 PMCID: PMC9751059 DOI: 10.3389/fonc.2022.1054029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/09/2022] [Indexed: 10/17/2023] Open
Abstract
Chitosan and its derivatives are among biomaterials with numerous medical applications, especially in cancer. Chitosan is amenable to forming innumerable shapes such as micelles, niosomes, hydrogels, nanoparticles, and scaffolds, among others. Chitosan derivatives can also bring unprecedented potential to cross numerous biological barriers. Combined with other biomaterials, hybrid and multitasking chitosan-based systems can be realized for many applications. These include controlled drug release, targeted drug delivery, post-surgery implants (immunovaccines), theranostics, biosensing of tumor-derived circulating materials, multimodal systems, and combination therapy platforms with the potential to eliminate bulk tumors as well as lingering tumor cells to treat minimal residual disease (MRD) and recurrent cancer. We first introduce different formats, derivatives, and properties of chitosan. Next, given the barriers to therapeutic efficacy in solid tumors, we review advanced formulations of chitosan modules as efficient drug delivery systems to overcome tumor heterogeneity, multi-drug resistance, MRD, and metastasis. Finally, we discuss chitosan NPs for clinical translation and treatment of recurrent cancer and their future perspective.
Collapse
Affiliation(s)
- Hossein Mahmudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Adili-Aghdam
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sun Y, Chen LG, Fan XM, Pang JL. Ultrasound Responsive Smart Implantable Hydrogels for Targeted Delivery of Drugs: Reviewing Current Practices. Int J Nanomedicine 2022; 17:5001-5026. [PMID: 36275483 PMCID: PMC9586127 DOI: 10.2147/ijn.s374247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, the process of delivering therapeutic drugs to a patient with a controlled release profile has been a significant focus of drug delivery research. Scientists have given tremendous attention to ultrasound-responsive hydrogels for several decades. These smart nanosystems are more applicable than other stimuli-responsive drug delivery vehicles (ie UV-, pH- and thermal-, responsive materials) because they enable more efficient targeted treatment via relatively non-invasive means. Ultrasound (US) is capable of safely transporting energy through opaque and complex media with minimal loss of energy. It is capable of being localized to smaller regions and coupled to systems operating at various time scales. However, the properties enabling the US to propagate effectively in materials also make it very difficult to transform acoustic energy into other forms that may be used. Recent research from a variety of domains has attempted to deal with this issue, proving that ultrasonic effects can be used to control chemical and physical systems with remarkable specificity. By obviating the need for multiple intravenous injections, implantable US responsive hydrogel systems can enhance the quality of life for patients who undergo treatment with a varied dosage regimen. Ideally, the ease of self-dosing in these systems would lead to increased patient compliance with a particular therapy as well. However, excessive literature has been reported based on implanted US responsive hydrogel in various fields, but there is no comprehensive review article showing the strategies to control drug delivery profile. So, this review was aimed at discussing the current strategies for controlling and targeting drug delivery profiles using implantable hydrogel systems.
Collapse
Affiliation(s)
- Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China
| | - Le-Gao Chen
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China
| | - Xiao-Ming Fan
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, 310014, People’s Republic of China,Correspondence: Xiao-Ming Fan, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, People’s Republic of China, Tel/Fax +86-571-85893290, Email
| | - Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, 317200, People’s Republic of China,Jian-Liang Pang, Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Kangning Middle Road, Shifeng Street, Tiantai County, Taizhou, Zhejiang, 317200, People’s Republic of China, Tel/Fax +86-576- 81302085, Email
| |
Collapse
|
14
|
Zhang Z, Wang J, Xia W, Cao D, Wang X, Kuang Y, Luo Y, Yuan C, Lu J, Liu X. Application of Hydrogels as Carrier in Tumor Therapy: A Review. Chem Asian J 2022; 17:e202200740. [PMID: 36070227 DOI: 10.1002/asia.202200740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
Cancer is one of the most intractable diseases in the world because of its high recurrence rate, high metastasis rate and high lethality rate. Traditional chemotherapy, radiotherapy and surgery have unsatisfactory therapeutic effects and cause many severe side effects at the same time. Hydrogel is a new type of biomaterial with the advantages of good biocompatibility and easy degradation, which can be used as a carrier of functional nanomaterials for tumor therapy. Herein, we represent the progress of hydrogels with different skeletons and their application as carrier in tumor treatment. The hydrogels are listed as polyethylene glycol-based hydrogels, chitosan-based hydrogels, peptide-based hydrogels, hyaluronic acid-based hydrogels, steroid-based hydrogels and other hydrogels by skeletons, and their properties, modifications and toxicities were introduced. Some representative applications of combined hydrogels with nanomaterial for chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and synergistic therapy are highlighted.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Wei Xia
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xingyan Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| |
Collapse
|
15
|
Hu C, Hou B, Xie S. Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Adv 2022; 12:22722-22747. [PMID: 36105955 PMCID: PMC9376763 DOI: 10.1039/d2ra03786f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Sonodynamic therapy (SDT) is a novel non-invasive treatment for cancer combining low-intensity ultrasound and sonosensitizers. SDT activates sonosensitizers through ultrasound, releasing energy and generating reactive oxygen species to kill tumor cells. Compared with traditional photodynamic therapy (PDT), SDT is a promising anti-cancer therapy with the advantages of better targeting, deeper tissue penetration, and higher focusing ability. With the development and broad application of nanomaterials, novel sonosensitizers with tumor-targeting specificity can deliver to deep tumors and enhance the tumor microenvironment. In this review, we first review the mechanisms of sonodynamic therapy. In addition, we also focus on the current types of sonosensitizers and the latest design strategies of nanomaterials in sonosensitizers. Finally, we summarize the combined strategy of sonodynamic therapy.
Collapse
Affiliation(s)
- Chaotao Hu
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China China
| |
Collapse
|
16
|
Hu T, Gong H, Xu J, Huang Y, Wu F, He Z. Nanomedicines for Overcoming Cancer Drug Resistance. Pharmaceutics 2022; 14:pharmaceutics14081606. [PMID: 36015232 PMCID: PMC9412887 DOI: 10.3390/pharmaceutics14081606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Clinically, cancer drug resistance to chemotherapy, targeted therapy or immunotherapy remains the main impediment towards curative cancer therapy, which leads directly to treatment failure along with extended hospital stays, increased medical costs and high mortality. Therefore, increasing attention has been paid to nanotechnology-based delivery systems for overcoming drug resistance in cancer. In this respect, novel tumor-targeting nanomedicines offer fairly effective therapeutic strategies for surmounting the various limitations of chemotherapy, targeted therapy and immunotherapy, enabling more precise cancer treatment, more convenient monitoring of treatment agents, as well as surmounting cancer drug resistance, including multidrug resistance (MDR). Nanotechnology-based delivery systems, including liposomes, polymer micelles, nanoparticles (NPs), and DNA nanostructures, enable a large number of properly designed therapeutic nanomedicines. In this paper, we review the different mechanisms of cancer drug resistance to chemotherapy, targeted therapy and immunotherapy, and discuss the latest developments in nanomedicines for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Jiayue Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Yuan Huang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
| | - Fengbo Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; (T.H.); (J.X.); (Y.H.)
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Correspondence: (F.W.); or (Z.H.); Tel.: +86-28-85422965 (Z.H.); Fax: +86-28-85422664 (Z.H.)
| |
Collapse
|
17
|
Huang WQ, Zhu YQ, You W, Chen J, Gao F, Nie X, Zhang Z, Chen G, Yu Y, Xia L, Hong CY, Wang LH, Hao ZY, You YZ. Tumor Microenvironment Triggered the In Situ Synthesis of an Excellent Sonosensitizer in Tumor for Sonodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26469-26479. [PMID: 35670468 DOI: 10.1021/acsami.2c05369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An ultrasound-triggered sonodynamic therapy has shown great promise for cancer therapy. However, its clinical applications are very limited because the traditional sonosensitizers tend to suffer from very poor efficiency combined with low retention in cancer cells and low tumor selectivity. Therefore, sonosensitizers with higher effectivity, higher tumor cell retention, and higher tumor cell specificity are highly required. Herein, we constructed a Ti2C(OH)X nanosheet, which was a poor sonosensitizer but had a long circulation in the blood system. However, it was very interesting to find that the tumor microenvironment could in situ turn Ti2C(OH)X nanosheet into a novel and excellent sonosensitizer with a nanofiber structure in tumors, exhibiting excellent ability to generate reactive oxygen species (ROS) under ultrasound. Moreover, the nanofiber structure made it very difficult to get out of cancer cells, highly enhancing the retention of the sonosensitizer in the tumor, thereby enabling it to effectively and selectively kill cancer cells in vivo. Our findings demonstrate that the strategy of the tumor microenvironment triggering the in situ synthesis of an effective sonosensitizer in tumor provided a promising means to simultaneously increase the efficiency, sonosensitizer retention in cancer cells, and cancer selectivity, thereby effectively killing cancer cells but causing little damage to healthy tissues via the sonodynamic therapy.
Collapse
Affiliation(s)
- Wei-Qiang Huang
- The Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ya-Qi Zhu
- The Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Gao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Nie
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ze Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guang Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Yu
- The Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Xia
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui 230026, China
| | - Long-Hai Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zong-Yao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ye-Zi You
- The Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Fang X, Wang C, Zhou S, Cui P, Hu H, Ni X, Jiang P, Wang J. Hydrogels for Antitumor and Antibacterial Therapy. Gels 2022; 8:gels8050315. [PMID: 35621613 PMCID: PMC9141473 DOI: 10.3390/gels8050315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
As a highly absorbent and hydrophobic material with a three-dimensional network structure, hydrogels are widely used in biomedical fields for their excellent biocompatibility, low immunogenicity, adjustable physicochemical properties, ability to encapsulate a variety of drugs, controllability, and degradability. Hydrogels can be used not only for wound dressings and tissue repair, but also as drug carriers for the treatment of tumors. As multifunctional hydrogels are the focus for many researchers, this review focuses on hydrogels for antitumor therapy, hydrogels for antibacterial therapy, and hydrogels for co-use in tumor therapy and bacterial infection. We highlighted the advantages and representative applications of hydrogels in these fields and also outlined the shortages and future orientations of this useful tool, which might give inspirations for future studies.
Collapse
Affiliation(s)
- Xiuling Fang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Xinye Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| |
Collapse
|
19
|
Perfluorocarbon loaded fluorinated covalent organic polymers with effective sonosensitization and tumor hypoxia relief enable synergistic sonodynamic-immunotherapy. Biomaterials 2021; 280:121250. [PMID: 34823883 DOI: 10.1016/j.biomaterials.2021.121250] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Relieving tumor hypoxia has recently been found to be a promising approach to reverse tumor immunosuppression and thus enhance the treatment outcomes of diverse cancer treatments. Herein, we prepared a type of fluorinated covalent conjugate polymers (COPs) with sonosensitizer meso-5, 10, 15, 20-tetra (4-hydroxylphenyl) porphyrin (THPP) and perfluorosebacic acid (PFSEA) as cross-linkers, yielding THPPpf-COPs with efficient sonodynamic efficacy and loading capacity towards perfluoro-15-crown-5-ether (PFCE), a model perfluorocarbon molecule. Upon intratumoral injection, such PFCE@THPPpf-COPs could not only attenuate tumor hypoxia, but also exhibit the most effective suppression effect on tumor growth in the presence of ultrasound exposure by inducing immunogenic cell death of cancer cells. Furthermore, we found that the sonodynamic therapy of PFCE@THPPpf-COPs together with anti-CD47 immunotherapy would synergistically suppress tumor growth by increasing the tumor-infiltrating frequencies of phagocytic M1 macrophages and cytotoxic CD3+CD8+ T cells, while reducing the frequency of immunosuppressive regulatory T cells. Moreover, such combination treatment could also elicit potent protective memory antitumor immunity to prevent tumor challenge. Therefore, this work presents PFCE@THPPpf-COPs are a type of multifunctional nano-sonosensitizers potent in removing negative impacts of inherent tumor hypoxia and immunosuppression, and suppressing tumor growth and tumor recurrence by priming host's antitumor immunity, particularly in synergizing with anti-CD47 immunotherapy.
Collapse
|
20
|
Liu J, Zhou B, Guo Y, Zhang A, Yang K, He Y, Wang J, Cheng Y, Cui D. SR-A-Targeted Nanoplatform for Sequential Photothermal/Photodynamic Ablation of Activated Macrophages to Alleviate Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29349-29362. [PMID: 34133141 DOI: 10.1021/acsami.1c06380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cardiovascular and cerebrovascular diseases induced by atherosclerosis (AS) have become the dominant cause of disability and mortality throughout the world. The typical early pathological process of AS involves the activation of inflammatory macrophages in the vulnerable plaque. In this work, we first employed chitosan-coated carbon nanocages (CS-CNCs) as nanocarriers to load Chlorin e6 (Ce6) and then linked dextran sulfate (DS) to the outermost layer by electrostatic adsorption to create a multifunctional therapeutic nanoplatform, CS-CNCs@Ce6/DS. The DS of the nanoplatform can recognize and bind to the type A scavenger receptor (SR-A), which is expressed only on the activated macrophages of the arterial plaque, so the proposed nanoplatform selectively targets these macrophages and accumulates there. Furthermore, DS can competitively inhibit cellular endocytosis of oxidized low-density lipoproteins via blocking of SR-A. The rapid photothermal conversion capability of CS-CNCs enables efficient therapeutic delivery during photothermal therapy (PTT). Interestingly, near-infrared-accelerated drug release induced by initial 808-nm laser irradiation was observed, thus enhancing the Ce6 concentration in the atherosclerotic plaque area and the efficiency of photodynamic therapy (PDT). Sequential photothermal/photodynamic ablation of the activated macrophages reduced pro-inflammatory cytokine secretion and alleviated the proliferation and migration of smooth muscle cells. These finally resulted in the stabilization and shrinkage of atherosclerotic plaques, further inhibiting the development and exacerbation of AS. Therefore, this work achieved a "1 + 1 greater than 2" effect by providing a novel approach to the treatment of atherosclerotic plaques, which is promising for the prevention of AS-related diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Bi Zhou
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yuliang Guo
- Rehabilitation Department at Shanghai Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, P. R. China
| | - Amin Zhang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Kai Yang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yu He
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Jianbo Wang
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|