1
|
Liang A, Tao T, Chen J, Yang Y, Zhou X, Zhu X, Yu G. Immunocompetent tumor-on-a-chip: A translational tool for drug screening and cancer therapy. Crit Rev Oncol Hematol 2025; 210:104716. [PMID: 40194716 DOI: 10.1016/j.critrevonc.2025.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Tumor is one of the major diseases endangering human health while establishing an efficient in vitro tumor microenvironment (TME) model, which is an effective way to reveal the nature of the tumor and develop therapeutic methods. In recent years, due to the continuous development of lab-on-a-chip technology and tumor biology, various tumor-on-a-chip models applied to oncology research have emerged. Among them, the Immunotherapy-on-a-chip (ITOC) platform stands out with its ability to reflect immunological behavior in the TME. It is a class of in vitro tumor-on-a-chip with immune activity, which has good performance and the ability to reproduce TME. It can highly simulate the complex pathophysiological characteristics of tumors and be used to study various features related to tumor biological behavior. Currently, many advantageous functions and application values of ITOC platforms have been discovered and applied to tumor drug screening and development, tumor immunotherapy, and personalized therapy. In conclusion, the tumor-on-a-chip platform is a highly promising model for medical oncology research. In this review, the background of the ITOC platform, key factors for constructing an ideal ITOC platform, and the specific applications of ITOC platforms in tumor research and treatment are introduced.
Collapse
Affiliation(s)
- Anqi Liang
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China; The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Jiahui Chen
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Yucong Yang
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xiao Zhu
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| |
Collapse
|
2
|
Smirnova O, Efremov Y, Klyucherev T, Peshkova M, Senkovenko A, Svistunov A, Timashev P. Direct and cell-mediated EV-ECM interplay. Acta Biomater 2024; 186:63-84. [PMID: 39043290 DOI: 10.1016/j.actbio.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EV) are a heterogeneous group of lipid particles excreted by cells. They play an important role in regeneration, development, inflammation, and cancer progression, together with the extracellular matrix (ECM), which they constantly interact with. In this review, we discuss direct and indirect interactions of EVs and the ECM and their impact on different physiological processes. The ECM affects the secretion of EVs, and the properties of the ECM and EVs modulate EVs' diffusion and adhesion. On the other hand, EVs can affect the ECM both directly through enzymes and indirectly through the modulation of the ECM synthesis and remodeling by cells. This review emphasizes recently discovered types of EVs bound to the ECM and isolated by enzymatic digestion, including matrix-bound nanovesicles (MBV) and tissue-derived EV (TiEV). In addition to the experimental studies, computer models of the EV-ECM-cell interactions, from all-atom models to quantitative pharmacology models aiming to improve our understanding of the interaction mechanisms, are also considered. STATEMENT OF SIGNIFICANCE: Application of extracellular vesicles in tissue engineering is an actively developing area. Vesicles not only affect cells themselves but also interact with the matrix and change it. The matrix also influences both cells and vesicles. In this review, different possible types of interactions between vesicles, matrix, and cells are discussed. Furthermore, the united EV-ECM system and its regulation through the cellular activity are presented.
Collapse
Affiliation(s)
- Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Timofey Klyucherev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia
| | - Alexey Senkovenko
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
3
|
Qi Y, Wang X, Bai Z, Xu Y, Lu T, Zhu H, Zhang S, Wu Z, Liu Z, He Z, Jia W. Enhancement of the function of mesenchymal stem cells by using a GMP-grade three-dimensional hypoxic large-scale production system. Heliyon 2024; 10:e30968. [PMID: 38826705 PMCID: PMC11141262 DOI: 10.1016/j.heliyon.2024.e30968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024] Open
Abstract
Background Efficiently increasing the production of clinical-grade mesenchymal stem cells (MSCs) is crucial for clinical applications. Challenges with the current planar culture methods include scalability issues, labour intensity, concerns related to cell senescence, and heterogeneous responses. This study aimed to establish a large-scale production system for MSC generation. In addition, a comparative analysis of the biological differences between MSCs cultured under various conditions was conducted. Methods and materials We developed a GMP-grade three-dimensional hypoxic large-scale production (TDHLSP) system for MSCs using self-fabricated glass microcarriers and a multifunctional bioreactor. Different parameters, including cell viability, cell diameter, immunophenotype, morphology, karyotype, and tumourigenicity were assessed in MSCs cultured using different methods. Single-cell RNA sequencing (scRNA-seq) revealed pathways and genes associated with the enhanced functionality of MSCs cultured in three dimensions under hypoxic conditions (3D_Hypo MSCs). Moreover, CD142 knockdown in 3D_Hypo MSCs confirmed its in vitro functions. Results Inoculating 2 × 108 MSCs into a 2.6 L bioreactor in the TDHLSP system resulted in a final scale of 4.6 × 109 3D_Hypo MSCs by day 10. The 3D_Hypo MSCs retained characteristics of the 2D MSCs, demonstrating their genomic stability and non-tumourigenicity. Interestingly, the subpopulations of 3D_Hypo MSCs exhibited a more uniform distribution and a closer relationship than those of 2D MSCs. The heterogeneity of MSCs was strongly correlated with 'cell cycle' and 'stroma/mesenchyme', with 3D_Hypo MSCs expressing higher levels of activated stroma genes. Compared to 2D MSCs, 3D_Hypo MSCs demonstrated enhanced capabilities in blood vessel formation, TGF-β1 secretion, and inhibition of BV2 proliferation, with maintenance of Senescence-Associated β-Galactosidase (SA-β-gal) negativity. However, the enhanced functions of 3D_Hypo MSCs decreased upon the downregulation of CD142 expression. Conclusion The TDHLSP system led to a high overall production of MSCs and promoted uniform distribution of MSC clusters. This cultivation method also enhanced key cellular properties, such as angiogenesis, immunosuppression, and anti-aging. These functionally improved and uniform MSC subpopulations provide a solid basis for the clinical application of stem cell therapies.
Collapse
Affiliation(s)
- Yiyao Qi
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhihui Bai
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Ying Xu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Tingting Lu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Hanyu Zhu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Shoumei Zhang
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhihong Wu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Zhiying He
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| | - Wenwen Jia
- Institute for Regenerative Medicine, School of Life Sciences and Technology, School of Medicine, Tongji University, Shanghai, 200123, China
- National Stem Cell Translational Resource Center, Shanghai East Hospital, Tongji University, Shanghai, 200123, China
| |
Collapse
|
4
|
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H. Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnology 2024; 22:215. [PMID: 38693585 PMCID: PMC11064407 DOI: 10.1186/s12951-024-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.
Collapse
Affiliation(s)
- Wenya Chen
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Can Jin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yinjie Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chong Li
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Hui Qian
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
5
|
Suo M, Fu Y, Wang S, Lin S, Zhang J, Wu C, Yin H, Wang P, Zhang W, Wang XH. Miniaturized Laser Probe for Exosome-Based Cancer Liquid Biopsy. Anal Chem 2024; 96:1965-1976. [PMID: 38267074 DOI: 10.1021/acs.analchem.3c04187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Exosomes have been established as a valuable tool for clinical applications for the purpose of liquid biopsy and therapy. However, the clinical practice of exosomes as cancer biopsy markers is still to a very low extent. Active mode optical microcavity with microlaser emission has aroused as a versatile approach for chemical and biological sensing due to its benefits of larger photon population, increased effective Q-factor, decreased line width, and improved sensitivity. Herein, we report a label-free and precise quantification of exosome vesicles and surface protein profiling of breast cancer exosomes using functionalized active whispering gallery mode (WGM) microlaser probes. A detection limit of 40 exosomes per microresonator was achieved. The proposed system enabled a pilot assay of quantitative exosome analysis in cancer patients' blood with only a few microliters of sample consumption, holding good potential for large-scale cancer liquid biopsy. Multiplexed functionalization of the optical microresonator allowed us to profile cancer exosomal surface markers and distinct subclasses of breast cancer-associated exosomes and monitor drug treatment outcomes. Our findings speak volumes about the advantages of the WGM microlaser sensor, including very small sample consumption, low detection limit, high specificity, and ease of operation, offering a promising means for precious clinical sample analysis.
Collapse
Affiliation(s)
- Mingqian Suo
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yiqian Fu
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shijia Wang
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Siqi Lin
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jiahui Zhang
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Chunxiao Wu
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Huabing Yin
- Department of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Pu Wang
- Laboratory for Advanced Laser Technology and Applications, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing 100124, China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiu-Hong Wang
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing 100124, China
| |
Collapse
|
6
|
Luoto JC, Coelho‐Rato LS, Jungarå C, Bengs SH, Roininen J, Eriksson JE, Sistonen L, Henriksson E. Cancer cell invasion alters the protein profile of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e124. [PMID: 38938900 PMCID: PMC11080925 DOI: 10.1002/jex2.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication involved in local and long-range signalling of cancer metastasis. The onset of invasion is the key step of the metastatic cascade, but the secretion of EVs has remained unexplored at that stage due to technical challenges. In this study, we present a platform to track EVs over the course of invasive development of human prostate cancer cell (PC3) tumoroids utilizing in vivo-mimicking extracellular matrix-based 3D cultures. Using this EV production method, combined with proteomic profiling, we show that PC3 tumoroids secrete EVs with previously undefined protein cargo. Intriguingly, an increase in EV amounts and extensive changes in the EV protein composition were detected upon invasive transition of the tumoroids. The changes in EV protein cargo were counteracted by chemical inhibition of invasion. These results reveal the impact of the tumoroids' invasive status on EV secretion and cargo, and highlight the necessity of in vivo-mimicking conditions for uncovering novel cancer-derived EV components.
Collapse
Affiliation(s)
- Jens C. Luoto
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Leila S. Coelho‐Rato
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Cecilia Jungarå
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
| | - Sara H. Bengs
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
| | - Jannica Roininen
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
| | - John E. Eriksson
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Eva Henriksson
- Faculty of Science and Engineering, Cell BiologyÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
7
|
Mullen S, Movia D. The role of extracellular vesicles in non-small-cell lung cancer, the unknowns, and how new approach methodologies can support new knowledge generation in the field. Eur J Pharm Sci 2023; 188:106516. [PMID: 37406971 DOI: 10.1016/j.ejps.2023.106516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Extracellular vesicles (EVs) are nanosized particles released from most human cell types that contain a variety of cargos responsible for mediating cell-to-cell and organ-to-organ communications. Current knowledge demonstrates that EVs also play critical roles in many aspects of the progression of Non-Small-Cell Lung Cancer (NSCLC). Their roles range from increasing proliferative signalling to inhibiting apoptosis, promoting cancer metastasis, and modulating the tumour microenvironment to support cancer development. However, due to the limited availability of patient samples, intrinsic inter-species differences between human and animal EV biology, and the complex nature of EV interactions in vivo, where multiple cell types are present and several events occur simultaneously, the use of conventional preclinical and clinical models has significantly hindered reaching conclusive results. This review discusses the biological roles that EVs are currently known to play in NSCLC and identifies specific challenges in advancing today's knowledge. It also describes the NSCLC models that have been used to define currently-known EV functions, the limitations associated with their use in this field, and how New Approach Methodologies (NAMs), such as microfluidic platforms, organoids, and spheroids, can be used to overcome these limitations, effectively supporting future exciting discoveries in the NSCLC field and the potential clinical exploitation of EVs.
Collapse
Affiliation(s)
- Sive Mullen
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland
| | - Dania Movia
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Trinity St James's Cancer Institute, James's Street, Dublin, Ireland.
| |
Collapse
|
8
|
Maqueda JJ, Santos M, Ferreira M, Marinho S, Rocha S, Rocha M, Saraiva N, Bonito N, Carvalho J, Oliveira C. NGS Data Repurposing Allows Detection of tRNA Fragments as Gastric Cancer Biomarkers in Patient-Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:ijms24108961. [PMID: 37240307 DOI: 10.3390/ijms24108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Transfer RNA fragments (tRFs) have gene silencing effects similarly to miRNAs, can be sorted into extracellular vesicles (EVs) and are emerging as potential circulating biomarkers for cancer diagnoses. We aimed at analyzing the expression of tRFs in gastric cancer (GC) and understanding their potential as biomarkers. We explored miRNA datasets from gastric tumors and normal adjacent tissues (NATs) from TCGA repository, as well as proprietary 3D-cultured GC cell lines and corresponding EVs, in order to identify differentially represented tRFs using MINTmap and R/Bioconductor packages. Selected tRFs were validated in patient-derived EVs. We found 613 Differentially Expressed (DE)-tRFs in the TCGA dataset, of which 19 were concomitantly upregulated in TCGA gastric tumors and present in 3D cells and EVs, but barely expressed in NATs. Moreover, 20 tRFs were expressed in 3D cells and EVs and downregulated in TCGA gastric tumors. Of these 39 DE-tRFs, 9 tRFs were also detected in patient-derived EVs. Interestingly, the targets of these 9 tRFs affect neutrophil activation and degranulation, cadherin binding, focal adhesion and the cell-substrate junction, highlighting these pathways as major targets of EV-mediated crosstalk with the tumor microenvironment. Furthermore, as they are present in four distinct GC datasets and can be detected even in low quality patient-derived EV samples, they hold promise as GC biomarkers. By repurposing already available NGS data, we could identify and cross-validate a set of tRFs holding potential as GC diagnosis biomarkers.
Collapse
Affiliation(s)
- Joaquín J Maqueda
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Bioinf2Bio LDA, 4200-150 Porto, Portugal
| | - Mafalda Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Sérgio Marinho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sara Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Mafalda Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Nadine Saraiva
- Instituto Português de Oncologia de Coimbra Francisco Gentil, E.P.E. (IPOCFG, E.P.E.), 3000-075 Coimbra, Portugal
| | - Nuno Bonito
- Instituto Português de Oncologia de Coimbra Francisco Gentil, E.P.E. (IPOCFG, E.P.E.), 3000-075 Coimbra, Portugal
| | - Joana Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Bioinf2Bio LDA, 4200-150 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
9
|
Sun L, Ji Y, Chi B, Xiao T, Li C, Yan X, Xiong X, Mao L, Cai D, Zou A, Wang Y, Zhang L, Tang L, Wang Q. A 3D culture system improves the yield of MSCs-derived extracellular vesicles and enhances their therapeutic efficacy for heart repair. Biomed Pharmacother 2023; 161:114557. [PMID: 36963364 DOI: 10.1016/j.biopha.2023.114557] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs), due to their inner functional substances, have shown great value in treating acute myocardial infarction (AMI). However, their clinical application is limited by a low yield. In the present study, we cultured EVs using a hollow fiber bioreactor-based three-dimensional (3D) system, and assessed their therapeutic effectiveness on AMI. METHODS The MSCs separated from fresh human umbilical cord were planted into the flasks of two systems: two-dimensional (2D) culture and hollow-fiber-bioreactor based 3D culture. EVs were extracted from the culture supernatants. Characteristics and yields of EVs from two culture systems, namely 2D-EVs and 3D-EVs, were compared. A rat model of AMI was built up to assess their therapeutic efficacy on AMI. RESULTS The yield of 3D-EVs was higher, with biofunctions similar to those of 2D-EVs. 3D-EVs repressed the apoptosis of cardiomyocytes, facilitated angiogenesis, and regulated the transition of macrophage subpopulations after myocardial infarction, and eventually improved cardiac function in the AMI rats. CONCLUSIONS The hollow fiber 3D culture system can increase the yield of MSCs-derived EVs to render a strong cardioprotective effect in AMI rats.
Collapse
Affiliation(s)
- Ling Sun
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China; Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China
| | - Yuan Ji
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China; Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China
| | - Boyu Chi
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China; Dalian Medical University, Dalian, 116000 Liaoning, China
| | - Tingting Xiao
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China
| | - Chenkai Li
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China
| | - Xuejiao Yan
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China; Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China
| | - Xu Xiong
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, 213003 Jiangsu, China
| | - Lipeng Mao
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China; Dalian Medical University, Dalian, 116000 Liaoning, China
| | - Dabei Cai
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China; Dalian Medical University, Dalian, 116000 Liaoning, China
| | - Ailin Zou
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China
| | - Yu Wang
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023 Jiangsu, China.
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China.
| | - Qingjie Wang
- Institute of Cardiovascular Disease, The Affiliated Changzhou Second People's Hospital of Nanjing Medical Universityō, Changzhou, 213003 Jiangsu, China; Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003 Jiangsu, China.
| |
Collapse
|
10
|
Zhao W, Li X, Li X, Peng L, Li Y, Du Y, He J, Qin Y, Zhang H. Significant increase of serum extracellular vesicle-packaged growth differentiation factor 15 in type 2 diabetes mellitus: a cross-sectional study. Eur J Med Res 2023; 28:37. [PMID: 36658625 PMCID: PMC9850700 DOI: 10.1186/s40001-023-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF15) is a stress-inducible factor involved in the inflammatory progression of many complications, including type 2 diabetes mellitus (T2DM). Growing evidence suggests that molecules in extracellular vesicles (EVs) are associated with diabetes or diabetes-related complications. However, the correlation between serum extracellular vesicle-derived growth differentiation factor15 (EV-GDF15) and T2DM is unknown. The aim of this cross-sectional study is to investigate whether serum EV-GDF15 is associated with T2DM incidence. METHODS 116 individuals, including 78 T2DM and 38 non-T2DM, were recruited as participants. The concentrations of serum EV-GDF15 and serum GDF15 were determined by Luminex assay. Serum EVs were obtained by ultracentrifugation. Multivariate stepwise regression analysis was used to determine the association between serum GDF15 levels and fasting plasma glucose (FPG) as well as glycated hemoglobin (HbA1c). The association of serum EV-GDF15 levels with T2DM was determined by multivariate logistic regression analysis. RESULTS Our data showed that the levels of serum EV-GDF15 and serum GDF15 were significantly increased in T2DM patients compared with non-T2DM subjects (EV-GDF15 levels, 13.68 (6.61-23.44) pg/mL vs. 5.56 (3.44-12.09) pg/mL, P < 0.001; and serum GDF15 levels, 1025.49 (677.87-1626.36) pg/mL vs. 675.46 (469.53-919.98) pg/mL, P < 0.001). There was a linear correlation between EV-GDF15 levels and fasting plasma glucose (FPG) and Hemoglobin A1C (HbA1c) levels (normalized β = 0.357, P < 0.001; normalized β = 0.409, P < 0.001, respectively). Elevated levels of EV-GDF15 were accompanied by an increase in the proportion of patients with T2DM (from 47.5 to 78.9%) and a progressive independent association with the incidence of T2DM (from OR = 3.06, 95% CI 1.02-9.19, P = 0.047 to OR = 3.75, 95% CI 1.14-12.26, P = 0.029). Notably, high levels of serum GDF15 plus high levels of serum EV-GDF15 were significantly associated with T2DM more than either alone. CONCLUSION This study elucidated that increased levels of GDF15 in serum EVs were independently associated with T2DM.
Collapse
Affiliation(s)
- Wen Zhao
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| | - Xinwei Li
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| | - Xinxin Li
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| | - Lu Peng
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| | - Yu Li
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| | - Yunhui Du
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| | - Jianxun He
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital Laboratory Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Yanwen Qin
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| | - Huina Zhang
- grid.24696.3f0000 0004 0369 153XBeijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, No. 2 Anzhen Road, Beijing, 100029 China
| |
Collapse
|
11
|
Kyykallio H, Faria AVS, Hartman R, Capra J, Rilla K, Siljander PR. A quick pipeline for the isolation of 3D cell culture-derived extracellular vesicles. J Extracell Vesicles 2022; 11:e12273. [PMID: 36257915 PMCID: PMC9579059 DOI: 10.1002/jev2.12273] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2021] [Accepted: 09/27/2022] [Indexed: 11/12/2022] Open
Abstract
Recent advances in cell biology research regarding extracellular vesicles have highlighted an increasing demand to obtain 3D cell culture-derived EVs, because they are considered to more accurately represent EVs obtained in vivo. However, there is still a grave need for efficient and tunable methodologies to isolate EVs from 3D cell cultures. Using nanofibrillar cellulose (NFC) scaffold as a 3D cell culture matrix, we developed a pipeline of two different approaches for EV isolation from cancer spheroids. A batch method was created for delivering high EV yield at the end of the culture period, and a harvesting method was created to enable time-dependent collection of EVs to combine EV profiling with spheroid development. Both these methods were easy to set up, quick to perform, and they provided a high EV yield. When compared to scaffold-free 3D spheroid cultures on ultra-low affinity plates, the NFC method resulted in similar EV production/cell, but the NFC method was scalable and easier to perform resulting in high EV yields. In summary, we introduce here an NFC-based, innovative pipeline for acquiring EVs from 3D cancer spheroids, which can be tailored to support the needs of variable EV research objectives.
Collapse
Affiliation(s)
- Heikki Kyykallio
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
| | - Alessandra V. S. Faria
- EV GroupMolecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Rosabella Hartman
- EV GroupMolecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Janne Capra
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
| | - Kirsi Rilla
- Institute of BiomedicineUniversity of Eastern FinlandKuopioFinland
| | - Pia R‐M Siljander
- EV GroupMolecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
12
|
Hisey CL, Artuyants A, Guo G, Chang V, Reshef G, Middleditch M, Jacob B, Chamley LW, Blenkiron C. Investigating the consistency of extracellular vesicle production from breast cancer subtypes using CELLine adherent bioreactors. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e60. [PMID: 38938775 PMCID: PMC11080891 DOI: 10.1002/jex2.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicle (EV) research has grown rapidly in recent years, largely due to the potential use of EVs as liquid biopsy biomarkers or therapeutics. However, in-depth characterisation and validation of EVs produced using conventional in vitro cultures can be challenging due to the large area of cell monolayers and volumes of culture media required. To overcome this obstacle, multiple bioreactor designs have been tested for EV production with varying success, but the consistency of EVs produced over time in these systems has not been reported previously. In this study, we demonstrate that several breast cancer cell lines of different subtypes can be cultured simultaneously in space, resource, and time efficient manner using CELLine AD 1000 systems, allowing the consistent production of vast amounts of EVs for downstream experimentation. We report an improved workflow used for inoculating, maintaining, and monitoring the bioreactors, their EV production, and the characterisation of the EVs produced. Lastly, our proteomic analyses of the EVs produced throughout the lifetime of the bioreactors show that core EV-associated proteins are relatively consistent, with few minor variations over time, but that tracking the production of EVs is a convenient method to indirectly monitor the bioreactor and consistency of the yielded EVs. These findings will aid future studies requiring the simultaneous production of large amounts of EVs from several cell lines of different subtypes of a disease and other EV biomanufacturing applications.
Collapse
Affiliation(s)
- Colin L. Hisey
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Anastasiia Artuyants
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Auckland Cancer Society Research CentreUniversity of AucklandAucklandNew Zealand
| | - George Guo
- Department of PhysiologySchool of Medical SciencesUniversity of AucklandAucklandNew Zealand
| | - Vanessa Chang
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Gabrielle Reshef
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | | | - Bincy Jacob
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Lawrence W. Chamley
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Cherie Blenkiron
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Auckland Cancer Society Research CentreUniversity of AucklandAucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
13
|
Born LJ, McLoughlin ST, Dutta D, Mahadik B, Jia X, Fisher JP, Jay SM. Sustained released of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-printed gelatin methacrylate hydrogels. J Biomed Mater Res A 2022; 110:1190-1198. [PMID: 35080115 PMCID: PMC11570911 DOI: 10.1002/jbm.a.37362] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) represent an emerging class of therapeutics with significant potential and broad applicability. However, a general limitation is their rapid clearance after administration. Thus, methods to enable sustained EV release are of great potential value. Here, we demonstrate that EVs from mesenchymal stem/stromal cells (MSCs) can be incorporated into 3D-printed gelatin methacrylate (GelMA) hydrogel bioink, and that the initial burst release of EVs can be reduced by increasing the concentration of crosslinker during gelation. Further, the data show that MSC EV bioactivity in an endothelial gap closure assay is retained after the 3D printing and photocrosslinking processes. Our group previously showed that MSC EV bioactivity in this assay correlates with pro-angiogenic bioactivity in vivo, thus these results indicate the therapeutic potential of MSC EV-laden GelMA bioinks.
Collapse
Affiliation(s)
- Louis J. Born
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Shannon T. McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Dipankar Dutta
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Steven M. Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
14
|
Xie Y, Guan Q, Guo J, Chen Y, Yin Y, Han X. Hydrogels for Exosome Delivery in Biomedical Applications. Gels 2022; 8:gels8060328. [PMID: 35735672 PMCID: PMC9223116 DOI: 10.3390/gels8060328] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/08/2023] Open
Abstract
Hydrogels, which are hydrophilic polymer networks, have attracted great attention, and significant advances in their biological and biomedical applications, such as for drug delivery, tissue engineering, and models for medical studies, have been made. Due to their similarity in physiological structure, hydrogels are highly compatible with extracellular matrices and biological tissues and can be used as both carriers and matrices to encapsulate cellular secretions. As small extracellular vesicles secreted by nearly all mammalian cells to mediate cell–cell interactions, exosomes play very important roles in therapeutic approaches and disease diagnosis. To maintain their biological activity and achieve controlled release, a strategy that embeds exosomes in hydrogels as a composite system has been focused on in recent studies. Therefore, this review aims to provide a thorough overview of the use of composite hydrogels for embedding exosomes in medical applications, including the resources for making hydrogels and the properties of hydrogels, and strategies for their combination with exosomes.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Qiuyue Guan
- Department of Geriatrics, People’s Hospital of Sichuan Province, Chengdu 610041, China;
| | - Jiusi Guo
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Yilin Chen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
- Correspondence:
| |
Collapse
|
15
|
Bang OY, Kim JE. Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases. BMB Rep 2022. [PMID: 35000673 PMCID: PMC8810548 DOI: 10.5483/bmbrep.2022.55.1.162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm−1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer’s disease and Parkinson’ disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- S&E bio, Inc, Seoul 06351, Korea
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Ji-Eun Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
16
|
Bang OY, Kim JE. Stem cell-derived extracellular vesicle therapy for acute brain insults and neurodegenerative diseases. BMB Rep 2022; 55:20-29. [PMID: 35000673 PMCID: PMC8810548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 12/26/2021] [Indexed: 02/21/2025] Open
Abstract
Stem cell-based therapy is a promising approach for treating a variety of disorders, including acute brain insults and neurodegenerative diseases. Stem cells such as mesenchymal stem cells (MSCs) secrete extracellular vesicles (EVs), circular membrane fragments (30 nm-1 μm) that are shed from the cell surface, carrying several therapeutic molecules such as proteins and microRNAs. Because EV-based therapy is superior to cell therapy in terms of scalable production, biodistribution, and safety profiles, it can be used to treat brain diseases as an alternative to stem cell therapy. This review presents evidences evaluating the role of stem cell-derived EVs in stroke, traumatic brain injury, and degenerative brain diseases, such as Alzheimer's disease and Parkinson' disease. In addition, stem cell-derived EVs have better profiles in biocompatibility, immunogenicity, and safety than those of small chemical and macromolecules. The advantages and disadvantages of EVs compared with other strategies are discussed. Even though EVs obtained from native stem cells have potential in the treatment of brain diseases, the successful clinical application is limited by the short half-life, limited targeting, rapid clearance after application, and insufficient payload. We discuss the strategies to enhance the efficacy of EV therapeutics. Finally, EV therapies have yet to be approved by the regulatory authorities. Major issues are discussed together with relevant advances in the clinical application of EV therapeutics. [BMB Reports 2022; 55(1): 20-29].
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- S&E bio, Inc, Seoul 06351, Korea
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| | - Ji-Eun Kim
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul 06351, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea
| |
Collapse
|
17
|
Hilton SH, White IM. Advances in the analysis of single extracellular vesicles: A critical review. SENSORS AND ACTUATORS REPORTS 2021; 3:100052. [PMID: 35098157 PMCID: PMC8792802 DOI: 10.1016/j.snr.2021.100052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is an ever-growing need for new cancer diagnostic approaches that provide earlier diagnosis as well as richer diagnostic, prognostic, and resistance information. Extracellular vesicles (EVs) recovered from a liquid biopsy have paradigm-shifting potential to offer earlier and more complete diagnostic information in the form of a minimally invasive liquid biopsy. However, much remains unknown about EVs, and current analytical approaches are unable to provide precise information about the contents and source of EVs. New approaches have emerged to analyze EVs at the single particle level, providing the opportunity to study biogenesis, correlate markers for higher specificity, and connect EV cargo with the source or destination. In this critical review we describe and analyze methods for single EV analysis that have emerged over the last five years. In addition, we note that current methods are limited in their adoption due to cost and complexity and we offer opportunities for the research community to address this challenge.
Collapse
|
18
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|