1
|
Wallace EJ, O'Dwyer J, Dolan EB, Burke LP, Wylie R, Bellavia G, Straino S, Cianfarani F, Ciotti G, Serini S, Calviello G, Roche ET, Mitra T, Duffy GP. Actuation-Mediated Compression of a Mechanoresponsive Hydrogel by Soft Robotics to Control Release of Therapeutic Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401744. [PMID: 39692747 PMCID: PMC11831469 DOI: 10.1002/advs.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/31/2024] [Indexed: 12/19/2024]
Abstract
Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device. In a step-change from previously reported systems, pneumatic actuation of this system releases the cationic therapeutic protein Vascular Endothelial Growth Factor (VEGF) in a bioactive form which is required for therapeutic angiogenesis, the growth of new blood vessels, in numerous clinical conditions. The ability of the SRDD device to release bioactive VEGF in a spatiotemporal manner from the hydrogel is tested in diabetic rats - a model in which angiogenesis is difficult to stimulate. Daily actuation of the SRDD device in the diabetic rat model significantly increased cluster of differentiation 31+ (CD31+) blood vessel number (p = 0.0335) and the diameter of alpha-smooth muscle actin+ (α-SMA+) blood vessels (p = 0.0025) compared to passive release of VEGF from non-actuated devices. The SRDD device combined with the mechanoresponsive hydrogel offers the potential to deliver an array of bioactive therapeutics in a spatiotemporal manner to mimic their natural release in vivo.
Collapse
Affiliation(s)
- Eimear J. Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Explora‐Bioscience SrlG. Peroni 386Rome00131Italy
| | - Joanne O'Dwyer
- Pharmacology and TherapeuticsSchool of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | - Eimear B. Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- Biomedical EngineeringSchool of EngineeringUniversity of GalwayGalwayH91 HX31Ireland
| | - Liam P. Burke
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Antimicrobial Resistance and Microbial Ecology GroupSchool of Medicine, College of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 DK59Ireland
- Centre for One HealthRyan InstituteUniversity of GalwayGalwayH91 DK59Ireland
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | | | | | | | | | - Simona Serini
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Gabriella Calviello
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA 01239USA
- Harvard‐MIT Program in Health Sciences and TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Tapas Mitra
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 W9K7Ireland
| |
Collapse
|
2
|
Zhang Z, Li Z, Wang D, Feng J, Feng Q. Investigating the Impact of Pore Size and Specification on Soft Tissue Ingrowth in 3D-Printed PEEK Material. Macromol Biosci 2024; 24:e2400278. [PMID: 39348166 DOI: 10.1002/mabi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Bone pelvis tumor resection and reconstruction is a complex surgical procedure that poses challenges in soft tissue reconstruction despite advancements in stabilizing pelvic structure. This study aims to investigate the potential of using Polyetheretherketone (PEEK) material in repairing and reconstructing soft tissues surrounding pelvic implants. Specifically, the study focuses on exploring the effectiveness of 3D printed porous PEEK material in promoting cell growth and adhesion. The interaction between PEEK materials with different pore sizes (200, 400, 600 µm) and different specifications (through-hole (T)/non-through-hole (C)) is evaluated by cell experiments and animal experiments. The soft tissue ingrowth potential of PEEK materials is evaluated by cell growth and adhesion observation. The findings indicate that PEEK material, particularly the T400 variant, exhibits stronger interaction with muscle tissue compared to its interaction with bone and fibrous tissue. The moderately sized pores present in the T400 material facilitate enhanced cell adhesion and penetration, thereby promoting cell growth and differentiation. PEEK materials with through-hole structures show promise for applications involving the repair and reconstruction of soft tissues and muscle tissue. The study provides valuable insights into the development and application of biomedical materials, specifically PEEK, contributing to the advancement of pelvic tumor resection and reconstruction techniques.
Collapse
Affiliation(s)
- Zibo Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Zenghuai Li
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Donglai Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Jiangang Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Qi Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| |
Collapse
|
3
|
Li H, Iyer KS, Bao L, Zhai J, Li JJ. Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301597. [PMID: 37499268 DOI: 10.1002/adhm.202301597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Granular microporous hydrogels are emerging as effective biomaterial scaffolds for tissue engineering due to their improved characteristics compared to traditional nanoporous hydrogels, which better promote cell viability, cell migration, cellular/tissue infiltration, and tissue regeneration. Recent advances have resulted in the development of granular hydrogels made of non-spherical microgels, which compared to those made of spherical microgels have higher macroporosity, more stable mechanical properties, and better ability to guide the alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels as an emerging research area is attracting increasing interest in regenerative medicine. This review first summarizes the fabrication techniques available for non-spherical microgels with different aspect-ratios. Then, it introduces the development of granular microporous hydrogels made of non-spherical microgels, their physicochemical characteristics, and their applications in tissue regeneration. The limitations and future outlook of research on microporous granular hydrogels are also critically discussed.
Collapse
Affiliation(s)
- Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Keerthi Subramanian Iyer
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Lei Bao
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
4
|
Trask L, Ward NA, Tarpey R, Beatty R, Wallace E, O'Dwyer J, Ronan W, Duffy GP, Dolan EB. Exploring therapy transport from implantable medical devices using experimentally informed computational methods. Biomater Sci 2024; 12:2899-2913. [PMID: 38683198 DOI: 10.1039/d4bm00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Implantable medical devices that can facilitate therapy transport to localized sites are being developed for a number of diverse applications, including the treatment of diseases such as diabetes and cancer, and tissue regeneration after myocardial infraction. These implants can take the form of an encapsulation device which encases therapy in the form of drugs, proteins, cells, and bioactive agents, in semi-permeable membranes. Such implants have shown some success but the nature of these devices pose a barrier to the diffusion of vital factors, which is further exacerbated upon implantation due to the foreign body response (FBR). The FBR results in the formation of a dense hypo-permeable fibrous capsule around devices and is a leading cause of failure in many implantable technologies. One potential method for overcoming this diffusion barrier and enhancing therapy transport from the device is to incorporate local fluid flow. In this work, we used experimentally informed inputs to characterize the change in the fibrous capsule over time and quantified how this impacts therapy release from a device using computational methods. Insulin was used as a representative therapy as encapsulation devices for Type 1 diabetes are among the most-well characterised. We then explored how local fluid flow may be used to counteract these diffusion barriers, as well as how a more practical pulsatile flow regimen could be implemented to achieve similar results to continuous fluid flow. The generated model is a versatile tool toward informing future device design through its ability to capture the expected decrease in insulin release over time resulting from the FBR and investigate potential methods to overcome these effects.
Collapse
Affiliation(s)
- Lesley Trask
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Niamh A Ward
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ruth Tarpey
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - William Ronan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- Biomechanics Research Centre (BMEC), Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Chu WS, Park H, Moon S. Novel Fabrication of 3-D Cell Laden Micro-Patterned Porous Structure on Cell Growth and Proliferation by Layered Manufacturing. Bioengineering (Basel) 2023; 10:1092. [PMID: 37760194 PMCID: PMC10526113 DOI: 10.3390/bioengineering10091092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
This study focuses on developing and characterizing a novel 3-dimensional cell-laden micro-patterned porous structure from a mechanical engineering perspective. Tissue engineering holds great promise for repairing damaged organs but faces challenges related to cell viability, biocompatibility, and mechanical strength. This research aims to overcome these limitations by utilizing gelatin methacrylate hydrogel as a scaffold material and employing a photolithography technique for precise patterned fabrication. The mechanical properties of the structure are of particular interest in this study. We evaluate its ability to withstand external forces through compression tests, which provide insights into its strength and stability. Additionally, structural integrity is assessed over time to determine its performance in in vitro and potential in vivo environments. We investigate cell viability and proliferation within the micro-patterned porous structure to evaluate the biological aspects. MTT assays and immunofluorescence staining are employed to analyze the metabolic activity and distribution pattern of cells, respectively. These assessments help us understand the effectiveness of the structure in supporting cell growth and tissue regeneration. The findings of this research contribute to the field of tissue engineering and provide valuable insights for mechanical engineers working on developing scaffolds and structures for regenerative medicine. By addressing challenges related to cell viability, biocompatibility, and mechanical strength, we move closer to realizing clinically viable tissue engineering solutions. The novel micro-patterned porous structure holds promise for applications in artificial organ development and lays the foundation for future advancements in large soft tissue construction.
Collapse
Affiliation(s)
- Won-Shik Chu
- Department of Mechanical Convergence Engineering, Gyeongsang National University, Changwon 51391, Gyeongsangnam-do, Republic of Korea; (W.-S.C.); (H.P.)
| | - Hyeongryool Park
- Department of Mechanical Convergence Engineering, Gyeongsang National University, Changwon 51391, Gyeongsangnam-do, Republic of Korea; (W.-S.C.); (H.P.)
| | - Sangjun Moon
- Department of Mechanical Convergence Engineering, Gyeongsang National University, Changwon 51391, Gyeongsangnam-do, Republic of Korea; (W.-S.C.); (H.P.)
- Cyberneticsimagingsystems Co., Ltd., Changwon 51391, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
6
|
Beatty R, Mendez KL, Schreiber LHJ, Tarpey R, Whyte W, Fan Y, Robinson ST, O'Dwyer J, Simpkin AJ, Tannian J, Dockery P, Dolan EB, Roche ET, Duffy GP. Soft robot-mediated autonomous adaptation to fibrotic capsule formation for improved drug delivery. Sci Robot 2023; 8:eabq4821. [PMID: 37647382 DOI: 10.1126/scirobotics.abq4821] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The foreign body response impedes the function and longevity of implantable drug delivery devices. As a dense fibrotic capsule forms, integration of the device with the host tissue becomes compromised, ultimately resulting in device seclusion and treatment failure. We present FibroSensing Dynamic Soft Reservoir (FSDSR), an implantable drug delivery device capable of monitoring fibrotic capsule formation and overcoming its effects via soft robotic actuations. Occlusion of the FSDSR porous membrane was monitored over 7 days in a rodent model using electrochemical impedance spectroscopy. The electrical resistance of the fibrotic capsule correlated to its increase in thickness and volume. Our FibroSensing membrane showed great sensitivity in detecting changes at the abiotic/biotic interface, such as collagen deposition and myofibroblast proliferation. The potential of the FSDSR to overcome fibrotic capsule formation and maintain constant drug dosing over time was demonstrated in silico and in vitro. Controlled closed loop release of methylene blue into agarose gels (with a comparable fold change in permeability relating to 7 and 28 days in vivo) was achieved by adjusting the magnitude and frequency of pneumatic actuations after impedance measurements by the FibroSensing membrane. By sensing fibrotic capsule formation in vivo, the FSDSR will be capable of probing and adapting to the foreign body response through dynamic actuation changes. Informed by real-time sensor signals, this device offers the potential for long-term efficacy and sustained drug dosing, even in the setting of fibrotic capsule formation.
Collapse
Affiliation(s)
- Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Keegan L Mendez
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucien H J Schreiber
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Ruth Tarpey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott T Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Joanne O'Dwyer
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Andrew J Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Joseph Tannian
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Peter Dockery
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Eimear B Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Biomedical Engineering, School of Engineering, University of Galway, Galway, Ireland
| | - Ellen T Roche
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
- SFI Centre for Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, Dublin, Ireland
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Arteaga A, Biguetti CC, Lakkasetter Chandrashekar B, Mora J, Qureshi A, Rodrigues DC. Biological Effects of New Titanium Surface Coatings Based on Ionic Liquids and HMGB1: A Cellular and Molecular Characterization in Lewis Rats. ACS Biomater Sci Eng 2023; 9:4709-4719. [PMID: 37418317 PMCID: PMC11292580 DOI: 10.1021/acsbiomaterials.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
High Mobility Group Box 1 (HMGB1) is a redox-sensitive molecule that plays dual roles in tissue healing and inflammation. We previously demonstrated that HMGB1 is stable when anchored by a well-characterized imidazolium-based ionic liquid (IonL), which serves as a delivery vehicle for exogenous HMGB1 to the site of injury and prevents denaturation from surface adherence. However, HMGB1 exists in different isoforms [fully reduced HMGB1 (FR), a recombinant version of FR resistant to oxidation (3S), disulfide HMGB1 (DS), and inactive sulfonyl HMGB1(SO)] that have distinct biological functions in health and disease. Thus, the goal of this study was to evaluate the effects of different recombinant HMGB1 isoforms on the host response using a rat subcutaneous implantation model. A total of 12 male Lewis rats (12-15 weeks) were implanted with titanium discs containing different treatments (n = 3/time point; Ti, Ti-IonL, Ti-IonL-DS, Ti-IonL-FR, and Ti-IonL-3S) and assessed at 2 and 14 days. Histological (H&E and Goldner trichrome staining), immunohistochemistry, and molecular analyses (qPCR) of surrounding implant tissues were employed for analysis of inflammatory cells, HMGB1 receptors, and healing markers. Ti-IonL-DS samples resulted in the thickest capsule formation, increased pro-inflammatory, and decreased anti-inflammatory cells, while Ti-IonL-3S samples demonstrated suitable tissue healing similar to uncoated Ti discs, as well as an upregulation of anti-inflammatory cells at 14 days compared to all other treatments. Thus, results from this study demonstrated that Ti-IonL-3S are safe alternatives for Ti biomaterials. Future studies are necessary to investigate the healing potential of Ti-IonL-3S in osseointegration scenarios.
Collapse
Affiliation(s)
- Alexandra Arteaga
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| | - Claudia Cristina Biguetti
- Department of Surgery and Biomechanics, School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen 78539, Texas, United States
| | | | - Jimena Mora
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| | - Adeena Qureshi
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| | - Danieli C Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, Richardson 75080-3021, Texas, United States
| |
Collapse
|
8
|
Towards a Whole Sample Imaging Approach Using Diffusion Tensor Imaging to Examine the Foreign Body Response to Explanted Medical Devices. Polymers (Basel) 2022; 14:polym14224819. [PMID: 36432947 PMCID: PMC9698821 DOI: 10.3390/polym14224819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Analysing the composition and organisation of the fibrous capsule formed as a result of the Foreign Body Response (FBR) to medical devices, is imperative for medical device improvement and biocompatibility. Typically, analysis is performed using histological techniques which often involve random sampling strategies. This method is excellent for acquiring representative values but can miss the unique spatial distribution of features in 3D, especially when analysing devices used in large animal studies. To overcome this limitation, we demonstrate a non-destructive method for high-resolution large sample imaging of the fibrous capsule surrounding human-sized implanted devices using diffusion tensor imaging (DTI). In this study we analyse the fibrous capsule surrounding two unique macroencapsulation devices that have been implanted in a porcine model for 21 days. DTI is used for 3D visualisation of the microstructural organisation and validated using the standard means of fibrous capsule investigation; histological analysis and qualitative micro computed tomography (microCT) and scanning electron microscopy (SEM) imaging. DTI demonstrated the ability to distinguish microstructural differences in the fibrous capsules surrounding two macroencapsulation devices made from different materials and with different surface topographies. DTI-derived metrics yielded insight into the microstructural organisation of both capsules which was corroborated by microCT, SEM and histology. The non-invasive characterisation of the integration of implants in the body has the potential to positively influence analysis methods in pre-clinical studies and accelerate the clinical translation of novel implantable devices.
Collapse
|
9
|
Whyte W, Goswami D, Wang SX, Fan Y, Ward NA, Levey RE, Beatty R, Robinson ST, Sheppard D, O'Connor R, Monahan DS, Trask L, Mendez KL, Varela CE, Horvath MA, Wylie R, O'Dwyer J, Domingo-Lopez DA, Rothman AS, Duffy GP, Dolan EB, Roche ET. Dynamic actuation enhances transport and extends therapeutic lifespan in an implantable drug delivery platform. Nat Commun 2022; 13:4496. [PMID: 35922421 PMCID: PMC9349266 DOI: 10.1038/s41467-022-32147-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrous capsule (FC) formation, secondary to the foreign body response (FBR), impedes molecular transport and is detrimental to the long-term efficacy of implantable drug delivery devices, especially when tunable, temporal control is necessary. We report the development of an implantable mechanotherapeutic drug delivery platform to mitigate and overcome this host immune response using two distinct, yet synergistic soft robotic strategies. Firstly, daily intermittent actuation (cycling at 1 Hz for 5 minutes every 12 hours) preserves long-term, rapid delivery of a model drug (insulin) over 8 weeks of implantation, by mediating local immunomodulation of the cellular FBR and inducing multiphasic temporal FC changes. Secondly, actuation-mediated rapid release of therapy can enhance mass transport and therapeutic effect with tunable, temporal control. In a step towards clinical translation, we utilise a minimally invasive percutaneous approach to implant a scaled-up device in a human cadaveric model. Our soft actuatable platform has potential clinical utility for a variety of indications where transport is affected by fibrosis, such as the management of type 1 diabetes. Drug delivery implants suffer from diminished release profiles due to fibrous capsule formation over time. Here, the authors use soft robotic actuation to modulate the immune response of the host to maintain drug delivery over the longer-term and to perform controlled release in vivo.
Collapse
Affiliation(s)
- William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Debkalpa Goswami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sophie X Wang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niamh A Ward
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Scott T Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Declan Sheppard
- Department of Radiology, University Hospital, Galway, Ireland
| | - Raymond O'Connor
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - David S Monahan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Lesley Trask
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Keegan L Mendez
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Claudia E Varela
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Markus A Horvath
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Joanne O'Dwyer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Daniel A Domingo-Lopez
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Arielle S Rothman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland.,Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Eimear B Dolan
- Department of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Tao J, Zhu S, Zhou N, Wang Y, Wan H, Zhang L, Tang Y, Pan Y, Yang Y, Zhang J, Liu R. Nanoparticle-Stabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs. Adv Healthc Mater 2022; 11:e2102810. [PMID: 35194975 DOI: 10.1002/adhm.202102810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Indexed: 01/24/2023]
Abstract
A challenge for bioprinting tissue constructs is enabling the viability and functionality of encapsulated cells. Rationally designed bioink that can create appropriate biophysical cues shows great promise for overcoming such challenges. Here, a nanoparticle-stabilized emulsion bioink for direct fabrication of porous tissue constructs by digital light processing based 3D bioprinting technology is introduced. The emulsion bioink is integrated by the mixture of aqueous dextran microdroplets and gelatin methacryloyl solution and is further rendered stable by β-lactoglobulin nanoparticles. After bioprinting, the printed tissue constructs create the macroporous structure via removal of dextran, thereby providing favorable biophysical cues to promote the viability, proliferation, and spreading of the encapsulated cells. Moreover, a trachea-shaped construct containing chondrocytes is bioprinted and implanted in vivo. The results demonstrate that the generated macroporous construct is of benefit to cartilage tissue rebuilding. This work offers an advanced bioink for the fabrication of living tissue constructs by activating the cell behaviors and functions in situ and can lead to the development of 3D bioprinting.
Collapse
Affiliation(s)
- Jie Tao
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Shunyao Zhu
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Nazi Zhou
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Yu Wang
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Haoyuan Wan
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Lin Zhang
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Yaping Tang
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Yingzi Pan
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
- Basic Medical College Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Yang Yang
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| | - Jianxiang Zhang
- Department of Pharmaceutics College of Pharmacy Army Medical University (The Third Military Medical University) Chongqing 400038 China
| | - Rui Liu
- Department of Stomatology Daping Hospital Army Medical University (The Third Military Medical University) Chongqing 400042 China
| |
Collapse
|
11
|
Huang B, Chen M, Tian J, Zhang Y, Dai Z, Li J, Zhang W. Oxygen-Carrying and Antibacterial Fluorinated Nano-Hydroxyapatite Incorporated Hydrogels for Enhanced Bone Regeneration. Adv Healthc Mater 2022; 11:e2102540. [PMID: 35166460 DOI: 10.1002/adhm.202102540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Insufficient oxygen availability in tissue engineering is one of the major factors for the failure of clinical transplantation. One potential strategy to conquer this limitation is the fabrication of spontaneous and continuous oxygen supplying scaffolds for in situ tissue regeneration. In this work, a versatile fluorine-incorporating hydrogel is designed which can not only timely and continuously supply oxygen for mesenchymal stem cells (MSCs) to overcome deficient oxygen before vascularization in scaffolds, but can present a higher antibacterial capability to avoid bacterial infections. The HAp@PDA-F nanoparticles are first prepared and then incorporated with the quaternized and methacrylated chitosan forming CS/HAp@PDA-F by photo-crosslinking. In vitro results indicate that CS/HAp@PDA-F hydrogel has outstanding mechanical performance, moreover, it also has the oxygen-carrying ability to prolong survival ability, enhance proliferation activity, and preserve osteogenic differentiation potency and promote osteogenic-related genes expression of rat bone mesenchymal stem cells (rBMSCs) under hypoxic environment. Furthermore, the CS/HAp@PDA-F hydrogel can inhibit the growth of Staphylococcus aureus and Escherichia coli, providing a good antibacterial activity. Additionally, in vivo experiments demonstrate higher bone volume and bone mineral density, and more new bone tissue generation in CS/HAp@PDA-F group than in CS/HAp@PDA group. These results indicate that the rational design of fluorinated hydrogel possesses a good clinical application prospect for bone regeneration.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| |
Collapse
|
12
|
Assessing the Effects of VEGF Releasing Microspheres on the Angiogenic and Foreign Body Response to a 3D Printed Silicone-Based Macroencapsulation Device. Pharmaceutics 2021; 13:pharmaceutics13122077. [PMID: 34959358 PMCID: PMC8704798 DOI: 10.3390/pharmaceutics13122077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Macroencapsulation systems have been developed to improve islet cell transplantation but can induce a foreign body response (FBR). The development of neovascularization adjacent to the device is vital for the survival of encapsulated islets and is a limitation for long-term device success. Previously we developed additive manufactured multi-scale porosity implants, which demonstrated a 2.5-fold increase in tissue vascularity and integration surrounding the implant when compared to a non-textured implant. In parallel to this, we have developed poly(ε-caprolactone-PEG-ε-caprolactone)-b-poly(L-lactide) multiblock copolymer microspheres containing VEGF, which exhibited continued release of bioactive VEGF for 4-weeks in vitro. In the present study, we describe the next step towards clinical implementation of an islet macroencapsulation device by combining a multi-scale porosity device with VEGF releasing microspheres in a rodent model to assess prevascularization over a 4-week period. An in vivo estimation of vascular volume showed a significant increase in vascularity (* p = 0.0132) surrounding the +VEGF vs. −VEGF devices, however, histological assessment of blood vessels per area revealed no significant difference. Further histological analysis revealed significant increases in blood vessel stability and maturity (** p = 0.0040) and vessel diameter size (*** p = 0.0002) surrounding the +VEGF devices. We also demonstrate that the addition of VEGF microspheres did not cause a heightened FBR. In conclusion, we demonstrate that the combination of VEGF microspheres with our multi-scale porous macroencapsulation device, can encourage the formation of significantly larger, stable, and mature blood vessels without exacerbating the FBR.
Collapse
|
13
|
McDermott B, Robinson S, Holcombe S, Levey RE, Dockery P, Johnson P, Wang S, Dolan EB, Duffy GP. Developing a morphomics framework to optimize implant site-specific design parameters for islet macroencapsulation devices. J R Soc Interface 2021; 18:20210673. [PMID: 34932928 PMCID: PMC8692035 DOI: 10.1098/rsif.2021.0673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Delivering a clinically impactful cell number is a major design challenge for cell macroencapsulation devices for Type 1 diabetes. It is important to understand the transplant site anatomy to design a device that is practical and that can achieve a sufficient cell dose. We identify the posterior rectus sheath plane as a potential implant site as it is easily accessible, can facilitate longitudinal monitoring of transplants, and can provide nutritive support for cell survival. We have investigated this space using morphomics across a representative patient cohort (642 participants) and have analysed the data in terms of gender, age and BMI. We used a shape optimization process to maximize the volume and identified that elliptical devices achieve a clinically impactful cell dose while meeting device manufacture and delivery requirements. This morphomics framework has the potential to significantly influence the design of future macroencapsulation devices to better suit the needs of patients.
Collapse
Affiliation(s)
- Barry McDermott
- Translational Medical Device Lab, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Scott Robinson
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Sven Holcombe
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ruth E. Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Peter Dockery
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Paul Johnson
- Nuffield Department of Surgical Sciences and NIHR Biomedical Research Centre, Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Stewart Wang
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Eimear B. Dolan
- Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland (NUI) Galway, Galway, Ireland
- CURAM, Centre for Research in Medical Devices, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
- CURAM, Centre for Research in Medical Devices, National University of Ireland (NUI) Galway, Galway, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Beatty R, Lu CE, Marzi J, Levey RE, Carvajal Berrio D, Lattanzi G, Wylie R, O'Connor R, Wallace E, Ghersi G, Salamone M, Dolan EB, Layland SL, Schenke-Layland K, Duffy GP. The Foreign Body Response to an Implantable Therapeutic Reservoir in a Diabetic Rodent Model. Tissue Eng Part C Methods 2021; 27:515-528. [PMID: 34541880 DOI: 10.1089/ten.tec.2021.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advancements in type 1 diabetes mellitus treatments have vastly improved in recent years. The move toward a bioartificial pancreas and other fully implantable systems could help restore patient's glycemic control. However, the long-term success of implantable medical devices is often hindered by the foreign body response. Fibrous encapsulation "walls off" the implant to the surrounding tissue, impairing its functionality. In this study we aim to examine how streptozotocin-induced diabetes affects fibrous capsule formation and composition surrounding implantable drug delivery devices following subcutaneous implantation in a rodent model. After 2 weeks of implantation, the fibrous capsule surrounding the devices were examined by means of Raman spectroscopy, micro-computed tomography (μCT), and histological analysis. Results revealed no change in mean fibrotic capsule thickness between diabetic and healthy animals as measured by μCT. Macrophage numbers (CCR7 and CD163 positive) remained similar across all groups. True component analysis also showed no quantitative difference in the alpha-smooth muscle actin and extracellular matrix proteins. Although principal component analysis revealed significant secondary structural difference in collagen I in the diabetic group, no evidence indicates an influence on fibrous capsule composition surrounding the device. This study confirms that diabetes did not have an effect on the fibrous capsule thickness or composition surrounding our implantable drug delivery device. Impact Statement Understanding the impact diabetes has on the foreign body response (FBR) to our implanted material is essential for developing an effective drug delivery device. We used several approaches (Raman spectroscopy and micro-computed tomography imaging) to demonstrate a well-rounded understanding of the diabetic impact on the FBR to our devices, which is imperative for its clinical translation.
Collapse
Affiliation(s)
- Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,SFI Research Centre for Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Chuan-En Lu
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Julia Marzi
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Daniel Carvajal Berrio
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany
| | - Giulia Lattanzi
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Raymond O'Connor
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Eimear Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Giulio Ghersi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,ABIEL srl, c/o ARCA Incubatore di Imprese, Palermo, Italia
| | - Monica Salamone
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,ABIEL srl, c/o ARCA Incubatore di Imprese, Palermo, Italia
| | - Eimear B Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,Department of Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Shannon L Layland
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,SFI Research Centre for Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|