1
|
Heo S, Noh M, Kim Y, Park S. Stem Cell-Laden Engineered Patch: Advances and Applications in Tissue Regeneration. ACS APPLIED BIO MATERIALS 2025; 8:62-87. [PMID: 39701826 DOI: 10.1021/acsabm.4c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Stem cell-based therapies are emerging as significant approaches in tissue engineering and regenerative medicine, applicable to both fundamental scientific research and clinical practice. Despite remarkable results in clinical studies, challenges such as poor standardization of graft tissues, limited sources, and reduced functionality have hindered the effectiveness of these therapies. In this review, we summarize the engineering approaches involved in fabricating stem cell assisted patches and the substantial strategies for designing stem cell-laden engineered patches (SCP) to complement the existing stem cell-based therapies. We then outline the potential applications of SCP in advancing tissue regeneration and regenerative medicine. By combining living stem cells with engineered patches, SCP can enhance the functions of both components, particularly for tissue engineering applications. Finally, we addressed current challenges, such as ethical considerations, high costs, and regulatory hurdles and proposed future research directions to overcome these barriers.
Collapse
Affiliation(s)
- Seyeong Heo
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Minhyeok Noh
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Yeonseo Kim
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| | - Sunho Park
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
2
|
Kitano M, Hayashi Y, Ohnishi H, Okuyama H, Yoshimatsu M, Mizuno K, Kuwata F, Tada T, Kishimoto Y, Morita S, Omori K. Changes in the Proportion of Each Cell Type After hiPSC-Derived Airway Epithelia Transplantation. Cell Transplant 2024; 33:9636897241228026. [PMID: 38372247 PMCID: PMC10878204 DOI: 10.1177/09636897241228026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
No radical treatment is available for the regeneration of dysfunction and defects in airway epithelia. Artificial tracheae made of polypropylene and collagen sponge were used in clinical studies to reconstitute tracheae after resection. For early epithelialization of the luminal surface of the artificial trachea, a model was established, that is, an artificial trachea covered with human-induced pluripotent stem cell-derived airway epithelial cells (hiPSC-AECs) was transplanted into a tracheal defect in an immunodeficient rat. Unlike the cell types of hiPSC-derived cells that are currently used in clinical studies, AECs maintain tissues by proliferation and differentiation of basal cells into various cell types that constitute AECs constantly. Therefore, post-transplantation, the proportion of each cell type, such as ciliated and goblet cells, may change; however, no studies have examined this possibility. In this study, using our hiPSC-AEC-transplanted rat model, we investigated changes in the proportion of each cell type in hiPSC-AECs pre-transplantation and post-transplantation. As a result, the proportion of each cell type changed post-transplantation. The proportion of ciliated, basal, and club cells increased, and the proportion of goblet cells decreased post-transplantation. In addition, the proportion of each cell type in engrafted hiPSC-AECs is more similar to the proportion of each cell type in normal proximal airway tissue than the proportion of each cell type pre-transplantation. The results of this study are useful for the development of therapeutic techniques using hiPSC-AEC transplantation.
Collapse
Affiliation(s)
- Masayuki Kitano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuyuki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Okuyama
- School of Communication Sciences and Disorders, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Masayoshi Yoshimatsu
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Keisuke Mizuno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Tada
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Khalid U, Uchikov P, Hristov B, Kraev K, Koleva-Ivanova M, Kraeva M, Batashki A, Taneva D, Doykov M, Uchikov A. Surgical Innovations in Tracheal Reconstruction: A Review on Synthetic Material Fabrication. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:40. [PMID: 38256300 PMCID: PMC10820818 DOI: 10.3390/medicina60010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The aim of this review is to explore the recent surgical innovations in tracheal reconstruction by evaluating the uses of synthetic material fabrication when dealing with tracheomalacia or stenotic pathologies, then discussing the challenges holding back these innovations. Materials and Methods: A targeted non-systematic review of published literature relating to tracheal reconstruction was performed within the PubMed database to help identify how synthetic materials are utilised to innovate tracheal reconstruction. Results: The advancements in 3D printing to aid synthetic material fabrication have unveiled promising alternatives to conventional approaches. Achieving successful tracheal reconstruction through this technology demands that the 3D models exhibit biocompatibility with neighbouring tracheal elements by encompassing vasculature, chondral foundation, and immunocompatibility. Tracheal reconstruction has employed grafts and scaffolds, showing a promising beginning in vivo. Concurrently, the integration of resorbable models and stem cell therapy serves to underscore their viability and application in the context of tracheal pathologies. Despite this, certain barriers hinder its advancement in surgery. The intricate tracheal structure has posed a challenge for researchers seeking novel approaches to support its growth and regeneration. Conclusions: The potential of synthetic material fabrication has shown promising outcomes in initial studies involving smaller animals. Yet, to fully realise the applicability of these innovative developments, research must progress toward clinical trials. These trials would ascertain the anatomical and physiological effects on the human body, enabling a thorough evaluation of post-operative outcomes and any potential complications linked to the materials or cells implanted in the trachea.
Collapse
Affiliation(s)
- Usman Khalid
- Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Section “Gastroenterology”, Second Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Koleva-Ivanova
- Department of General and Clinical Pathology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Kraeva
- Department of Otorhynolaryngology, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Atanas Batashki
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Daniela Taneva
- Department of Nursing Care, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Mladen Doykov
- Department of Urology and General Medicine, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Angel Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Taniguchi D, Kamata S, Rostami S, Tuin S, Marin-Araujo A, Guthrie K, Petersen T, Waddell TK, Karoubi G, Keshavjee S, Haykal S. Evaluation of a decellularized bronchial patch transplant in a porcine model. Sci Rep 2023; 13:21773. [PMID: 38066170 PMCID: PMC10709302 DOI: 10.1038/s41598-023-48643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biological scaffolds for airway reconstruction are an important clinical need and have been extensively investigated experimentally and clinically, but without uniform success. In this study, we evaluated the use of a decellularized bronchus graft for airway reconstruction. Decellularized left bronchi were procured from decellularized porcine lungs and utilized as grafts for airway patch transplantation. A tracheal window was created and the decellularized bronchus was transplanted into the defect in a porcine model. Animals were euthanized at 7 days, 1 month, and 2 months post-operatively. Histological analysis, immunohistochemistry, scanning electron microscopy, and strength tests were conducted in order to evaluate epithelialization, inflammation, and physical strength of the graft. All pigs recovered from general anesthesia and survived without airway obstruction until the planned euthanasia timepoint. Histological and electron microscopy analyses revealed that the decellularized bronchus graft was well integrated with native tissue and covered by an epithelial layer at 1 month. Immunostaining of the decellularized bronchus graft was positive for CD31 and no difference was observed with immune markers (CD3, CD11b, myeloperoxidase) at two months. Although not significant, tensile strength was decreased after one month, but recovered by two months. Decellularized bronchial grafts show promising results for airway patch reconstruction in a porcine model. Revascularization and re-epithelialization were observed and the immunological reaction was comparable with the autografts. This approach is clinically relevant and could potentially be utilized for future applications for tracheal replacement.
Collapse
Affiliation(s)
- Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Satoshi Kamata
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Sara Rostami
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Stephen Tuin
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Alba Marin-Araujo
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Kelly Guthrie
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Thomas Petersen
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada.
- Division of Plastic & Reconstructive Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Silk Fibroin Hydrogels Could Be Therapeutic Biomaterials for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2076680. [PMID: 35547640 PMCID: PMC9085322 DOI: 10.1155/2022/2076680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Silk fibroin, a natural macromolecular protein without physiological activity, has been widely used in different fields, such as the regeneration of bones, cartilage, nerves, and other tissues. Due to irrevocable neuronal injury, the treatment and prognosis of neurological diseases need to be investigated. Despite attempts to propel neuroprotective therapeutic approaches, numerous attempts to translate effective therapies for brain disease have been largely unsuccessful. As a good candidate for biomedical applications, hydrogels based on silk fibroin effectively amplify their advantages. The ability of nerve tissue regeneration, inflammation regulation, the slow release of drugs, antioxidative stress, regulation of cell death, and hemostasis could lead to a new approach to treating neurological disorders. In this review, we introduced the preparation of SF hydrogels and then delineated the probable mechanism of silk fibroin in the treatment of neurological diseases. Finally, we showed the application of silk fibroin in neurological diseases.
Collapse
|