1
|
Liu Z, Xu J, Wang X. Bioactive hemostatic materials: a new strategy for promoting wound healing and tissue regeneration. MedComm (Beijing) 2025; 6:e70113. [PMID: 40123833 PMCID: PMC11928890 DOI: 10.1002/mco2.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/25/2025] Open
Abstract
Wound healing remains a critical global healthcare challenge, with an annual treatment cost exceeding $50 billion worldwide. Over the past decade, significant advances in wound care have focused on developing sophisticated biomaterials that promote tissue regeneration and prevent complications. Despite these developments, there remains a crucial need for multifunctional wound healing materials that can effectively address the complex, multiphase nature of wound repair while being cost effective and easily applicable in various clinical settings. This review systematically analyzes the latest developments in wound healing materials, examining their chemical composition, structural design, and therapeutic mechanisms. We comprehensively evaluate various bioactive components, including natural polymers, synthetic matrices, and hybrid composites, along with their different forms, such as hydrogels, powders, and smart dressings. Special attention is given to emerging strategies in material design that integrate multiple therapeutic functions, including sustained drug delivery, infection prevention, and tissue regeneration promotion. The insights provided in this review illuminate the path toward next-generation wound healing materials, highlighting opportunities for developing more effective therapeutic solutions that can significantly improve patient outcomes and reduce healthcare burden.
Collapse
Affiliation(s)
- Zhengyuan Liu
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of Sciences (UCAS)BeijingChina
- Nano‐Science CenterUniversity of CopenhagenCopenhagenDenmark
| | - Junnan Xu
- Department of Urologythe Third Medical Center of PLA General HospitalBeijingChina
| | - Xing Wang
- Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
3
|
Zhang Y, Song W, Mao S, Qian Y, Gui Q, Du J. An Antibacterial and Antioxidant Food Packaging Film Based on Amphiphilic Polypeptides-Resveratrol-Chitosan. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408767. [PMID: 39670689 DOI: 10.1002/smll.202408767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Antimicrobial and antioxidant packaging films play a crucial role in extending food shelf life, maintaining quality, and enhancing safety by inhibiting microbial growth and slowing oxidation processes. However, most commercial preservative films suffer from limited antimicrobial and antioxidant properties. Moreover, these films are made from petroleum-based materials that degrade into microplastics, resulting in environmental contamination and potential health risks for humans. Herein, an antibacterial and antioxidant food packaging film (CS-SAP@R) is developed by integrating star-shaped amphiphilic polypeptides (SAP) and resveratrol (R) into the chitosan (CS) matrix. The incorporation of SAP not only effectively addresses the existing compatibility issues between the highly hydrophobic resveratrol and water-soluble CS film, but also significantly enhances the antimicrobial properties of CS. Additionally, the well-integrated resveratrol molecules endow the film with superior antioxidant properties. Furthermore, CS-SAP@R has achieved bacterial killing rates of 97.31% against E. coli and 99.05% against S. aureus. The enhanced characteristics of the CS-SAP@R film contribute to its exceptional preservation performance, effectively extending the shelf life of perishable products by ≈3 days when stored at 4 °C. These remarkable attributes underscore the benefits of polypeptide-based biopolymers and demonstrate the potential applicability of the CS-SAP@R film in effectively safeguarding perishable products.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shina Mao
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Qiudi Gui
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Liu Z, Ding S, Zhang G, Yan B, Zhang C, Yu P, Long Y, Zhang J. Carbonized Plant Powder Gel for Rapid Hemostasis and Sterilization in Regard to Irregular Wounds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1992. [PMID: 39728528 PMCID: PMC11728490 DOI: 10.3390/nano14241992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Irregularly shaped wounds cause severe chronic infections, which have attracted worldwide attention due to their high prevalence and poor treatment outcomes. In this study, we designed a new composite functional dressing consisting of traditional Chinese herb carbonized plant powder (CPP) and a polyacrylic acid (PAA)/polyethylenimine (PEI) gel. The rapid gelation of the dressing within 6-8 s allowed the gel to be firmly attached to an irregularly shaped wound surface and avoided powder detachment. In addition, through an infrared thermography analysis, a coagulation assay, and a morphological examination of regenerative tissue in animal wound models, it was found that the dressing substrates had synergistic effects on photothermal sterilization, rapid hemostasis, and anti-inflammatory activity, thereby achieving an 88% wound closure rate on the 9th day after the formation of the wound. This multifunctional hemostatic material is expected to be adaptable to irregular wounds and promote rapid wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Lu Y, Wang Y, Wang J, Liang L, Li J, Yu Y, Zeng J, He M, Wei X, Liu Z, Shi P, Li J. A comprehensive exploration of hydrogel applications in multi-stage skin wound healing. Biomater Sci 2024; 12:3745-3764. [PMID: 38959069 DOI: 10.1039/d4bm00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Hydrogels, as an emerging biomaterial, have found extensive use in the healing of wounds due to their distinctive physicochemical structure and functional properties. Moreover, hydrogels can be made to match a range of therapeutic requirements for materials used in wound healing through specific functional modifications. This review provides a step-by-step explanation of the processes involved in cutaneous wound healing, including hemostasis, inflammation, proliferation, and reconstitution, along with an investigation of the factors that impact these processes. Furthermore, a thorough analysis is conducted on the various stages of the wound healing process at which functional hydrogels are implemented, including hemostasis, anti-infection measures, encouraging regeneration, scar reduction, and wound monitoring. Next, the latest progress of multifunctional hydrogels for wound healing and the methods to achieve these functions are discussed in depth and categorized for elucidation. Finally, perspectives and challenges associated with the clinical applications of multifunctional hydrogels are discussed.
Collapse
Affiliation(s)
- Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yuemin Wang
- College of Medicine, Southwest Jiaotong University, 610003, China
| | - Jie Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Yue Yu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Mingfang He
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Xipeng Wei
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhining Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
6
|
Teng J, Zhao W, Zhang S, Yang D, Liu Y, Huang R, Ma Y, Jiang L, Wei H, Zhang J, Chen J. Injectable nanoparticle-crosslinked xyloglucan/ε-poly-l-lysine composite hydrogel with hemostatic, antimicrobial, and angiogenic properties for infected wound healing. Carbohydr Polym 2024; 336:122102. [PMID: 38670773 DOI: 10.1016/j.carbpol.2024.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.
Collapse
Affiliation(s)
- Jingmei Teng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Wei Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Shengyu Zhang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Dan Yang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yu Liu
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Rongjian Huang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China
| | - Yuxi Ma
- Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Lei Jiang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Hua Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo 315300, China; Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China.
| | - Jing Chen
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
7
|
Teng L, Song Y, Hu Y, Lu J, Dong CM. Biomimetic and Wound Microenvironment-Modulating PEGylated Glycopolypeptide Hydrogels for Arterial Massive Hemorrhage and Wound Prohealing. Biomacromolecules 2024; 25:4317-4328. [PMID: 38829675 DOI: 10.1021/acs.biomac.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Despite great progress in the hydrogel hemostats and dressings, they generally lack resistant vascular bursting pressure and intrinsic bioactivity to meet arterial massive hemorrhage and proheal wounds. To address the problems, we design a kind of biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels that can be easily injected and gelled in ∼10 s. Those glycopolypeptide hydrogels have suitable tissue adhesion of ∼20 kPa, high resistant bursting pressure of ∼150 mmHg, large microporosity of ∼15 μm, and excellent biocompatibility with ∼1% hemolysis ratio and negligible inflammation. They performed better hemostasis in rat liver and rat and rabbit femoral artery bleeding models than Fibrin glue, Gauze, and other hydrogels, achieving fast arterial hemostasis of <20 s and lower blood loss of 5-13%. As confirmed by in vivo wound healing, immunofluorescent imaging, and immunohistochemical and histological analyses, the mannose-modified hydrogels could highly boost the polarization of anti-inflammatory M2 phenotype and downregulate pro-inflammatory tumor necrosis factor-α to relieve inflammation, achieving complete full-thickness healing with thick dermis, dense hair follicles, and 90% collagen deposition. Importantly, this study provides a versatile strategy to construct biomimetic glycopolypeptide hydrogels that can not only resist vascular bursting pressure for arterial massive hemorrhage but also modulate inflammatory microenvironment for wound prohealing.
Collapse
Affiliation(s)
- Lin Teng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Liu T, Sun W, Mu C, Zhang X, Xu D, Yan Q, Luan S. Bionic double-crosslinked hydrogel of poly (γ-glutamic acid)/poly (N-(2-hydroxyethyl) acrylamide) with ultrafast gelling process and ultrahigh burst pressure for emergency rescue. Int J Biol Macromol 2024; 271:132360. [PMID: 38810432 DOI: 10.1016/j.ijbiomac.2024.132360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Injectable adhesive hydrogels combining rapid gelling with robust adhesion to wet tissues are highly required for fast hemostasis in surgical and major trauma scenarios. Inspired by the cross-linking mechanism of mussel adhesion proteins, we developed a bionic double-crosslinked (BDC) hydrogel of poly (γ-glutamic acid) (PGA)/poly (N-(2-hydroxyethyl) acrylamide) (PHEA) fabricated through a combination of photo-initiated radical polymerization and hydrogen bonding cross-linking. The BDC hydrogel exhibited an ultrafast gelling process within 1 s. Its maximum adhesion strength to wet porcine skin reached 254.5 kPa (9 times higher than that of cyanoacrylate (CA) glue) and could withstand an ultrahigh burst pressure of 626.4 mmHg (24 times higher than that of CA glue). Notably, the BDC hydrogel could stop bleeding within 10 s from a rat liver incision 10 mm long and 5 mm deep. The wound treated with the BDC hydrogel healed faster than the control groups, underlining the potential for emergency rescue and wound care scenarios.
Collapse
Affiliation(s)
- Tingwu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China
| | - Wen Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China
| | - Changjun Mu
- Shandong Weigao Blood Purification Products Company Limited, Weihai 264210, PR China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Qiuyan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China; University of Science and Technology of China, Anhui 230026, PR China.
| |
Collapse
|
9
|
Zhang X, Ning F, Chen Y, Dong CM. All-in-one polysaccharide hydrogel with resistant vascular burst pressure and cooperative wound microenvironment regulation for fatal arterial hemorrhage and diabetic wound healing. Int J Biol Macromol 2024; 272:132736. [PMID: 38830494 DOI: 10.1016/j.ijbiomac.2024.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Fatal massive hemorrhage and diabetic wound healing are world widely challenging in surgical managements, and uncontrolled bleeding, chronic inflammation and damaged remodeling heavily hinder the whole healing processes. Considering hemostasis, inflammation and wound microenvironment cooperatively affect the healing progression, we design all-in-one beta-glucan (BG) hybrid hydrogels reinforced with laponite nanoclay that demonstrate tunable tissue adhesion, resistant vascular burst pressure and cooperative wound microenvironment regulation for arterial hemostasis and diabetic wound prohealing. Those hydrogels had honeycomb-like porous microstructure with average pore size of 7-19 μm, tissue adhesion strength of 18-46 kPa, and vascular burst pressure of 58-174 mmHg to achieve superior hemostasis in rat liver and femoral artery models. They could effectively scavenge reactive oxygen species, transform macrophages from proinflammatory M1 into prohealing M2, and shorten the inflammation duration via synergistic actions of BG and nitric oxide (NO). Single treatment of NO-releasing BG hybrid hydrogels attained complete closure of diabetic wounds within 14 days, orchestrated to accelerate the epithelization and dermis growth, and restored normal vascularization, achieving high performance healing with optimal collagen deposition and hair follicle regeneration. Consequently, this work opens up a new avenue to design all-in-one polysaccharide hydrogels for applications in massive bleeding hemostats and diabetic wound dressings.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fangrui Ning
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
10
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
11
|
Zhou M, Lin X, Wang L, Yang C, Yu Y, Zhang Q. Preparation and Application of Hemostatic Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309485. [PMID: 38102098 DOI: 10.1002/smll.202309485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Hemorrhage remains a critical challenge in various medical settings, necessitating the development of advanced hemostatic materials. Hemostatic hydrogels have emerged as promising solutions to address uncontrolled bleeding due to their unique properties, including biocompatibility, tunable physical characteristics, and exceptional hemostatic capabilities. In this review, a comprehensive overview of the preparation and biomedical applications of hemostatic hydrogels is provided. Particularly, hemostatic hydrogels with various materials and forms are introduced. Additionally, the applications of hemostatic hydrogels in trauma management, surgical procedures, wound care, etc. are summarized. Finally, the limitations and future prospects of hemostatic hydrogels are discussed and evaluated. This review aims to highlight the biomedical applications of hydrogels in hemorrhage management and offer insights into the development of clinically relevant hemostatic materials.
Collapse
Affiliation(s)
- Minyu Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang Lin
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Li Wang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Chaoyu Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Qingfei Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
12
|
Chen Y, Zhang X, Wang Q, Du C, Dong CM. Wound microenvironment regulatory poly(L-glutamic acid) composite hydrogels containing metal ion-coordinated nanoparticles for effective hemostasis and wound healing. Biomater Sci 2024; 12:1211-1227. [PMID: 38240342 DOI: 10.1039/d3bm01978k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Regulating the wound microenvironment to promote proliferation, vascularization, and wound healing is challenging for hemostats and wound dressings. Herein, polypeptide composite hydrogels have been simply fabricated by mixing a smaller amount of metal ion-coordinated nanoparticles into dopamine-modified poly(L-glutamic acid) (PGA), which had a microporous size of 10-16 μm, photothermal conversion ability, good biocompatibility, and multiple biological activities. In vitro scratch healing of fibroblast L929 cells and the tube formation of HUVECs provide evidence that the PGA composite hydrogels could promote cell proliferation, migration, and angiogenesis with the assistance of mild photothermia. Moreover, these composite hydrogels plus mild photothermia could effectively eliminate reactive oxygen species (ROS), alleviate inflammation, and polarize the pro-inflammatory M1 macrophage phenotype into the pro-healing M2 phenotype to accelerate wound healing, as assessed by means of fluorescent microscopy, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, a rat liver bleeding model illustrates that the composite hydrogels reduced the blood loss ratio to about 10% and shortened the hemostasis time to about 25 s better than commercial chitosan-based hemostats. Furthermore, the full-thickness rat skin defect models showcase that the composite hydrogels plus mild photothermia could proheal wounds completely with a fast healing rate, optimal neovascularization, and collagen deposition. Therefore, the biodegradable polypeptide PGA composite hydrogels are promising as potent wound hemostats and dressings.
Collapse
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Chang Du
- Clinical Cancer Institute, Center for Translational Medicine, Naval Military Medical University, Shanghai, 200433, P. R. China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
13
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
14
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Gomaa S, Elkodous MA, El-Sayed AIM, Tohamy H, Abou-Ahmed H, Abdelwahed R, Elkhenany H. Accelerating wound healing: Unveiling synergistic effects of P25/SWCNT/Ag and P25/rGO/Ag nanocomposites within PRP-gelatin scaffold, highlighting the synergistic antimicrobial activity. Biotechnol J 2024; 19:e2300531. [PMID: 38013667 DOI: 10.1002/biot.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Wound healing is a multifaceted biological process requiring innovative strategies to enhance efficiency and counter infections. In this groundbreaking study, we investigate the regenerative potential of platelet-rich plasma (PRP) integrated into a gelatin (GLT) scaffold along with nanocomposites of titanium dioxide (TiO2) (P25)/single-walled carbon nanotubes (SWCNTs)/Ag and P25/reduced graphene oxide (rGO)/Ag. Incorporating these advanced materials into the PRP/GLT delivery system aims to optimize the controlled release of growth factors (GFs) and leverage the exceptional properties of nanomaterials for enhanced tissue repair and wound healing outcomes. Antioxidant activity assessment using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity reveals the superior performance of P25/SWCNTs/Ag compared to P25/rGO/Ag. Their synergistic effects are evaluated in conjunction with antibacterial and antifungal antibiotics. Furthermore, the wound healing potential of P25/SWCNTs/Ag and P25/rGO/Ag, combined with PRP/GLT, is examined. Notably, both nanocomposites exhibit promising synergistic effects with gentamicin and fluconazole against pathogenic strains. Significantly, the inclusion of non-activated PRP substantially augments the wound healing efficacy of P25/SWCNTs/Ag on days 3 (p < 0.01) and 15 (p < 0.05). These findings pave the way for advanced wound dressing and therapeutic interventions, capitalizing on the synergistic effects of PRP and nanomaterials, thus ultimately benefiting patients and advancing regenerative medicine.
Collapse
Affiliation(s)
- Salma Gomaa
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Abeer I M El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damanhour University, El Beheira, Egypt
| | - Hossam Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Howaida Abou-Ahmed
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ramadan Abdelwahed
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
16
|
Monteiro LPG, Rodrigues JMM, Mano JF. In situ generated hemostatic adhesives: From mechanisms of action to recent advances and applications. BIOMATERIALS ADVANCES 2023; 155:213670. [PMID: 37952461 DOI: 10.1016/j.bioadv.2023.213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023]
Abstract
Conventional surgical closure techniques, such as sutures, clips, or skin closure strips, may not always provide optimal wound closure and may require invasive procedures, which can result in potential post-surgical complications. As result, there is a growing demand for innovative solutions to achieve superior wound closure and improve patient outcomes. To overcome the abovementioned issues, in situ generated hemostatic adhesives/sealants have emerged as a promising alternative, offering a targeted, controllable, and minimally invasive procedure for a wide variety of medical applications. The aim of this review is to provide a comprehensive overview of the mechanisms of action and recent advances of in situ generated hemostatic adhesives, particularly protein-based, thermoresponsive, bioinspired, and photocrosslinkable formulations, as well as the design challenges that must be addressed. Overall, this review aims to enhance a comprehensive understanding of the latest advancements of in situ generated hemostatic adhesives and their mechanisms of action, with the objective of promoting further research in this field.
Collapse
Affiliation(s)
- Luís P G Monteiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João M M Rodrigues
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Huang Y, Jing W, Zeng J, Xue Y, Zhang Y, Yu X, Wei P, Zhao B, Dong J. Highly Tough and Biodegradable Poly(ethylene glycol)-Based Bioadhesives for Large-Scaled Liver Injury Hemostasis and Tissue Regeneration. Adv Healthc Mater 2023; 12:e2301086. [PMID: 37421335 DOI: 10.1002/adhm.202301086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Conventional tissue adhesives face challenges for hemostasis and tissue regeneration in large-scaled hemorrhage and capillary hypobaric bleeding due to weak adhesion, and inability to degrade at specific sites. Herein, convenient and injectable poly(ethylene glycol) (PEG)-based adhesives are developed to address the issues for liver hemostasis. The PEG-bioadhesives are composed of tetra-armed PEG succinimide glutarate (PEG-SG), tetra-armed PEG amine (PEG-NH2 ), and tri-lysine. By mixing the components, the PEG-bioadhesives can be rapidly formulated for use of liver bleeding closure in hepatectomy. The PEG-bioadhesives also possess mechanical compliance to native tissues (elastic modulus ≈40 kPa) and tough tissue adhesion (≈28 kPa), which enables sufficient adhering to the injured tissues and promotes liver regeneration with the PEG-bioadhesive degradation. In both rats of liver injury and pigs of large-scaled hepatic hemorrhage, the PEG-bioadhesives show effective hemostasis with superior blood loss than conventional tissue adhesives. Due to biocompatibility and degradability, the PEG-bioadhesive is advantageous for liver regeneration, while commercial adhesives (e.g., N-octyl cyanoacrylate) display adhesion failure and limited liver reconstructions. These PEG-bioadhesive components are FDA-approved, and demonstrate excellent adhesion to various tissues not only for liver hemostasis, it is a promising candidate in biomedical translations and clinical applications.
Collapse
Affiliation(s)
- Yiqian Huang
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Jianping Zeng
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Yunxia Xue
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Yan Zhang
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Xueqiao Yu
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd, Beijing, 102600, China
| | - Jiahong Dong
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| |
Collapse
|
18
|
Zhang YL, Wang C, Yuan XQ, Yan HH, Li CB, Wang CH, Xie XR, Hou GG. Multifunctional xyloglucan-containing electrospun nanofibrous dressings for accelerating infected wound healing. Int J Biol Macromol 2023; 247:125504. [PMID: 37356692 DOI: 10.1016/j.ijbiomac.2023.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Preventing wound infection is a major challenge in biomedicine. Conventional wound dressings often have poor moisturizing and antimicrobial properties unfavorable for wound healing. In this study, we prepared a multifunctional electrospun nanofiber dressing (PCQX-M) containing xyloglucan, quaternized chitosan, Polyvinyl alcohol, and collagen. By applying the concept of wet healing, xyloglucan and quaternized chitosan polysaccharides with excellent water solubility were employed to improve the absorption and moisturizing properties and maintain a moist microenvironment for the wound healing process. PCQX-M demonstrated high mechanical, thermodynamic, and biocompatible properties, providing suitable healing conditions for wounds. In addition, PCQX-M showed exceptional antibacterial properties and a potential inhibitory effect on the growth of microorganisms in infected wounds. More intriguingly, the restorative healing effect was investigated on a mouse model of whole skin injury infected with Staphylococcus aureus. Wound healing, collagen deposition, and immunofluorescence results showed that PCQX-M significantly promoted cell proliferation and angiogenesis at the injury site and facilitated the healing of the infected wound. Our study suggests that PCQX-M has excellent potential for clinical application in infected wound healing.
Collapse
Affiliation(s)
- Yu-Long Zhang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Chen Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Xiao-Qian Yuan
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Huan-Huan Yan
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Cheng-Bo Li
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Chun-Hua Wang
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China
| | - Xian-Rui Xie
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China.
| | - Gui-Ge Hou
- School of Pharmacy, Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
19
|
Zhao P, Zhang Y, Chen X, Xu C, Guo J, Deng M, Qu X, Huang P, Feng Z, Zhang J. Versatile Hydrogel Dressing with Skin Adaptiveness and Mild Photothermal Antibacterial Activity for Methicillin-Resistant Staphylococcus Aureus-Infected Dynamic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206585. [PMID: 36776018 PMCID: PMC10104652 DOI: 10.1002/advs.202206585] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Bacterial infection often induces chronic repair of wound healing owing to aggravated inflammation. Hydrogel dressing exhibiting intrinsic antibacterial activity may substantially reduce the use of antibiotics for infected wound management. Hence, a versatile hydrogel dressing (rGB/QCS/PDA-PAM) exhibiting skin adaptiveness on dynamic wounds and mild photothermal antibacterial activity is developed for safe and efficient infected wound treatment. Phenylboronic acid-functionalized graphene (rGB) and oxadiazole-decorated quaternary carboxymethyl chitosan (QCS) are incorporated into a polydopamine-polyacrylamide (PDA-PAM) network with multiple covalent and noncovalent bonds, which conferred the hydrogel with flexible mechanical properties, strong tissue adhesion and excellent self-healing ability on the dynamic wounds. Moreover, the glycocalyx-mimicking phenylboronic acid on the surface of rGB enables the hydrogel to specifically capture bacteria. The enhanced membrane permeability of QCS enhanced bacterial vulnerability to photothermal therapy(PTT), which is demonstrated by efficient mild PTT antibacteria against methicillin-resistant Staphylococcus aureus in vitro and in vivo at temperatures of <49.6 °C. Consequently, the hydrogel demonstrate accelerated tissue regeneration on MRSA-infected wound in vivo, with an intact epidermis, abundant collagen deposition and prominent angiogenesis. Therefore, rGB/QCS/PDA-PAM is a versatile hydrogel dressing exhibiting inherent antibacterial activity and has considerable potential in treating wounds infected with drug-resistant bacteria.
Collapse
Affiliation(s)
- Peng Zhao
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Yu Zhang
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Xiaoai Chen
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Chang Xu
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Meigui Deng
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College236 Baidi Road, Nankai DistrictTianjin300192P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical College236 Baidi Road, Nankai DistrictTianjin300192P. R. China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional PolymersSchool of Chemical Engineering and TechnologyHebei University of Technology5340 Xiping Road, Beichen DistrictTianjin300130P. R. China
| |
Collapse
|
20
|
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, Naderi N, Ghafori Gorab M, Ahangari Cohan R, Eivazzadeh-Keihan R, Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10:6911-6938. [PMID: 36314845 DOI: 10.1039/d2bm01308h] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.
Collapse
Affiliation(s)
- Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farzaneh Farrokhi-Hajiabad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
21
|
Bu Y, Sun G, Huang D, Yang F. Editorial: Interfacial strategies to manipulate tissue interactions for wound healing. Front Bioeng Biotechnol 2022; 10:995721. [PMID: 36091457 PMCID: PMC9449716 DOI: 10.3389/fbioe.2022.995721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Yazhong Bu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Institute of Medical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Guoming Sun
- Affiliated Hospital of Hebei University, Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Da Huang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Fei Yang,
| |
Collapse
|
22
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
23
|
A Glycosylated and Catechol-crosslinked ε-Polylysine Hydrogel: Simple Preparation and Excellent Wound Hemostasis and Healing Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|