1
|
Farahavar G, Abolmaali SS, Biabanikhankahdani R, Tamaddon AM. Synergistic action of combining photodynamic therapy with immunotherapy for eradicating solid tumors in animal models: A systematic review. Crit Rev Oncol Hematol 2025; 209:104691. [PMID: 40058741 DOI: 10.1016/j.critrevonc.2025.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025] Open
Abstract
Malignancies maintain a high rate of mortality worldwide each year, requiring the development of novel therapeutic platforms. Immunotherapy approaches are considered a revolutionary treatment for overcoming malignancies. Photodynamic therapy (PDT) has attracted significant attention in various cancer types. Recent progress in cancer therapies has underscored the potential of combining PDT with immunotherapy. This approach can improve therapeutic outcomes by directly eliminating tumor cells and boosting immune responses for sustained anti-tumor effects in the whole body. This study aims to determine the relative efficacy of combining PDT with immunotherapy compared to PDT alone. Following the PRISMA guidance, an extensive literature review was conducted utilizing Scopus, Web of Science, and PubMed to identify high-quality preclinical studies exploring various aspects of PDT combined with immunotherapy. The adopted PICO framework included studies with rigorous experimental designs and relevant outcomes. The present review reveals the characteristics of tumor models, delivery systems, photosensitizers, and immunotherapy approaches. Key findings indicate that the combined PDT-immunotherapy approach shows promise in treating multiple tumors according to their size, therapeutic biomarkers, and inhibition of distant tumors. Finally, this integrated therapeutic strategy holds significant promise for advancing cancer treatment paradigms by potentiating each treatment efficacy; however, its clinical utility requires careful consideration of the associated challenges.
Collapse
Affiliation(s)
- Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roya Biabanikhankahdani
- Department of Basic Sciences, College of Dentistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Nanotechnology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutics Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Tarin M, Saljooghi AS. Gasdermin E as a potential target and biomarker for CRISPR-Cas9-based cancer therapy. Biochem Pharmacol 2025; 237:116961. [PMID: 40300704 DOI: 10.1016/j.bcp.2025.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Gasdermin E (GSDME), a protein pivotal in mediating pyroptosis, has gained significant attention due to its role in cancer pathogenesis and its potential as a therapeutic target. The advent of CRISPR-Cas9, a precise genome editing tool, has revolutionized cancer therapy by enabling the manipulation of GSDME expression and function. This review explores the interplay of GSDME and CRISPR-Cas9 in cancer, emphasizing GSDME's unique mechanism of cleavage-dependent pore formation in the cell membrane and its emerging applications as both a therapeutic target and a diagnostic biomarker. We discuss the potential and challenges of using GSDME-induced pyroptosis as a therapeutic strategy and how can enhance its efficacy and specificity. We conclude by highlighting promising future research directions in this emerging field.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Huang H, Ge J, Lu S, Deng X, Tian Y, Huang H, Wang Z, Yao Y, Hong H, Lin T. Comprehensive analyses reveal the promising value of gasdermins as prognostic biomarkers and immunotherapeutic targets in head and neck squamous cell carcinoma. Heliyon 2025; 11:e41213. [PMID: 39807507 PMCID: PMC11728984 DOI: 10.1016/j.heliyon.2024.e41213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC. Methods We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets. Results A total of 18.65 % (94/504) of HNSC patients harbored GSDM alterations, with the most dominant type being amplification. Compared with those in normal tissues, the mRNA and protein levels of GSDMs, especially GSDMD/E, were commonly elevated in HNSC (P < 0.05). Additionally, the expression of GSDMs differed significantly between the clinicopathological subgroups of HNSC patients. Overall survival of HNSC patients benefited from increased GSDMC expression (HR = 0.67, P = 0.0053) and decreased GSDME expression (HR = 1.42, P = 0.0140). Regulatory network analysis revealed several essential biological processes associated with GSDMs, including positive regulation of cytokine production involved in the immune response. Notably, almost all infiltrating immune cells and immune checkpoints were negatively correlated with GSDMA/C/E expression and positively related to GSDMB/D and PJVK expression. Conclusions We indicated the potential role of GSDMs (especially GSDME) in HNSC pathogenesis, progression and response to immunotherapy, providing important evidence for further prospective studies and molecular mechanism exploration.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Jingjing Ge
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Shunzhen Lu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Ying Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - He Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Zhao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Yuyi Yao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Huangming Hong
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, PR China
| | - Tongyu Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
4
|
Huo L, Zhu S, Li M, Tan M, Fan M, Zhao J, Zeng J, Liu M, Liu K, Tong C, Zhao Z. Intelligent Pyroptosis Inducer for Precise and Augmented Tumor Therapy Through Specific Activation Pyroptosis in Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407713. [PMID: 39604790 PMCID: PMC11744558 DOI: 10.1002/advs.202407713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Pyroptosis inducer, a powerful anti-tumor agent that causes obvious programmed cell death and immune stimulation, has been challenged to trigger specific pyroptotic tumor cell death while keeping pyroptosis silence in normal cells. Here, an intelligent inducer is reported that acts as a reactive oxygen species (ROS) scavenger in normal cells to keep pyroptosis silence, while serving as ROS generator to induce obvious pyroptotic tumor cells death dependent on high hydrogen peroxide levels and near-infrared laser irradiation. This switchable activity ensures this inducer to precisely kill the tumor cells with augmented immunogenicity while causing minimal damage to normal cells. Moreover, the catalase-like activity endows this inducer to overcome limitation of tumor hypoxia on ROS generation and show significant pyroptosis activation, further initiating the immune response to inhibit the tumor metastases in vivo. This study provides valuable insights into design new pyroptosis inducer with controllable pyroptosis activity to specifically induce programmed tumor cell pyroptosis for precise and augmented tumor therapy with minimal side effects.
Collapse
Affiliation(s)
- Linlin Huo
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Shiqi Zhu
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Muyao Li
- College of Life Sciences and MedicineChengdu University of Traditional Chinese MedicineChengdu610075China
| | - Mingya Tan
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Mengke Fan
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Jiayi Zhao
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Jie Zeng
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Meiling Liu
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Kunyan Liu
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| | - Chao Tong
- National Clinical Research Center for Child Health and DisordersMinistry of Education Key Laboratory of Child Development and DisordersChildren's Hospital of Chongqing Medical UniversityChongqing401122China
| | - Zhenghuan Zhao
- College of Basic Medical SciencesChongqing Medical UniversityChongqing400016China
| |
Collapse
|
5
|
Wang F, Fan Y, Liu Y, Lou X, Sutrisno L, Peng S, Li J. Oxygen-carrying semiconducting polymer nanoprodrugs induce sono-pyroptosis for deep-tissue tumor treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230100. [PMID: 39175882 PMCID: PMC11335461 DOI: 10.1002/exp.20230100] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 08/24/2024]
Abstract
Sonodynamic therapy (SDT) has been explored for cancer therapy, especially for deep tumors due to its low tissue penetration restriction. The therapeutic efficacy of SDT is limited due to the complicated tumor microenvironment. This study reports the construction of oxygen-carrying semiconducting polymer nanoprodrugs (OSPNpro) for deep tumor treatment via combining amplified SDT with pyroptosis. An oxygen carrier perfluorohexane, sonodynamic semiconducting polymer as the sonosensitizer, and reactive oxygen species (ROS)-responsive prodrug are co-loaded into a nanoparticle system, leading to the formation of these polymer nanoprodrugs. Such OSPNpro show an effective accumulation in tumor tissues after systemic administration, in which they deliver oxygen to relieve tumor hypoxia microenvironment and thus mediate amplified SDT via producing ROS under ultrasound (US) irradiation, even when the tumors are covered with a 2-cm chicken breast tissue. In addition, the ROS-responsive prodrugs are activated by the generated ROS to trigger pyroptosis of tumor cells. Such a sono-pyroptosis induces a strong antitumor immunity with obviously higher level infiltrations of effector immune cells into tumors. Therefore, OSPNpro-based combinational therapy can greatly inhibit the growth of 2-cm chicken breast tissue-covered deep tumors and suppress tumor metastasis. This study offers a prodrug nanoplatform for treatment of deep tumor via sono-pyroptosis strategy.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| | - Yongliang Fan
- Department of Cardiovascular SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yue Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| | - Xiangxin Lou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| | - Linawati Sutrisno
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)TsukubaJapan
| | - Shaojun Peng
- Zhuhai Institute of Translational MedicineZhuhai Precision Medical CenterZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)ZhuhaiGuangdongChina
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghaiChina
| |
Collapse
|
6
|
Ji F, Shi C, Shu Z, Li Z. Nanomaterials Enhance Pyroptosis-Based Tumor Immunotherapy. Int J Nanomedicine 2024; 19:5545-5579. [PMID: 38882539 PMCID: PMC11178094 DOI: 10.2147/ijn.s457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Pyroptosis, a pro-inflammatory and lytic programmed cell death pathway, possesses great potential for antitumor immunotherapy. By releasing cellular contents and a large number of pro-inflammatory factors, tumor cell pyroptosis can promote dendritic cell maturation, increase the intratumoral infiltration of cytotoxic T cells and natural killer cells, and reduce the number of immunosuppressive cells within the tumor. However, the efficient induction of pyroptosis and prevention of damage to normal tissues or cells is an urgent concern to be addressed. Recently, a wide variety of nanoplatforms have been designed to precisely trigger pyroptosis and activate the antitumor immune responses. This review provides an update on the progress in nanotechnology for enhancing pyroptosis-based tumor immunotherapy. Nanomaterials have shown great advantages in triggering pyroptosis by delivering pyroptosis initiators to tumors, increasing oxidative stress in tumor cells, and inducing intracellular osmotic pressure changes or ion imbalances. In addition, the challenges and future perspectives in this field are proposed to advance the clinical translation of pyroptosis-inducing nanomedicines.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunyu Shi
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhongmin Li
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
7
|
Lu Q, Kou D, Lou S, Ashrafizadeh M, Aref AR, Canadas I, Tian Y, Niu X, Wang Y, Torabian P, Wang L, Sethi G, Tergaonkar V, Tay F, Yuan Z, Han P. Nanoparticles in tumor microenvironment remodeling and cancer immunotherapy. J Hematol Oncol 2024; 17:16. [PMID: 38566199 PMCID: PMC10986145 DOI: 10.1186/s13045-024-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer immunotherapy and vaccine development have significantly improved the fight against cancers. Despite these advancements, challenges remain, particularly in the clinical delivery of immunomodulatory compounds. The tumor microenvironment (TME), comprising macrophages, fibroblasts, and immune cells, plays a crucial role in immune response modulation. Nanoparticles, engineered to reshape the TME, have shown promising results in enhancing immunotherapy by facilitating targeted delivery and immune modulation. These nanoparticles can suppress fibroblast activation, promote M1 macrophage polarization, aid dendritic cell maturation, and encourage T cell infiltration. Biomimetic nanoparticles further enhance immunotherapy by increasing the internalization of immunomodulatory agents in immune cells such as dendritic cells. Moreover, exosomes, whether naturally secreted by cells in the body or bioengineered, have been explored to regulate the TME and immune-related cells to affect cancer immunotherapy. Stimuli-responsive nanocarriers, activated by pH, redox, and light conditions, exhibit the potential to accelerate immunotherapy. The co-application of nanoparticles with immune checkpoint inhibitors is an emerging strategy to boost anti-tumor immunity. With their ability to induce long-term immunity, nanoarchitectures are promising structures in vaccine development. This review underscores the critical role of nanoparticles in overcoming current challenges and driving the advancement of cancer immunotherapy and TME modification.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, China
| | - Shenghan Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China
| | - Amir Reza Aref
- Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Israel Canadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Pedram Torabian
- Cumming School of Medicine, Arnie Charbonneau Cancer Research Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673, Singapore, Republic of Singapore
| | - Franklin Tay
- The Graduate School, Augusta University, 30912, Augusta, GA, USA
| | - Zhennan Yuan
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Peng Han
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
8
|
Yang EL, Sun ZJ. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity. Adv Healthc Mater 2024; 13:e2303294. [PMID: 38288864 DOI: 10.1002/adhm.202303294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Indexed: 02/13/2024]
Abstract
Cancer immunotherapy, a field within immunology that aims to enhance the host's anti-cancer immune response, frequently encounters challenges associated with suboptimal response rates. The presence of myeloid-derived suppressor cells (MDSCs), crucial constituents of the tumor microenvironment (TME), exacerbates this issue by fostering immunosuppression and impeding T cell differentiation and maturation. Consequently, targeting MDSCs has emerged as crucial for immunotherapy aimed at enhancing anti-tumor responses. The development of nanomedicines specifically designed to target MDSCs aims to improve the effectiveness of immunotherapy by transforming immunosuppressive tumors into ones more responsive to immune intervention. This review provides a detailed overview of MDSCs in the TME and current strategies targeting these cells. Also the benefits of nanoparticle-assisted drug delivery systems, including design flexibility, efficient drug loading, and protection against enzymatic degradation, are highlighted. It summarizes advances in nanomedicine targeting MDSCs, covering enhanced treatment efficacy, safety, and modulation of the TME, laying the groundwork for more potent cancer immunotherapy.
Collapse
Affiliation(s)
- En-Li Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| |
Collapse
|
9
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Wang B, Wang T, Jiang T, Li S, Zhang L, Zhao X, Yang X, Wang X. Circulating immunotherapy strategy based on pyroptosis and STING pathway: Mn-loaded paclitaxel prodrug nanoplatform against tumor progression and metastasis. Biomaterials 2024; 306:122472. [PMID: 38280315 DOI: 10.1016/j.biomaterials.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/16/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024]
Abstract
Immunotherapy has emerged as a promising strategy against tumors. However, its efficacy is limited by low immunogenicity, poor antigen presentation, and inadequate lymphocyte infiltration. Herein, we develop a nanoplatform (Mn-HSP) loaded with manganese ions (Mn2+) and paclitaxel (PTX) prodrug based on hyaluronic acid. PTX in Mn-HSP induces DNA damage and pyroptosis to release tumor-associated antigens (TAAs), enhancing tumor-specific adaptive immunity. Meanwhile, Mn2+ in Mn-HSP, together with PTX-induced DNA damage, activates the stimulator of interferon gene (STING) pathway to amplify innate immunity. Mn-HSP combines with adaptive and innate immunity, effectively enhancing the presentation of antigen-presenting cells (APCs) and promoting tumor infiltration of cytotoxic T lymphocytes (CTLs). In turn, the granzyme B (GZMB) secreted by CTLs triggers pyroptosis again, thereby establishing a "circulating immunotherapy" against tumors. Our results demonstrate that Mn-HSP efficiently inhibits primary breast tumors, as well as rechallenge tumors and lung metastasis in vivo. Therefore, the circulating immunotherapy that combines pyroptosis mediated adaptive immunity and STING pathway amplified innate immunity provides a novel strategy for enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lianxiao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Xiaojia Yang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xueyang Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
11
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Liu J, Chen T, Liu X, Li Z, Zhang Y. Engineering materials for pyroptosis induction in cancer treatment. Bioact Mater 2024; 33:30-45. [PMID: 38024228 PMCID: PMC10654002 DOI: 10.1016/j.bioactmat.2023.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer remains a significant global health concern, necessitating the development of innovative therapeutic strategies. This research paper aims to investigate the role of pyroptosis induction in cancer treatment. Pyroptosis, a form of programmed cell death characterized by the release of pro-inflammatory cytokines and the formation of plasma membrane pores, has gained significant attention as a potential target for cancer therapy. The objective of this study is to provide a comprehensive overview of the current understanding of pyroptosis and its role in cancer treatment. The paper discusses the concept of pyroptosis and its relationship with other forms of cell death, such as apoptosis and necroptosis. It explores the role of pyroptosis in immune activation and its potential for combination therapy. The study also reviews the use of natural, biological, chemical, and multifunctional composite materials for pyroptosis induction in cancer cells. The molecular mechanisms underlying pyroptosis induction by these materials are discussed, along with their advantages and challenges in cancer treatment. The findings of this study highlight the potential of pyroptosis induction as a novel therapeutic strategy in cancer treatment and provide insights into the different materials and mechanisms involved in pyroptosis induction.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - XianLing Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Oncology, Guilin Hospital of the Second Xiangya Hospital, Central South University, Guilin, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
13
|
Wang M, Fu Q. Nanomaterials for Disease Treatment by Modulating the Pyroptosis Pathway. Adv Healthc Mater 2024; 13:e2301266. [PMID: 37354133 DOI: 10.1002/adhm.202301266] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Pyroptosis differs significantly from apoptosis and cell necrosis as an alternative mode of programmed cell death. Its occurrence is mediated by the gasdermin protein, leading to characteristic outcomes including cell swelling, membrane perforation, and release of cell contents. Research underscores the role of pyroptosis in the etiology and progression of many diseases, making it a focus of research intervention as scientists explore ways to regulate pyroptosis pathways in disease management. Despite numerous reviews detailing the relationship between pyroptosis and disease mechanisms, few delve into recent advancements in nanomaterials as a mechanism for modulating the pyroptosis pathway to mitigate disease effects. Therefore, there is an urgent need to fill this gap and elucidate the path for the use of this promising technology in the field of disease treatment. This review article delves into recent developments in nanomaterials for disease management through pyroptosis modulation, details the mechanisms by which drugs interact with pyroptosis pathways, and highlights the promise that nanomaterial research holds in driving forward disease treatment.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
14
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
15
|
Ling H, Zhang Q, Luo Q, Ouyang D, He Z, Sun J, Sun M. Dynamic immuno-nanomedicines in oncology. J Control Release 2024; 365:668-687. [PMID: 38042376 DOI: 10.1016/j.jconrel.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qinyi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
16
|
Wei X, Huang H, Guo J, Li N, Li Q, Zhao T, Yang G, Cai L, Yang H, Wu C, Liu Y. Biomimetic Nano-Immunoactivator via Ionic Metabolic Modulation for Strengthened NIR-II Photothermal Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304370. [PMID: 37587781 DOI: 10.1002/smll.202304370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Indexed: 08/18/2023]
Abstract
Reprogramming the immunologically "cold" environment of solid tumors is currently becoming the mainstream strategy to elicit powerful and systemic anticancer immunity. Here, a facile and biomimetic nano-immunnoactivator (CuS/Z@M4T1 ) is detailed by engineering a Zn2+ -bonded zeolitic imidazolate framework-8 (ZIF-8) with CuS nanodots (NDs) and cancer cell membrane for amplified near-infrared-II (NIR-II) photothermal immunotherapy via Zn2+ metabolic modulation. Taking advantage of the NIR-II photothermal effect of CuS NDs and the acidic responsiveness of ZIF-8, CuS/Z@M4T1 rapidly causes intracellular Zn2+ pool overload and disturbs the metabolic flux of 4T1 cells, which effectively hamper the production of heat shock proteins and relieve the resistance of photothermal therapy (PTT). Thus, amplified immunogenic cell death is evoked and initiates the immune cascade both in vivo and in vitro as demonstrated by dendritic cells maturation and T-cell infiltration. Further combination with antiprogrammed death 1 (aPD-1) achieves escalated antitumor efficacy which eliminates the primary, distant tumor and avidly inhibits lung metastasis due to cooperation of enhanced photothermal stimulation and empowerment of cytotoxic T lymphocytes by aPD-1. Collectively, this work provides the first report of using the intrinsic modulation property of meta-organometallic ZIF-8 for enhanced cancer photoimmunotherapy together with aPD-1, thereby inspiring a novel combined paradigm of ion-rich nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Xiaodan Wei
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Honglin Huang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Junhan Guo
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Ningxi Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Qingzhi Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Tian Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Geng Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Hong Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
17
|
Long Y, Fan J, Zhou N, Liang J, Xiao C, Tong C, Wang W, Liu B. Biomimetic Prussian blue nanocomplexes for chemo-photothermal treatment of triple-negative breast cancer by enhancing ICD. Biomaterials 2023; 303:122369. [PMID: 37922746 DOI: 10.1016/j.biomaterials.2023.122369] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Drug-induced immunogenic cell death (ICD) can efficiently inhibit tumor growth and recurrence through the release of tumor-associated antigens which activate both local and systemic immune responses. Pyroptosis has emerged as an effective means for inducing ICD; however, the development of novel pyroptosis inducers to specifically target tumor cells remains a pressing requirement. Herein, we report that Cinobufagin (CS-1), a main ingredient of Chansu, can effectively induce pyroptosis of triple-negative breast cancer (TNBC) cells, making it a potential therapeutic agent for this kind of tumor. However, the application of CS-1 in vivo is extremely limited by the high dosage/long-term usage and non-selectivity caused by systemic toxicity. To address these drawbacks, we developed a new nanomedicine by loading CS-1 into Prussian blue nanoparticles (PB NPs). The nanomedicine can release CS-1 in a photothermal-controlled manner inherited in PB NPs. Furthermore, hybrid membrane (HM) camouflage was adopted to improve the immune escape and tumor-targeting ability of this nanomedicine, as well. In vitro assays demonstrated that the chemo-photothermal combination treatment produced high-level ICD, ultimately fostering the maturation of dendritic cells (DCs). In vivo anti-tumor assessments further indicated that this strategy not only efficiently inhibited primary growth of MDA-MB-231 cells and 4T1 cells-bearing models but also efficiently attenuated distant tumor growth in 4T1 xenograft model. This was mechanistically achieved throuh the promotion of DCs maturation, infiltration of cytotoxic T lymphocyte into the tumor, and the inhibition of Treg cells. In summary, this work provides a novel strategy for efficient TNBC therapy by using nanomaterials-based multimodal nanomedicine through rational design.
Collapse
Affiliation(s)
- Ying Long
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jialong Fan
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Naduo Zhou
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiahao Liang
- College of Pharmacy, College of Integrative Medicine, Dalian Medical University, Dalian,116044, China
| | - Chang Xiao
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Chunyi Tong
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Bin Liu
- College of Biology, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
18
|
Feng Z, Chen G, Zhong M, Lin L, Mai Z, Tang Y, Chen G, Ma W, Li G, Yang Y, Yu Z, Yu M. An acid-responsive MOF nanomedicine for augmented anti-tumor immunotherapy via a metal ion interference-mediated pyroptotic pathway. Biomaterials 2023; 302:122333. [PMID: 37738743 DOI: 10.1016/j.biomaterials.2023.122333] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Pyroptosis is an inflammatory form of programmed cell death (PCD) that is regulated by the Gasdermin protein family in response to various stimuli, playing a critical role in the development of tumor therapy strategies. However, cancers are generally known to escape from PCD via immunosuppressive pathways or other resistant mechanisms. In this study, an acid-responsive Fe/Mn bimetal-organic framework nanosystem carrying metal ions and immune adjuvant R848 (FeMn@R@H) was designed for combining pyroptosis and augmented immunotherapy. The FeMn@R@H would be triggered to disintegrate and release Fe3+ and Mn2+ ions in response to the acidic tumor microenvironment (TME), thereby initiating Fenton-like reactions for ROS-mediated pyroptosis. On the one hand, the pyroptosis-caused cell rupture would induce the release of proinflammatory cytokines and immunogenic constituents from tumor cells, further resulting in immunogenic cell death (ICD) to promote antitumor immune responses. On the other hand, the co-delivered R848 could reverse suppressive tumor immune microenvironment (TIME) and induce inflammatory responses by activating the TLR7/8 pathway. In conclusion, this tumor-specific therapy system can co-deliver metal ions and R848 to tumor tissues to perform pyroptosis-mediated PCD and augmented anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Zhenzhen Feng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Gui Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Min Zhong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Ling Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Ziyi Mai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Yan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Guimei Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Wen Ma
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Guang Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510632, China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China.
| | - Zhiqiang Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China.
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China; Zhujiang Hospital, Southern Medical University, Guangzhou 510282 China.
| |
Collapse
|
19
|
Zhang ZJ, Liu ZT, Huang YP, Nguyen W, Wang YX, Cheng L, Zhou H, Wen Y, Xiong L, Chen W. Magnetic resonance and fluorescence imaging superparamagnetic nanoparticles induce apoptosis and ferroptosis through photodynamic therapy to treat colorectal cancer. MATERIALS TODAY PHYSICS 2023; 36:101150. [DOI: 10.1016/j.mtphys.2023.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
20
|
Li J, Yi X, Liu L, Wang X, Ai J. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 2023:10.1007/s10495-023-01851-3. [PMID: 37184582 DOI: 10.1007/s10495-023-01851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Sun X, Li M, Wang P, Bai Q, Cao X, Mao D. Recent Organic Photosensitizer Designs for Evoking Proinflammatory Regulated Cell Death in Antitumor Immunotherapy. SMALL METHODS 2023; 7:e2201614. [PMID: 36960933 DOI: 10.1002/smtd.202201614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/12/2023] [Indexed: 05/17/2023]
Abstract
In the past decades, immunotherapy has achieved a series of clinical successes in the field of cancer. However, existing therapeutic options usually show a low immune response to solid tumors caused by immunosuppressive "cold" tumor microenvironment (TME). Several types of proinflammatory regulated cell death (RCD), mainly including ferroptosis and pyroptosis, have been studied recently, which can provide proinflammatory signals and immunogenicity necessary for remodeling TME and activating an antitumor immune response. A variety of chemotherapeutic drugs are proven to be effective in the proinflammatory RCD induction of tumor cells, but several adverse effects and intrinsic drug resistance usually occur in the therapeutic process, greatly hindering their further clinical application. The emerging organic photosensitizer (PS)-based materials open new possibilities to effectively activate proinflammatory RCD through precise spatiotemporal regulation of intracellular reactive oxygen species-associated signaling pathways, which can overcome many challenges encountered in current proinflammatory RCD-mediated immunotherapy. In this review, the recent design strategies of PS probes are detailly summarized and their potential advantages for tumor-specific proinflammatory RCD induction are discussed. Moreover, the representative examples in cancer immunotherapy are highlighted and future perspectives in this emerging field are proposed.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Min Li
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qingqing Bai
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuchen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Duo Mao
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
22
|
Gao S, Lv R, Hao N, Wang H, Lv Y, Li Y, Ji Y, Liu Y. Fabrication of pH/photothermal-responsive ZIF-8 nanocarriers loaded with baicalein for effective drug delivery and synergistic chem-photothermal effects. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
23
|
Li M, Kim J, Rha H, Son S, Levine MS, Xu Y, Sessler JL, Kim JS. Photon-Controlled Pyroptosis Activation (PhotoPyro): An Emerging Trigger for Antitumor Immune Response. J Am Chem Soc 2023; 145:6007-6023. [PMID: 36881923 DOI: 10.1021/jacs.3c01231] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pyroptosis refers to the process of gasdermin-mediated lytic programmed cell death (PCD) characterized by the release of pro-inflammatory cytokines. Our knowledge of pyroptosis has expanded beyond the cellular level and now includes extracellular responses. In recent years, pyroptosis has attracted considerable attention due to its potential to induce host immunity. For instance, at the 2022 International Medicinal Chemistry of Natural Active Ligand Metal-Based Drugs (MCNALMD) conference, numerous researchers demonstrated an interest in photon-controlled pyroptosis activation ("PhotoPyro"), an emerging pyroptosis-engineered approach for activating systemic immunity via photoirradiation. Given this enthusiasm, we share in this Perspective our views on this emerging area and expound on how and why "PhotoPyro" could trigger antitumor immunity (i.e., turning so-called "cold" tumors "hot"). In doing so, we have tried to highlight cutting-edge breakthroughs in PhotoPyro while suggesting areas for future contributions. By providing insights into the current state of the art and serving as a resource for individuals interested in working in this area, it is hoped that this Perspective will set the stage for PhotoPyro to evolve into a broadly applicable cancer treatment strategy.
Collapse
Affiliation(s)
- Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Matthew S Levine
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
24
|
Sun T, Jiang C. Stimuli-responsive drug delivery systems triggered by intracellular or subcellular microenvironments. Adv Drug Deliv Rev 2023; 196:114773. [PMID: 36906230 DOI: 10.1016/j.addr.2023.114773] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Drug delivery systems (DDS) triggered by local microenvironment represents the state-of-art of nanomedicine design, where the triggering hallmarks at intracellular and subcellular levels could be employed to exquisitely recognize the diseased sites, reduce side effects, and expand the therapeutic window by precisely tailoring the drug-release kinetics. Though with impressive progress, the DDS design functioning at microcosmic levels is fully challenging and underexploited. Here, we provide an overview describing the recent advances on stimuli-responsive DDSs triggered by intracellular or subcellular microenvironments. Instead of focusing on the targeting strategies as listed in previous reviews, we herein mainly highlight the concept, design, preparation and applications of stimuli-responsive systems in intracellular models. Hopefully, this review could give useful hints in developing nanoplatforms proceeding at a cellular level.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
25
|
Zhao JF, Zou FL, Zhu JF, Huang C, Bu FQ, Zhu ZM, Yuan RF. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis. Front Pharmacol 2022; 13:1025618. [PMID: 36330100 PMCID: PMC9622975 DOI: 10.3389/fphar.2022.1025618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Nano drug delivery system (NDDS) can significantly improve the delivery and efficacy of drugs against pancreatic cancer (PC) in many ways. The purpose of this study is to explore the related research fields of NDDS for PC from the perspective of bibliometrics. Methods: Articles and reviews on NDDS for PC published between 2003 and 2022 were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel were comprehensively used for bibliometric and visual analysis. Results: A total of 1329 papers on NDDS for PC were included. The number of papers showed an upward trend over the past 20 years. The United States contributed the most papers, followed by China, and India. Also, the United States had the highest number of total citations and H-index. The institution with the most papers was Chinese Acad Sci, which was also the most important in international institutional cooperation. Professors Couvreur P and Kazuoka K made great achievements in this field. JOURNAL OF CONTROLLED RELEASE published the most papers and was cited the most. The topics related to the tumor microenvironment such as "tumor microenvironment", "tumor penetration", "hypoxia", "exosome", and "autophagy", PC treatment-related topics such as "immunotherapy", "combination therapy", "alternating magnetic field/magnetic hyperthermia", and "ultrasound", and gene therapy dominated by "siRNA" and "miRNA" were the research hotspots in the field of NDDS for PC. Conclusion: This study systematically uncovered a holistic picture of the performance of NDDS for PC-related literature over the past 20 years. We provided scholars to understand key information in this field with the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong-Fa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|