1
|
Wang X, Yan J, Zhao Y, Li S, Ma Z, Duan X, Wang Y, Jiao J, Gu C, Zhang G. Targeted Degradation of EGFR Mutations via Self-Delivery Nano-PROTACs for Boosting Tumor Synergistic Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20943-20956. [PMID: 40145370 DOI: 10.1021/acsami.5c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Proteolysis targeting chimera (PROTAC) has recently emerged as a promising strategy to selectively degrade target proteins in the treatment of various diseases. However, it has low bioavailability due to strong hydrophobicity, poor membrane permeability, and nonspecific distribution in vivo, which greatly limits its application. In this study, self-delivery PROTAC nanoparticles (designated as CP NPs) integrating gefitinib-based PROTACs and photosensitizers were developed to efficiently degrade mutated epidermal growth factor receptor (EGFR), a crucial kinase for cell growth and survival, while simultaneously triggering photodynamic therapy and immunotherapy. The prepared NPs enhanced the tumor accumulation of PROTACs, which led to the selective degradation of EGFR mutations and a reduction in programmed cell death protein ligand 1 levels, thereby alleviating tumor immunosuppression and immune tolerance. Moreover, under laser irradiation, the coloaded photosensitizers triggered potent photodynamic therapy effects and induced immunogenic cell death, which worked synergistically with PROTACs toward eliciting a robust antitumor immune response. In a mouse model of lung cancer, primary, distant, and lung metastatic tumors were significantly suppressed. This work highlights the potential of nano-PROTACs for degrading target proteins and facilitating combination photodynamic immunotherapy toward expanding PROTAC applications in cancer therapy.
Collapse
Affiliation(s)
- Xuechun Wang
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jie Yan
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yilei Zhao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Songyan Li
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zilin Ma
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuying Duan
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuelan Wang
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changping Gu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guiqiang Zhang
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
2
|
Bandyopadhyay S, Forzano JA, Dirak M, Chan J. Activatable Porphyrin-Based Sensors, Photosensitizers and Combination Therapeutics. JACS AU 2025; 5:42-54. [PMID: 39886600 PMCID: PMC11775669 DOI: 10.1021/jacsau.4c01108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025]
Abstract
Porphyrins, known as the "pigments of life", have evolved from their natural roles into versatile tools for biomedical applications. The development of activatable porphyrins has significantly expanded their utility, enabling precise responses to a carefully selected target analyte. These advances have broadened their use in imaging, diagnosis, and therapy. These capabilities are driven by activity-based sensing (ABS), which enhances the selectivity and sensitivity to various disease biomarkers. However, their design and implementation are intrinsically complex. This perspective provides an easy-to-follow roadmap that details how such molecules can be developed. Furthermore, we highlight recent progress in ABS-modified porphyrins, focusing on how specific modifications achieve these remarkable properties across various biomedical platforms. The ongoing evolution of activatable porphyrins holds great promise for the development of sophisticated, responsive systems, offering more effective diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Suritra Bandyopadhyay
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| | - Joseph A Forzano
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| | - Musa Dirak
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
- Department
of Chemistry, Koç University, 34450 Istanbul, Türkiye
| | - Jefferson Chan
- Department
of Chemistry, Cancer Center at Illinois and Beckman Institute for
Advanced Science and Technology, University
of Illinois at Urbana−Champaign, Urbana, 61801 Illinois United States
| |
Collapse
|
3
|
Meng W, Huang L, Guo J, Xin Q, Liu J, Hu Y. Innovative Nanomedicine Delivery: Targeting Tumor Microenvironment to Defeat Drug Resistance. Pharmaceutics 2024; 16:1549. [PMID: 39771528 PMCID: PMC11728492 DOI: 10.3390/pharmaceutics16121549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge. Characteristics of the TME such as hypoxia, acidity, and high interstitial pressure significantly reduce the effectiveness of chemotherapy and radiotherapy, leading to increased drug resistance in tumor cells. Then, this review summarizes innovative nanocarrier designs for these microenvironmental features, including hypoxia-sensitive nanoparticles, pH-responsive carriers, and multifunctional nanosystems that enable targeted drug release and improved drug penetration and accumulation in tumors. By combining nanotechnology with therapeutic strategies, this review offers a novel perspective by focusing on the innovative design of nanocarriers that interact with the TME, a dimension often overlooked in similar reviews. We highlight the dual role of these nanocarriers in therapeutic delivery and TME modulation, emphasize their potential to overcome drug resistance, and look at future research directions.
Collapse
Affiliation(s)
- Wenjun Meng
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Li Huang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Jiamin Guo
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xin
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiyan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China (J.L.)
| | - Yuzhu Hu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Wang P, Sun X, Tang L, Li N, Wang Q, Gan B, Zhang Y. CaCO 3-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage. Asian J Pharm Sci 2024; 19:100989. [PMID: 39640053 PMCID: PMC11616050 DOI: 10.1016/j.ajps.2024.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 12/07/2024] Open
Abstract
Cervical cancer stands is a formidable malignancy that poses a significant threat to women's health. Calcium overload, a minimally invasive tumor treatment, aims to accumulate an excessive concentration of Ca2+ within mitochondria, triggering apoptosis. Copper sulfide (CuS) represents a photothermal mediator for tumor hyperthermia. However, relying solely on thermotherapy often proves insufficient in controlling tumor growth. Curcumin (CUR), an herbal compound with anti-cancer properties, inhibits the efflux of exogenous Ca2+ while promoting its excretion from the endoplasmic reticulum into the cytoplasm. To harness these therapeutic modalities, we have developed a nanoplatform that incorporates hollow CuS nanoparticles (NPs) adorned with multiple CaCO3 particles and internally loaded with CUR. This nanocomposite exhibits high uptake and easy escape from lysosomes, along with the degradation of surrounding CaCO3, provoking the generation of abundant exogenous Ca2+ in situ, ultimately damaging the mitochondria of diseased cells. Impressively, under laser excitation, the CuS NPs demonstrate a photothermal effect that accelerates the degradation of CaCO3, synergistically enhancing the antitumor effect through photothermal therapy. Additionally, fluorescence imaging reveals the distribution of these nanovehicles in vivo, indicating their effective accumulation at the tumor site. This nanoplatform shows promising outcomes for tumor-targeting and the effective treatment in a murine model of cervical cancer, achieved through cascade enhancement of calcium overload-based dual therapy.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xichen Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Liuyan Tang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Ningning Li
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Bicheng Gan
- College of Petroleum Engineering, Heilongjiang, Northeast Petroleum University, Daqing 163318, China
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key laboratory of Flexible Electronics of Zhejiang Province, Ningbo 315103, China
| |
Collapse
|
5
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
6
|
Zhang X, Dou Y, Liu S, Chen P, Wen Y, Li J, Sun Y, Zhang R. Rationally Designed Benzobisthiadiazole-Based Covalent Organic Framework for High-Performance NIR-II Fluorescence Imaging-Guided Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2303842. [PMID: 38458147 DOI: 10.1002/adhm.202303842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/05/2024] [Indexed: 03/10/2024]
Abstract
Although being applied as photosensitizers for photodynamic therapy, covalent organic frameworks (COFs) fail the precise fluorescence imaging in vivo and phototherapy in deep-tissue, due to short excitation/emission wavelengths. Herein, this work proposes the first example of NIR-II emissive and benzobisthiadiazole-based COF-980. Comparing to its ligands, the structure of COF-980 can more efficiently reducing the energy gap (ΔES1-T1) between the excited state and the triplet state to enhance photodynamic therapy efficiency. Importantly, COF-980 demonstrates high photostability, good anti-diffusion property, superior reactive oxygen species (ROS) generation efficiency, promising imaging ability, and ROS production in deep tissue (≈8 mm). Surprisingly, COF-980 combined with laser irradiation could trigger larger amount of intracellular ROS to high efficiently induce cancer cell death. Notably, COF-980 NPs precisely enable PDT guided by NIR-II fluorescence imaging that effectively inhibit the 4T1 tumor growth with negligible adverse effects. This study provides a universal approach to developing long-wavelength emissive COFs and exploits its applications for biomedicine.
Collapse
Affiliation(s)
- Xian Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - You Dou
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Yating Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Junrong Li
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Yao Sun
- National Key Laboratory of Green Pesticides, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, P. R. China
| | - Ruiping Zhang
- The Radiology Department of First Hospital of Shanxi Medical University, Taiyuan, 030001, P. R. China
| |
Collapse
|
7
|
Liu H, Luo GF, Shang Z. Plant-derived nanovesicles as an emerging platform for cancer therapy. Acta Pharm Sin B 2024; 14:133-154. [PMID: 38239235 PMCID: PMC10792991 DOI: 10.1016/j.apsb.2023.08.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 01/22/2024] Open
Abstract
Plant-derived nanovesicles (PDNVs) derived from natural green products have emerged as an attractive nanoplatform in biomedical application. They are usually characterized by unique structural and biological functions, such as the bioactive lipids/proteins/nucleic acids as therapeutics and targeting groups, immune-modulation, and long-term circulation. With the rapid development of nanotechnology, materials, and synthetic chemistry, PDNVs can be engineered with multiple functions for efficient drug delivery and specific killing of diseased cells, which represent an innovative biomaterial with high biocompatibility for fighting against cancer. In this review, we provide an overview of the state-of-the-art studies concerning the development of PDNVs for cancer therapy. The original sources, methods for obtaining PDNVs, composition and structure are introduced systematically. With an emphasis on the featured application, the inherent anticancer properties of PDNVs as well as the strategies in constructing multifunctional PDNVs-based nanomaterials will be discussed in detail. Finally, some scientific issues and technical challenges of PDNVs as promising options in improving anticancer therapy will be discussed, which are expected to promote the further development of PDNVs in clinical translation.
Collapse
Affiliation(s)
- Hanzhe Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guo-Feng Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
8
|
Zhang S, Gong X, Wei Q, Lv J, Du E, Wang J, Ji W, Li JL. Rationally Designed Enzyme-Resistant Peptidic Assemblies for Plasma Membrane Targeting in Cancer Treatment. Adv Healthc Mater 2023; 12:e2301730. [PMID: 37400071 DOI: 10.1002/adhm.202301730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Peptides are being increasingly important for subcellular targeted cancer treatment to improve specificity and reverse multidrug resistance. However, there has been yet any report on targeting plasma membrane (PM) through self-assembling peptides. A simple synthetic peptidic molecule (tF4) is developed. It is revealed that tF4 is carboxyl esterase-resistant and self-assembles into vesical nanostructures. Importantly, tF4 assemblies interact with PM through orthogonal hydrogen bonding and hydrophobic interaction to regulate cancer cellular functions. Mechanistically, tF4 assemblies induce stress fiber formation, cytoskeleton reconstruction, and death receptor 4/5 (DR4/5) expression in cancer cells. DR4/5 triggers extrinsic caspase-8 signaling cascade, resulting in cell death. The results provide a new strategy for developing enzyme-resistant and PM-targeting peptidic molecules against cancer.
Collapse
Affiliation(s)
- Shijin Zhang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuewen Gong
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinchuan Wei
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiarong Lv
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jiaqing Wang
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ji-Liang Li
- National Engineering Research Centre of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, 325000, China
| |
Collapse
|
9
|
Wen B, Huang D, Song C, Shan J, Zhao Y. Ultrasound-Responsive Oxygen-Carrying Pollen for Enhancing Chemo-Sonodynamic Therapy of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300456. [PMID: 37193644 PMCID: PMC10375146 DOI: 10.1002/advs.202300456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/01/2023] [Indexed: 05/18/2023]
Abstract
The tumor-suppressing efficacy of either chemotherapeutics or gaseous drugs has been confirmed in treating the triple negative breast cancer (TNBC), while the efficacy of single treatment is usually dissatisfactory. Herein, a novel ultrasound responsive natural pollen delivery system is presented to simultaneously load chemotherapeutics and gaseous drugs for synergistic treatment of TNBC. The hollow structure of pollen grains carries oxygen-enriched perfluorocarbon (PFC), and the porous spinous process structure adsorbs the chemotherapeutic drug doxorubicin (DOX) (PO/D-PGs). Ultrasound can trigger the oxygen release from PFC and excite DOX, which is not only a chemotherapeutic but also a sonosensitizer, to realize chemo-sonodynamic therapy. The PO/D-PGs are demonstrated to effectively enhance oxygen concentration and increase the production of reactive oxygen species in the presence of low-intensity ultrasound, synergistically enhancing the tumor killing ability. Thus, the synergistic therapy based on ultrasound-facilitated PO/D-PGs significantly enhances the antitumor effect in the mouse TNBC model. It is believed that the proposed natural pollen cross-state microcarrier can be used as an effective strategy to enhance chemo-sonodynamic therapy for TNBC.
Collapse
Affiliation(s)
- Baojie Wen
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Danqing Huang
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Chuanhui Song
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Jingyang Shan
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
| | - Yuanjin Zhao
- Department of UltrasoundInstitute of Translational MedicineNanjing Drum Tower HospitalAffiliated Hospital of Medicine SchoolNanjing UniversityNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
10
|
Hao X, Gan J, Cao J, Zhang D, Liang J, Sun L. Biomimetic liposomes hybrid with erythrocyte membrane modulate dendritic cells to ameliorate systemic lupus erythematosus. Mater Today Bio 2023; 20:100625. [PMID: 37091811 PMCID: PMC10114516 DOI: 10.1016/j.mtbio.2023.100625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
Dendritic cells (DCs)-based immunotherapy has shown immense promise in systemic lupus erythematosus (SLE) treatment. However, existing carrier strategies such as polymers, liposomes, and polypeptides, are difficult to achieve active targeting to DCs due to their intricate interaction with biological systems. Since DCs represent a class of phagocytes responsible for the removal of senescent or damaged erythrocytes, we hypothesize that hybrid vesicles containing erythrocytes membrane components could be presented to be potent drug carriers to target DCs specifically. Herein, inspired by the cell membrane fusion technique, we develop hybrid biomimetic liposomes (R-Lipo) by fusing natural erythrocyte membrane vesicles and artificial liposomes for DCs-targeted SLE therapy. The resultant R-Lipo exhibited excellent biocompatibility and was shown to be effectively internalized by DCs both in vitro and in vivo. Using an immunosuppressant, mycophenolic acid (MPA), as the model drug, MPA-loaded R-Lipo powerfully suppressed DCs maturation and efficiently controlled the duration of lupus nephritis without apparent side effects. Our findings provide a safe, effective, and easy-to-prepare biomimetic vesicle platform for the treatment of SLE and other DC-associated diseases.
Collapse
Affiliation(s)
- Xubin Hao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Juan Cao
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dagan Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|