1
|
Ma X, Li S, Gao B. Artificial Spidroin Nanogenerator-Based Articulus Wound Dressing. ChemistryOpen 2025; 14:e202400257. [PMID: 39473315 PMCID: PMC11808259 DOI: 10.1002/open.202400257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Articulus wound infection is a threat to human health. Existing medical materials have poor biocompatibility and may contain harmful chemicals, causing allergies and secondary infections. Therefore, there is an urgent need to develop innovative medical materials. Materials made of artificial spider silk proteins have been widely used in wound healing because of their good biocompatibility, biodegradability, cell adhesion and bioelectronic properties.
Collapse
Affiliation(s)
- Xiaoming Ma
- Department of OrthopedicsTaizhou People's HospitalTaizhou, Jiangsu ProvincePeople's Republic of China
| | - Shuhuan Li
- School of Pharmaceutical SciencesCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211816China
| | - Bingbing Gao
- School of Pharmaceutical SciencesCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211816China
| |
Collapse
|
2
|
Lin B, Gao B, Wei M, Li S, Zhou Q, He B. Overexpressed Artificial Spidroin Based Microneedle Spinneret for 3D Air Spinning of Hybrid Spider Silk. ACS NANO 2024; 18:25778-25794. [PMID: 39222009 DOI: 10.1021/acsnano.4c08557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Efforts have been devoted to developing strategies for converting spider silk proteins (spidroins) into functional silk materials. However, studies mimicking the exact natural spinning process of spiders encounter arduous challenges. In this paper, consistent with the natural spinning process of spiders, we report a high-efficient spinning strategy that enables the mass preparation of multifunctional artificial spider silk at different scales. By simulating the structural stability mechanism of the cross-β-spine of the amyloid polypeptide by computer dynamics, we designed and obtained an artificial amyloid spidroin with a significantly increased yield (13.5 g/L). Using the obtained artificial amyloid spidroin, we fabricated artificial spiders with artificial spinning glands (hollow MNs). Notably, by combining artificial spiders with 3D printing, we perform patterned air spinning at the macro- and microscales, and the resulting patterned artificial spider silk has excellent pump-free liquid flow and conductive and frictional electrical properties. Based on these findings, we used macroscale artificial spider silk to treat rheumatoid arthritis in mice and micro artificial spider silk to prepare wound dressings for diabetic mice. We believe that artificial spider silk based on an exact spinning strategy will provide a high-efficient way to construct and modulate the next generation of smart materials.
Collapse
Affiliation(s)
- Baoyang Lin
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wei
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuhuan Li
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Zhou
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bingfang He
- School of Pharmaceutical Sciences, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Milić L, Zambry NS, Ibrahim FB, Petrović B, Kojić S, Thiha A, Joseph K, Jamaluddin NF, Stojanović GM. Advances in textile-based microfluidics for biomolecule sensing. BIOMICROFLUIDICS 2024; 18:051502. [PMID: 39296324 PMCID: PMC11410389 DOI: 10.1063/5.0222244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
Textile-based microfluidic biosensors represent an innovative fusion of various multidisciplinary fields, including bioelectronics, material sciences, and microfluidics. Their potential in biomedicine is significant as they leverage textiles to achieve high demands of biocompatibility with the human body and conform to the irregular surfaces of the body. In the field of microfluidics, fabric coated with hydrophobic materials serves as channels through which liquids are transferred in precise amounts to the sensing element, which in this case is a biosensor. This paper presents a condensed overview of the current developments in textile-based microfluidics and biosensors in biomedical applications over the past 20 years (2005-2024). A literature search was performed using the Scopus database. The fabrication techniques and materials used are discussed in this paper, as these will be key in various modifications and advancements in textile-based microfluidics. Furthermore, we also address the gaps in the application of textile-based microfluidic analytical devices in biomedicine and discuss the potential solutions. Advances in textile-based microfluidics are enabled by various printing and fabric manufacturing techniques, such as screen printing, embroidery, and weaving. Integration of these devices into everyday clothing holds promise for future vital sign monitoring, such as glucose, albumin, lactate, and ion levels, as well as early detection of hereditary diseases through gene detection. Although most testing currently takes place in a laboratory or controlled environment, this field is rapidly evolving and pushing the boundaries of biomedicine, improving the quality of human life.
Collapse
Affiliation(s)
- Lazar Milić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Bojan Petrović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | - Sanja Kojić
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | | | - Nurul Fauzani Jamaluddin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
4
|
Dong K, Zhou Q, Gao B. New light-illuminated silk road: emerging silk fibroin-based optical biomedical sensors. Analyst 2024; 149:4322-4342. [PMID: 39073410 DOI: 10.1039/d4an00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biomedical silk protein optics has become the subject of intensive research aimed at solving the challenges associated with traditional medical devices in terms of biocompatibility and performance balance. With its significant potential for biomedical applications in the field of drug storage and wound monitoring, it is dedicated to reducing the perturbation of neighbouring tissues. The transparency and biocompatibility of silk proteins make them ideal materials in the field of optical device fabrication, effectively overcoming the challenges posed by conventional materials. In this paper, we explore in detail the complex aspects of the design, synthesis and application related to biomedical silk protein optical devices and comprehensively analyse the potential use of silk protein-centric microstructures (e.g., micropillars, microneedles, and photonic crystals) in the development of optical devices. This review also offers insights into the challenges of applying silk protein optical devices in healthcare and their future trends, aiming to provide a comprehensive overview of the advances, potential impacts and emerging research directions in the field of biomedical silk protein optical devices.
Collapse
Affiliation(s)
- Kaiyi Dong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Yu D, Chen L, Yan T, Zhang Y, Sun X, Lv G, Zhang S, Xu Y, Li C. Enhancing Infected Diabetic Wound Healing through Multifunctional Nanocomposite-Loaded Microneedle Patch: Inducing Multiple Regenerative Sites. Adv Healthc Mater 2024; 13:e2301985. [PMID: 38776526 DOI: 10.1002/adhm.202301985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Infected diabetic wound (DW) presents a prolonged and challenging healing process within the field of regenerative medicine. The effectiveness of conventional drug therapies is hindered by their limited ability to reach deep tissues and promote adequate wound healing rates. Therefore, there is an imperative to develop drug delivery systems that can penetrate deep tissues while exhibiting multifunctional properties to expedite wound healing. In this study, w e devised a soluble microneedle (MN) patch made of γ-PGA, featuring multiple arrays, which w as loaded with core-shell structured nanoparticles (NPs) known as Ag@MSN@CeO2, to enhance the healing of infected DWs. The NP comprises a cerium dioxide (CeO2) core with anti-inflammatory and antioxidant properties, a mesoporous silica NP (MSN) shell with angiogenic characteristics, and an outermost layer doped with Ag to combat bacterial infections. W e demonstrated that the MN platform loaded with Ag@MSN@CeO2 successfully penetrated deep tissues for effective drug delivery. These MN tips induced the formation of multiple regenerative sites at various points, leading to antibacterial, reactive oxygen species-lowering, macrophage ecological niche-regulating, vascular regeneration-promoting, and collagen deposition-promoting effects, thus significantly expediting the healing process of infected DWs. Considering these findings, the multifunctional MN@Ag@MSN@CeO2 patch exhibits substantial potential for clinical applications in the treatment of infected DW.
Collapse
Affiliation(s)
- Daojiang Yu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Lei Chen
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Tao Yan
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Yuanyuan Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Guozhong Lv
- The Affiliated Hospital of Jiangnan University, Jiangsu, 214000, China
| | - Shuyu Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|