1
|
Chen W, Xiao H, Xing J, Sun J, Wang Y, Shi J. Human serum albumin-encapsulated near-infrared hemicyanine photosensitizers for viscosity imaging and enhanced photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:126060. [PMID: 40107138 DOI: 10.1016/j.saa.2025.126060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The research successfully developed a novel dual-function near-infrared photosensitizer, CyI, which is encapsulated with human serum albumin (HSA) to form CyI-HSA nanocomplex that can simultaneously monitor the viscosity of cancer cell and enhance the efficacy of photodynamic therapy (PDT). In vitro experiments demonstrated that compared with CyI alone, CyI-HSA has superior water solubility and high photostability, and can effectively prevent aggregation-caused quenching (ACQ) caused by π-π stacking. Additionally, singlet oxygen quantum yield of CyI-HSA as high as 27.4 % under 658 nm laser irradiation, indicating significant PDT potential. Cellular experiments further revealed that CyI-HSA can monitor intracellular viscosity with high sensitivity, while generating a substantial amount of singlet oxygen, promoting PDT and cell apoptosis. Treatment of HepG-2 cells with 1 µmol/L CyI-HSA reduced cell viability by only 13 % (Laser = 100 mW cm-2). Therefore, as a kind of nano-photosensitizer integrating diagnostic and therapeutic functions, CyI-HSA has a broad prospect in the application of near-infrared hemicyanine photosensitizers in photodynamic therapy.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117 Shandong, China; Department of Pharmacy (Shandong Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Haoyang Xiao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117 Shandong, China
| | - Jiaqi Xing
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117 Shandong, China
| | - Jiarao Sun
- Department of Pharmacy (Shandong Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yanfeng Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117 Shandong, China
| | - Jing Shi
- Department of Pharmacy (Shandong Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
2
|
Tong S, Liu J, Chen Y, Xiao X, Li S, Song X, Yang H. Surface engineering of NIR-II luminescent gold nanoclusters for brain glioma-targeted imaging. NANOSCALE 2025; 17:10670-10676. [PMID: 40190226 DOI: 10.1039/d4nr05158k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Ultrasmall gold nanoclusters (AuNCs) with photoluminescence in the second near-infrared region (NIR-II) have emerged as promising probes for in vivo biomedical applications. However, it remains a challenge to utilize NIR-II-emitting AuNCs for imaging brain glioblastoma (GBM), which is highly lethal and hard to diagnose in time. Herein, we have presented systematic investigations on the brain delivery and GBM targeting efficacies of NIR-II-emitting AuNCs protected by different ligands. We first synthesized four types of AuNCs with surface coatings of small thiolated ligands and proteins, and then studied their in vitro penetration capability into the blood-brain barrier (BBB) and in vivo GBM targeting performances. It was found that the BBB permeability of AuNCs determined by the in vitro transwell model was not evidently affected by the surface ligands. Significantly, AuNCs protected by albumin exhibited notably extended blood circulation and less skull binding compared to those protected by small ligands, enabling superior in vivo brain GBM-targeted NIR-II PL imaging. We also modified the albumin-AuNCs with targeting peptides to improve in vivo imaging contrast. Additionally, AuNCs had negligible toxic effects on major organs as well as brain tissues and neurons, corroborating their good biocompatibility. This study examined the surface engineering of NIR-II luminescent AuNCs for brain GBM targeting, which may offer insights into the future design of AuNCs for bioapplications.
Collapse
Affiliation(s)
- Shufen Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jie Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yonghui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Xinyun Xiao
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Shihua Li
- School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
3
|
Jiang S, Li W, Li B, Chen S, Lei S, Liu Y, Lin J, Huang P. Albumin-Energized NIR-II Cyanine Dye for Fluorescence/Photoacoustic/Photothermal Multi-Modality Imaging-Guided Tumor Homologous Targeting Photothermal Therapy. J Med Chem 2025; 68:3324-3334. [PMID: 39878298 DOI: 10.1021/acs.jmedchem.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Endowing cyanine dyes with hydrophilicity, long blood circulation, tumor targeting, and robust therapeutic efficacy in the second near-infrared (NIR-II) window is challenging for cancer treatment. Herein, we develop cancer cell membrane-coated albumin-NIR-II cyanine dye assemblies, denoted as LZ-1105@HAm, to optimize the photophysical properties of cyanine dyes in aqueous solution for NIR-II fluorescence (FL)/photoacoustic (PA)/photothermal (PT) multimodality imaging-guided tumor homologous targeting photothermal therapy. LZ-1105@HAm exhibits good hydrophilicity, extends the half-life of blood circulation from 0.634 ± 0.058 to 1.919 ± 0.107 h, enhances NIR-II FL/PA/PT imaging capabilities in vitro and in vivo, and improves photothermal conversion efficiency from 34.6% to 45.4%. Additionally, the cell membrane coating confers the assemblies with tumor-specific targeting capability, increasing tumor accumulation and enabling efficient photothermal tumor ablation. Upon 1064 nm laser irradiation, LZ-1105@HAm demonstrates significantly improved therapeutic efficacy. This research provides a strategy for constructing cyanine dye-based nanotheranostics with potential clinical application prospects.
Collapse
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Wanyu Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shuai Chen
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yurong Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
4
|
Guo L, Zhou Y, Ding J, Xiong J, Zhu L, Amuti S, Zhang C, Du Z, Zhang X, Dong B, Alifu N. A near-infrared triggered multi-functional indocyanine green nanocomposite with NO gas release function inducing improved photothermal therapy. J Colloid Interface Sci 2025; 679:307-323. [PMID: 39454262 DOI: 10.1016/j.jcis.2024.10.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The integration of photothermal and near-infrared (NIR) imaging capabilities of indocyanine green (ICG) small molecules has attracted considerable attention in tumor diagnosis and treatment. However, the abnormal upregulation of cellular heat shock proteins (HSPs) induced by photothermal therapy (PTT) enhances cellular heat resistance, thereby severely affecting the efficacy of PTT. In this study, to address the impact of HSPs on the efficacy of PTT while obtaining high-quality NIR fluorescence imaging in the NIR region, we designed a targeted peptide@ICG nanofluorescent probe encapsulated in liposomes. The introduced cRGD targeting peptide not only possesses tumor-targeting capabilities but also features LA as the last amino acid in the targeting peptide, which can generate nitric oxide (NO) under reactive oxygen species (ROS) triggering. It can happen under 808 nm single-light source NIR light, and the guanidine group in the peptide decomposes and combines with singlet oxygen molecules to generate NO gas molecules, thereby exerting an elevated photothermal effect by inhibiting the expression of HSP70. In addition, the nanoprobes enable deep imaging and treatment of glioma in situ and can be combined with a laser speckle contrast imaging (LSCI) system for multimodal imaging. This composite probe demonstrates synergistic tumor therapeutic effects of photodynamic therapy (PDT), PTT, and gas therapy, offering a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Le Guo
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Zhou
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China; Department of Biomedical Engineering, Zhongshan Medical College, ZhongShan University, Guangzhou 510000, China
| | - Jiayi Ding
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Jiabao Xiong
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Lijun Zhu
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Siyiti Amuti
- College of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China
| | - Chi Zhang
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Zhong Du
- Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Xueliang Zhang
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China.
| | - Biao Dong
- State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Nuernisha Alifu
- Institute of Public Health, Xinjiang Medical University, Urumqi 830011, China; Second Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
5
|
Chen Z, Huang L, Gao D, Bao Z, Hu D, Zheng W, Chen J, Liao J, Zheng H, Sheng Z. High Spatiotemporal Near-Infrared II Fluorescence Lifetime Imaging for Quantitative Detection of Clinical Tumor Margins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411272. [PMID: 39652447 PMCID: PMC11791973 DOI: 10.1002/advs.202411272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/11/2024] [Indexed: 02/05/2025]
Abstract
Accurate detection of tumor margins is essential for successful cancer surgery. While indocyanine green (ICG)-based near-infrared (NIR) fluorescence (FL) surgical navigation enhances the visual identification of tumor margins, its accuracy remains subjective, underscoring the need for quantitative approaches. In this study, a high spatiotemporal fluorescence lifetime (FLT) imaging technology is developed in the second near-infrared window (NIR-II, 1000-1700 nm) for quantitative tumor margin detection, utilizing folate receptor-targeted ICG nanoprobes (FPH-ICG). FPH-ICG exhibits a significantly prolonged NIR-II FLT (750 ± 7 ps vs 260 ± 3 ps) and increased NIR-II FL brightness (FPH-ICG/ICG = 3.8). In vitro and in vivo studies confirm that FPH-ICG specifically targets folate receptor-α (FRα) on SK-OV-3 ovarian cancer cells, achieving high-contrast NIR-II FL imaging with a signal-to-background ratio of 10.8. Notably, NIR-II FLT imaging demonstrates superior accuracy (90%) and consistency in defining tumor margins compared to NIR-II FL imaging (58%) in both SK-OV-3 tumor-bearing mice and clinical tumor samples. These findings underscore the potential of NIR-II FLT imaging as a quantitative tool for guiding surgical tumor margin detection.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Laboratory of Radio Frequency Heterogeneous IntegrationCollege of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Linjian Huang
- Research Center for Biomedical Optics and Molecular ImagingShenzhen Key Laboratory for Molecular ImagingGuangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology Key Laboratory of Biomedical Imaging Science and SystemShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zhouzhou Bao
- Department of Obstetrics and GynecologyShanghai Key Laboratory of Gynecologic OncologyRen Ji Hospital School of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Wei Zheng
- Research Center for Biomedical Optics and Molecular ImagingShenzhen Key Laboratory for Molecular ImagingGuangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology Key Laboratory of Biomedical Imaging Science and SystemShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Jing Chen
- State Key Laboratory of Radio Frequency Heterogeneous IntegrationCollege of Electronics and Information EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Jiuling Liao
- Research Center for Biomedical Optics and Molecular ImagingShenzhen Key Laboratory for Molecular ImagingGuangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology Key Laboratory of Biomedical Imaging Science and SystemShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging DevicesPaul C. Lauterbur Research Center for Biomedical Imaging Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
| |
Collapse
|
6
|
Hu D, Zha M, Zheng H, Gao D, Sheng Z. Recent Advances in Indocyanine Green-Based Probes for Second Near-Infrared Fluorescence Imaging and Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0583. [PMID: 39830366 PMCID: PMC11739436 DOI: 10.34133/research.0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Fluorescence imaging, a highly sensitive molecular imaging modality, is being increasingly integrated into clinical practice. Imaging within the second near-infrared biological window (NIR-II; 1,000 to 1,700 nm), also referred to as shortwave infrared, has received substantial attention because of its markedly reduced autofluorescence, deeper tissue penetration, and enhanced spatiotemporal resolution as compared to traditional near-infrared (NIR) imaging. Indocyanine green (ICG), a US Food and Drug Administration-approved NIR fluorophore, has long been used in clinical applications, including blood vessel angiography, vascular perfusion monitoring, and tumor detection. Recent advancements in NIR-II imaging technology have revitalized interest in ICG, revealing its extended tail fluorescence beyond 1,000 nm and reaffirming its potential as a clinically translatable NIR-II fluorophore for in vivo imaging and theranostic applications for diagnosing various diseases. This review emphasizes the notable advances in the use of ICG and its derivatives for NIR-II imaging and image-guided therapy from both fundamental and clinical perspectives. We also provide a concise conclusion and discuss the challenges and future opportunities with NIR-II imaging using clinically approved fluorophores.
Collapse
Affiliation(s)
- Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Menglei Zha
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, the First Dongguan Affiliated Hospital,
Guangdong Medical University, Dongguan 523710, P. R. China
| | - Hairong Zheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- State Key Laboratory of Biomedical lmaging Science and System, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Zhang X, Liu M, Hu Y, Wang X, Wei R, Yao C, Shi C, Qiu Y, Yang T, Luo X, Chen J, Sun W, Chen H, Qian X, Yang Y. Albumin-Chaperoned Deep-NIR Triarylmethane Dyes for High-Contrast In Vivo Imaging and Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411515. [PMID: 39520340 DOI: 10.1002/adma.202411515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fluorophores absorbing/emitting in the deep near-infrared (deep NIR) spectral region, that is, 800 nm and beyond, hold great promise for in vivo bioimaging, diagnosis, and phototherapy due to deeper tissue penetration. The bottleneck is the lack of bright, stable, and readily synthesized deep NIR fluorophores. Here, it is reported that the albumin-chaperon strategy is a viable one-for-all strategy to address these difficulties. A focused library of deep-NIR absorbing dyes (EA5) is easily synthesized via a two-step cascade. They are neither very stable nor bright in phosphate buffer due to a propeller-type flexible scaffold. Through screening, EA5_c3 is found to exhibit a high affinity toward bovine serum albumin (BSA). Binding-associated structural rigidification resulted in a gigantic 26-fold fluorescence enhancement. The albumin chaperone also greatly improved the stability of EA5_c3 by shielding the bisbenzannulated triarylmethane core from nucleophilic or oxidative species. The resulting EA5_c3@BSA exhibits high biocompatibility. It offered high-resolution vasculature, lymph systems, tumors, and other tissue imaging with its bright deep NIR emission. At the same time, it exhibits prominent potential in photoacoustic imaging and photothermal treatment of subcutaneous and orthotopic breast tumors. These findings provide insights into robust and high-performance fluorophores with deep NIR regions for theranostic against aggressive cancers.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yingqi Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Yao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cunjian Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yangting Qiu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Li H, Li P, Zhang J, Lin Z, Bai L, Shen H. Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment. NANOSCALE 2024; 16:21697-21730. [PMID: 39508492 DOI: 10.1039/d4nr03058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Achieving accurate and efficient tumor imaging is crucial in the field of tumor treatment, as it facilitates early detection and precise localization of tumor tissues, thereby informing therapeutic strategies and surgical interventions. The optical imaging technology within the second near-infrared (NIR-II) window has garnered significant interest for its remarkable benefits, such as enhanced tissue penetration depth, superior signal-to-background ratio (SBR), minimal tissue autofluorescence, reduced photon attenuation, and lower tissue scattering. This review explained the design and optimization strategies of nano-agents responsive to the NIR-II window, such as single-walled carbon nanotubes, quantum dots, lanthanum-based nanomaterials, and noble metal nanomaterials. These nano-agents enable non-invasive, deep-tissue imaging with high spatial resolution in the NIR-II window, and their superior optical properties significantly improve the accuracy, efficiency, and versatility of imaging-guided tumor treatments. And we discussed the characteristics and advantages of fluorescence imaging (FL)/photoacoustic imaging (PA) in NIR-II window, providing a comprehensive overview of the latest research progress of different nano-agents in FL/PA imaging-guided tumor therapy. Furthermore, we exhaustively reviewed the latest applications of multifunctional nano-phototherapy technologies carried out by NIR-II light including photothermal therapy (PTT), photodynamic therapy (PDT), and combined modalities like photothermal-chemodynamic therapy (PTT-CDT), photothermal-chemotherapy (PTT-CT), and photothermal- immunotherapy (PTT-IO). These imaging-guided integrated tumor therapy approaches within the NIR-II window have gradually matured over the past decade and are expected to become a safe and effective non-invasive tumor treatment. Finally, we outlined the prospects and challenges of development and innovation of the NIR-II integrated diagnosis and therapy nanoplatform. This review aims to provide insightful perspectives for future advancements in NIR-II optical tumor diagnosis and integrated treatment platforms.
Collapse
Affiliation(s)
- Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lintao Bai
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Guo J, Liu Y, Liang X, Chen Z, Liu B, Yuan Z. 4T1 Cell Membrane-Coated Pdots with NIR-II Absorption and Fluorescence Properties for Targeted Phototheranostics of Breast Tumors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66425-66435. [PMID: 39569810 PMCID: PMC11622192 DOI: 10.1021/acsami.4c12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Designing highly biocompatible organic semiconducting conjugated polymer dots (Pdots) with bright fluorescence and superior absorption properties in the second near-infrared window (NIR-II: 1000-1700 nm) remains a huge challenge for tumor phototheranostics. In this study, we constructed 4T1 cell membrane-coated m-PBTQ4F Pdots (CPdots) with enhanced NIR-II photoacoustic (PA) and fluorescence (FL) imaging capability for NIR-II photothermal therapy (PTT) of breast tumors. Our findings demonstrated that CPdots could specifically target breast tumors, leading to enhanced tumor accumulation after systemic administration in living mice. In addition, CPdots can not only serve as contrast agents for NIR-II PA and FL imaging for improved breast tumor detection but also generate more cytotoxic heat to improve PTT efficacy. Therefore, this pilot study opens an option avenue for developing new NIR-II Pdots with homologous targeting capability for enhanced phototheranostics of breast tumors.
Collapse
Affiliation(s)
- Jintong Guo
- Faculty
of Health Sciences, University of Macau, Macau SAR 99999, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Macau SAR 99999, China
| | - Ye Liu
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiao Liang
- Faculty
of Health Sciences, University of Macau, Macau SAR 99999, China
| | - Zhiyi Chen
- Key
Laboratory of Medical Imaging Precision Theranostics and Radiation
Protection, College of Hunan Province, The Affiliated Changsha Central
Hospital, Hengyang Medical School, University
of South China, Changsha, Hunan 410004, China
- Institute
of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bin Liu
- Zhujiang
Hospital of Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zhen Yuan
- Faculty
of Health Sciences, University of Macau, Macau SAR 99999, China
- Centre
for Cognitive and Brain Sciences, University
of Macau, Macau SAR 99999, China
| |
Collapse
|
10
|
Guo L, Wang Q, Gao F, Liang Y, Ma H, Chen D, Zhang Y, Ju H, Zhang X. NIR-II Orthogonal Fluorescent Ratiometric Nanoprobe for In Situ Bioimaging of Carbon Monoxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405320. [PMID: 39301945 DOI: 10.1002/smll.202405320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Carbon monoxide (CO) functions as a significant endogenous cell signaling molecule and is strongly associated with many physiological and pathological processes. However, conventional fluorescence imaging in the visible and near-infrared (NIR) I regions suffers autofluorescence background and photon scattering, hindering the accurate detection of CO in vivo. In addition, the complexity of physiological environments leads to fluctuating fluorescence emission. To solve these problems, herein, the NIR-II fluorescent nanoprobe NP-Pd for in vivo ratiometric bioimaging of CO is developed. In the presence of CO, NP-Pd exhibits responsive enhancement in absorption at 808 nm, which amplifies the fluorescence signal of down-conversion nanoparticles (DCNP) at 1060 nm under 808 nm excitation, while the fluorescence signal of DCNP at 1525 nm under 980 nm excitation remains unchanged and serves as an internal standard. Through this orthogonally ratiometric fluorescence strategy, accurate CO bioimaging and precise diagnosis of acute liver injury diseases are achieved in the mouse model experiments, providing a novel tool for the in vivo detection of CO-related diseases.
Collapse
Affiliation(s)
- Lichao Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingyuan Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210008, China
| | - Feng Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoyue Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Kakinen A, Jiang Y, Davis TP, Teesalu T, Saarma M. Brain Targeting Nanomedicines: Pitfalls and Promise. Int J Nanomedicine 2024; 19:4857-4875. [PMID: 38828195 PMCID: PMC11143448 DOI: 10.2147/ijn.s454553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Brain diseases are the most devastating problem among the world's increasingly aging population, and the number of patients with neurological diseases is expected to increase in the future. Although methods for delivering drugs to the brain have advanced significantly, none of these approaches provide satisfactory results for the treatment of brain diseases. This remains a challenge due to the unique anatomy and physiology of the brain, including tight regulation and limited access of substances across the blood-brain barrier. Nanoparticles are considered an ideal drug delivery system to hard-to-reach organs such as the brain. The development of new drugs and new nanomaterial-based brain treatments has opened various opportunities for scientists to develop brain-specific delivery systems that could improve treatment outcomes for patients with brain disorders such as Alzheimer's disease, Parkinson's disease, stroke and brain tumors. In this review, we discuss noteworthy literature that examines recent developments in brain-targeted nanomedicines used in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Aleksandr Kakinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Yuhao Jiang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tambet Teesalu
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Zheng J, Liu H, Chen SH, Huang B, Tang T, Huang P, Cui R. Biosynthesis of CuTe Nanorods with Large Molar Extinction Coefficients for NIR-II Photoacoustic Imaging. Anal Chem 2024; 96:5315-5322. [PMID: 38511619 DOI: 10.1021/acs.analchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Photoacoustic imaging (PAI) in the second near-infrared region (NIR-II), due to deeper tissue penetration and a lower background interference, has attracted widespread concern. However, the development of NIR-II nanoprobes with a large molar extinction coefficient and a high photothermal conversion efficiency (PCE) for PAI and photothermal therapy (PTT) is still a big challenge. In this work, the NIR-II CuTe nanorods (NRs) with large molar extinction coefficients ((1.31 ± 0.01) × 108 cm-1·M-1 at 808 nm, (7.00 ± 0.38) × 107 cm-1·M-1 at 1064 nm) and high PCEs (70% at 808 nm, 48% at 1064 nm) were synthesized by living Staphylococcus aureus (S. aureus) cells as biosynthesis factories. Due to the strong light-absorbing and high photothermal conversion ability, the in vitro PA signals of CuTe NRs were about 6 times that of indocyanine green (ICG) in both NIR-I and NIR-II. In addition, CuTe NRs could effectively inhibit tumor growth through PTT. This work provides a new strategy for developing NIR-II probes with large molar extinction coefficients and high PCEs for NIR-II PAI and PTT.
Collapse
Affiliation(s)
- Jie Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Shi-Hui Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Tao Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
13
|
Pan Z, Zeng Y, Ye Z, Li Y, Wang Y, Feng Z, Bao Y, Yuan J, Cao G, Dong J, Long W, Lu YJ, Zhang K, He Y, Liu X. Rotor-based image-guided therapy of glioblastoma. J Control Release 2024; 368:650-662. [PMID: 38490374 DOI: 10.1016/j.jconrel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/20/2023] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Glioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM. IRLy was synthesized successfully through a rational molecular rotor modification with stronger penetration, higher signal-to-noise ratio, and a high photothermal conversion efficiency (PCE) up to ∼60%, which can achieve efficient NIR-II photo-response. The multifunctional nanoparticles (Tf-IRLy NPs) were further fabricated to cross the blood-brain barrier (BBB) introducing transferrin (Tf) as a targeting ligand. Tf-IRLy NPs showed high biosafety and good tumor enrichment for GBM in vitro and in vivo, and thus enabled accurate, efficient, and less invasive NIR-II multimodal imaging and photothermal therapy. This versatile Tf-IRLy nanosystem can provide a reference for the efficient, precise and low-invasive multi-synergistic brain targeted photo-theranostics. In addition, the "extended conjugation & molecular rotor" strategy can be used to guide the design of other photothermal agents.
Collapse
Affiliation(s)
- Zhenxing Pan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yushan Li
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yakun Wang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Bao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiongpeng Yuan
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiapeng Dong
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wei Long
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu-Jing Lu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Zhang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xujie Liu
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Meng Y, Gao J, Zhou P, Qin X, Tian M, Wang X, Zhou C, Li K, Huang F, Cao Y. NIR-II Conjugated Electrolytes as Biomimetics of Lipid Bilayers for In Vivo Liposome Tracking. Angew Chem Int Ed Engl 2024; 63:e202318632. [PMID: 38327029 DOI: 10.1002/anie.202318632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Liposomes serve as promising and versatile vehicles for drug delivery. Tracking these nanosized vesicles, particularly in vivo, is crucial for understanding their pharmacokinetics. This study introduces the design and synthesis of three new conjugated electrolyte (CE) molecules, which emit in the second near-infrared window (NIR-II), facilitating deeper tissue penetration. Additionally, these CEs, acting as biomimetics of lipid bilayers, demonstrate superior compatibility with lipid membranes compared to commonly used carbocyanine dyes like DiR. To counteract the aggregation-caused quenching effect, CEs employ a twisted backbone, as such their fluorescence intensities can effectively enhance after a fluorophore multimerization strategy. Notably, a "passive" method was employed to integrate CEs into liposomes during the liposome formation, and membrane incorporation efficiency was significantly promoted to nearly 100%. To validate the in vivo tracking capability, the CE-containing liposomes were functionalized with cyclic arginine-glycine-aspartic acid (cRGD) peptides, serving as tumor-targeting ligands. Clear fluorescent images visualizing tumor site in living mice were captured by collecting the NIR-II emission. Uniquely, these CEs exhibit additional emission peak in visible region, enabling in vitro subcellular analysis using routine confocal microscopy. These results underscore the potential of CEs as a new-generation of membrane-targeting probes to facilitate the liposome-based medicine research.
Collapse
Affiliation(s)
- Yingying Meng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peirong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xudong Qin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Miao Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Cheng Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fei Huang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
15
|
Xiao J, Qiu S, Ma Q, Bai S, Guo X, Wang L. Near-infrared dye IRDye800CW-NHS coupled to Trastuzumab for near-infrared II fluorescence imaging in tumor xenograft models of HER-2-positive breast cancer. J Mater Chem B 2023; 11:10738-10746. [PMID: 37929679 DOI: 10.1039/d3tb01486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Near-infrared II fluorescent probes targeting tumors for diagnostic purposes have received much attention in recent years. In this study, a fluorescent probe for the NIR-II was constructed by using IRDye800CW-NHS fluorescent dye with Trastuzumab, which was investigated for its ability to target HER-2-positive breast cancer in xenograft mice models. This probe was compared with Trastuzumab-ICG which was synthesized using a similar structure, ICG-NHS. The results demonstrated that the IRDye800CW-NHS had significantly stronger fluorescence in the NIR-I and NIR-II than ICG-NHS in the aqueous phase. And the different metabolic modes of IRDye800CW-NHS and ICG-NHS were revealed in bioimaging experiments. IRDye800CW-NHS was mainly metabolised by the kidneys, while ICG-NHS was mainly metabolised by the liver. After coupling with Trastuzumab, Trastuzumab-800CW (TMR = 5.35 ± 0.39) not only had a stronger tumor targeting ability than Trastuzumab-ICG (TMR = 4.42 ± 0.10) based on the calculated maximum tumor muscle ratio (TMR), but also had a comparatively lower hepatic uptake and faster metabolism. Histopathology analysis proved that both fluorescent probes were non-toxic to various organ tissues. These results reveal the excellent optical properties of IRDye800CW-NHS, and the great potential of coupling with antibodies to develop fluorescent probes that will hopefully be applied to intraoperative breast cancer navigation in humans.
Collapse
Affiliation(s)
- Junhui Xiao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Siqi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou 515041, China
- Clinical Research Center, Shantou Central Hospital, Shantou 515041, China
| | - Qiufeng Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Silan Bai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
16
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
17
|
Wang Y, Wang M, Xia G, Yang Y, Si L, Wang H, Wang H. Maximal emission beyond 1200 nm dicyanovinyl-functionalized squaraine for in vivo vascular imaging. Chem Commun (Camb) 2023; 59:3598-3601. [PMID: 36883558 DOI: 10.1039/d3cc00331k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The first maximum emission wavelength beyond 1200 nm acceptor-substituted squaraine fluorophore with ultra-high brightness and photostability has been developed. It can be co-assembled with bovine serum albumin to form an excellent biocompatible dye-protein nanocomplex with significant fluorescence enhancement for high-resolution vascular imaging.
Collapse
Affiliation(s)
- Yigang Wang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Mingda Wang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Guomin Xia
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yang Yang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Leilei Si
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Hua Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang 330031, China
| | - Hongming Wang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China
| |
Collapse
|