1
|
Gao Y, Li X, Ding Y, Wang Y, Du J, Chen Y, Xu J, Liu Y. MiR-451a-Enriched Small Extracellular Vesicles Derived from Mg 2+-Activated DPSCs Induce Vascularized Bone Regeneration through the AKT/eNOS/NO Axis. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40364481 DOI: 10.1021/acsami.5c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Blood vessel formation is a necessary part of bone tissue regeneration. MSCs-sEVs play a vital role in the in vivo bone regeneration strategy. However, natural MSCs-sEVs suffer from limited blood vessel formation potency, which makes it difficult to induce vascularized bone regeneration. Here, sEVs derived from magnesium cation-activated DPSCs (Mg2+-EVs) are purified and found to have superior potential in promoting endothelial cell migration and angiogenesis, as well as BMSC proliferation and osteogenesis. The beneficial effects of Mg2+-EVs could be attributed to the enrichment of miR-451a and the subsequent regulation and activation of AKT/eNOS signaling pathways. On this basis, Mg2+-EVs are delivered on β-TCP-modified GelMA scaffolds for slow release and better bioavailability. The rat cranial defect model verifies that GelMA/β-TCP with Mg2+-EVs has enhanced potential of inducing vascularized bone regeneration. The present study provides a cation-activated strategy to modulate the cargos and contents of MSC-derived sEVs, obtaining desirable vascular promotion and bone regeneration potential. Furthermore, the developed β-TCP-modified delivery scaffolds represent a promising strategy for efficient loading and slow-release delivery of sEVs for clinical translation.
Collapse
Affiliation(s)
- Yike Gao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yichen Ding
- Department of Endodontics, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, No. 9 Fanjiacun Road, Beijing 100071, China
| |
Collapse
|
2
|
Li Y, Sun M, Ding Y, Li A. Mandible-derived extracellular vesicles regulate early tooth development in miniature swine via targeting KDM2B. Int J Oral Sci 2025; 17:36. [PMID: 40289114 PMCID: PMC12034755 DOI: 10.1038/s41368-025-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 04/30/2025] Open
Abstract
Tissue interactions play a crucial role in tooth development. Notably, extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential. Here, we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B. Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B, thereby regulating tooth development. An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice. In conclusion, this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization, which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Meng Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yi Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Eerdekens H, Pirlet E, Willems S, Bronckaers A, Pincela Lins PM. Extracellular vesicles: innovative cell-free solutions for wound repair. Front Bioeng Biotechnol 2025; 13:1571461. [PMID: 40248643 PMCID: PMC12003306 DOI: 10.3389/fbioe.2025.1571461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Chronic non-healing wounds are often associated with conditions such as diabetes and peripheral vascular disease, pose significant medical and socioeconomic challenges. Cell-based therapies have shown promise in promoting wound healing but have major drawbacks such as immunogenicity and tumor formation. As a result, recent research has shifted to the potential of extracellular vesicles (EVs) derived from these cells. EVs are nanosized lipid bilayer vesicles, naturally produced by all cell types, which facilitate intercellular communication and carry bioactive molecules, offering advantages such as low immunogenicity, negligible toxicity and the potential to be re-engineered. Recent evidence recognizes that during wound healing EVs are released from a wide range of cells including immune cells, skin cells, epithelial cells and platelets and they actively participate in wound repair. This review comprehensively summarizes the latest research on the function of EVs from endogenous cell types during the different phases of wound healing, thereby presenting interesting therapeutic targets. Additionally, it gives a critical overview of the current status of mesenchymal stem cell-derived EVs in wound treatment highlighting their tremendous therapeutic potential as a non-cellular of-the-shelf alternative in wound care.
Collapse
Affiliation(s)
- Hanne Eerdekens
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Elke Pirlet
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Sarah Willems
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Annelies Bronckaers
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Paula M. Pincela Lins
- Hasselt University, Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, Belgium
| |
Collapse
|
4
|
Chang R, Wang P, Chen H, Chang SJ, Chen Q, Chang L, Qiu Y, Wang X, Lin X. Multifunctional Hydrogel Integrated Hemangioma Stem Cell-Derived Nanovesicle-Loaded Metal-Polyphenol Network Promotes Diabetic Flap Survival. Adv Healthc Mater 2025; 14:e2404776. [PMID: 40108941 DOI: 10.1002/adhm.202404776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/11/2025] [Indexed: 03/22/2025]
Abstract
Diabetes-associated skin defects represent a significant global health challenge. While flap grafts have been a preferred treatment for soft-tissue injuries in diabetic patients, their survival is often compromised by impaired vascularization, infection, and the adverse diabetic pathological microenvironment. To address these limitations, a hybrid photo-crosslinkable hydrogel (HPC) integrated hemangioma stem cell-derived nanovesicle (HemV)-loaded dual-metal-polyphenol network (dMPN) (HemV@dMPN/HPC) is developed. HemVs, derived from highly vascularized infantile hemangioma tissues, play a key role in promoting cell proliferation and angiogenesis. The dMPN facilitates the gradual release of copper (Cu2+) and magnesium ions (Mg2+), stimulating angiogenesis and mitigating inflammation. The HPC further sustains ion release while preserving the therapeutic efficacy of HemVs. Moreover, both HPC and Cu2+ act to confer antibacterial properties, further accelerating wound healing. This multifunctional HemV@dMPN/HPC platform offers a promising therapeutic strategy for treating large diabetic skin defects and can potentially improve flap graft survival.
Collapse
Affiliation(s)
- Rui Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Pei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hongrui Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shih-Jen Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qianyi Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lei Chang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yajing Qiu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiansong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoxi Lin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
5
|
Garcia‐Aponte OF, Kahlenberg S, Kouroupis D, Egger D, Kasper C. Effects of Hydrogels on Mesenchymal Stem/Stromal Cells Paracrine Activity and Extracellular Vesicles Production. J Extracell Vesicles 2025; 14:e70057. [PMID: 40091440 PMCID: PMC11911545 DOI: 10.1002/jev2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a valuable source of paracrine factors, as they have a remarkable secretory capacity, and there is a sizeable knowledge base to develop industrial and clinical production protocols. Promising cell-free approaches for tissue regeneration and immunomodulation are driving research towards secretome applications, among which extracellular vesicles (EVs) are steadily gaining attention. However, the manufacturing and application of EVs is limited by insufficient yields, knowledge gaps, and low standardization. Facing these limitations, hydrogels represent a versatile three-dimensional (3D) culture platform that can incorporate extracellular matrix (ECM) components to mimic the natural stem cell environment in vitro; via these niche-mimicking properties, hydrogels can regulate MSCs' morphology, adhesion, proliferation, differentiation and secretion capacities. However, the impact of the hydrogel's architectural, biochemical and biomechanical properties on the production of EVs remains poorly understood, as the field is still in its infancy and the interdependency of culture parameters compromises the comparability of the studies. Therefore, this review summarizes and discusses the reported effects of hydrogel encapsulation and culture on the secretion of MSC-EVs. Considering the effects of cell-material interactions on the overall paracrine activity of MSCs, we identify persistent challenges from low standardization and process control, and outline future paths of research, such as the synergic use of hydrogels and bioreactors to enhance MSC-EV generation.
Collapse
Affiliation(s)
- Oscar Fabian Garcia‐Aponte
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simon Kahlenberg
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Diabetes Research Institute & Cell Transplant Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dominik Egger
- Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
| | - Cornelia Kasper
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
6
|
Ma X, Peng L, Zhu X, Chu T, Yang C, Zhou B, Sun X, Gao T, Zhang M, Chen P, Chen H. Isolation, identification, and challenges of extracellular vesicles: emerging players in clinical applications. Apoptosis 2025; 30:422-445. [PMID: 39522104 DOI: 10.1007/s10495-024-02036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) serve as critical mediators of intercellular communication, encompassing exosomes, microvesicles, and apoptotic vesicles that play significant roles in diverse physiological and pathological contexts. Numerous studies have demonstrated that EVs derived from mesenchymal stem cells (MSC-EVs) play a pivotal role in facilitating tissue and organ repair, alleviating inflammation and apoptosis, enhancing the proliferation of endogenous stem cells within tissues and organs, and modulating immune function-these functions have been extensively utilized in clinical applications. The precise classification, isolation, and identification of MSC-EVs are essential for their clinical applications. This article provides a comprehensive overview of the biological properties of EVs, emphasizing both their advantages and limitations in isolation and identification methodologies. Additionally, we summarize the protein markers associated with MSC-EVs, emphasizing their significance in the treatment of various diseases. Finally, this article addresses the current challenges and dilemmas in developing clinical applications for MSC-EVs, aiming to offer valuable insights for future research.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lanwei Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Changcheng Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiangwei Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Tianya Gao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China.
| |
Collapse
|
7
|
Chen Y, Qi W, Wang Z, Niu F. Exosome Source Matters: A Comprehensive Review from the Perspective of Diverse Cellular Origins. Pharmaceutics 2025; 17:147. [PMID: 40006514 PMCID: PMC11858990 DOI: 10.3390/pharmaceutics17020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Exosomes have emerged as promising therapeutic agents in regenerative medicine. This review introduces a novel cell type-oriented perspective to systematically analyze exosomal properties in regenerative therapies. To our knowledge, this review is the first to comprehensively compare exosomes based on cellular source type, offering unprecedented insights into selecting optimal exosome producers for targeted regenerative applications. Factors beyond cellular origin influencing exosomal therapeutic efficacy, such as donor sites and collection methods, are also explored here. By synthesizing key advances, we propose promising research directions in the end. We aim to accelerate the development of more effective exosome-based regenerative therapies and highlight underexplored directions in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Feng Niu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan, Beijing 100144, China; (Y.C.)
| |
Collapse
|
8
|
Sun M, Yu Y, Zhang W, Ding Y, Li A, Li Y. Extracellular vesicles derived from dental follicle stem cells regulate tooth eruption by inhibiting osteoclast differentiation. Front Cell Dev Biol 2024; 12:1503481. [PMID: 39834384 PMCID: PMC11744031 DOI: 10.3389/fcell.2024.1503481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Tooth eruption as a crucial part in tooth development and regeneration is accompanied by ongoing osteogenesis and osteoclast activity. The dental follicle (DF) surrounding the developing tooth harbors dental follicle stem cells (DFSCs) which play a crucial role in maintaining bone remodeling. However, the mechanisms through which they regulate the balance between osteogenesis and osteoclast activity during tooth eruption remain poorly understood. Notably, extracellular vesicles (EVs) in bone homeostasis are considered essential. Our study revealed that the DFSCs could modulate tooth eruption by inhibiting osteoclast differentiation via EVs. Further investigation showed that EVs from DFSCs could inhibit osteoclast differentiation through the ANXA1-PPARγ-CEBPα pathway. Animal experiments indicated that EVs from DFSCs and the cargo ANXA1 affected tooth eruption. In summary, this study suggests the critical role of the dental follicle in tooth eruption through EVs, which may provide therapeutic targets for abnormal tooth eruption and effective approaches for the eruption of regenerated teeth.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yiru Yu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weixing Zhang
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Ding
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Periodontology, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ye Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Zhou X, Liu J, Wu F, Mao J, Wang Y, Zhu J, Hong K, Xie H, Li B, Qiu X, Xiao X, Wen C. The application potential of iMSCs and iMSC-EVs in diseases. Front Bioeng Biotechnol 2024; 12:1434465. [PMID: 39135947 PMCID: PMC11317264 DOI: 10.3389/fbioe.2024.1434465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
The immune system, functioning as the body's "defense army", plays a role in surveillance, defense. Any disruptions in immune system can lead to the development of immune-related diseases. Extensive researches have demonstrated the crucial immunoregulatory role of mesenchymal stem cells (MSCs) in these diseases. Of particular interest is the ability to induce somatic cells under specific conditions, generating a new cell type with stem cell characteristics known as induced pluripotent stem cell (iPSC). The differentiation of iPSCs into MSCs, specifically induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs), hold promise as a potential solution to the challenges of MSCs, potentially serving as an alternative to traditional drug therapies. Moreover, the products of iMSCs, termed induced pluripotent stem cell-derived mesenchymal stem cell-derived extracellular vesicles (iMSC-EVs), may exhibit functions similar to iMSCs. With the biological advantages of EVs, they have become the focus of "cell-free therapy". Here, we provided a comprehensive summary of the biological impact of iMSCs on immune cells, explored the applications of iMSCs and iMSC-EVs in diseases, and briefly discussed the fundamental characteristics of EVs. Finally, we overviewed the current advantages and challenges associated with iMSCs and iMSC-EVs. It is our hope that this review related to iMSCs and iMSC-EVs will contribute to the development of new approaches for the treatment of diseases.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinyu Liu
- Department of Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangbin Xiao
- Department of Cardiovascular, People’s Hospital of Jianyang, Jianyang, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
10
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [DOI: https:/doi.org/10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2025] Open
Abstract
Abstract
Background
The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs.
Methods
The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs.
Results
Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs.
Conclusions
These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
|
11
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [PMID: 38532349 PMCID: PMC10964552 DOI: 10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs. METHODS The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs. RESULTS Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs. CONCLUSIONS These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Wenwei Yu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Lili Zhou
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Danhua Ling
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
- Department of General Dentistry, the Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jianghong Road, Hangzhou, Hangzhou, Zhejiang, 310052, China
| | - Yangbo Xu
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Fuming He
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
12
|
Wang L, Wei X, He X, Xiao S, Shi Q, Chen P, Lee J, Guo X, Liu H, Fan Y. Osteoinductive Dental Pulp Stem Cell-Derived Extracellular Vesicle-Loaded Multifunctional Hydrogel for Bone Regeneration. ACS NANO 2024; 18:8777-8797. [PMID: 38488479 DOI: 10.1021/acsnano.3c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stem cell-derived extracellular vesicles (EVs) show great potential for promoting bone tissue regeneration. However, normal EVs (Nor-EVs) have a limited ability to direct tissue-specific regeneration. Therefore, it is necessary to optimize the osteogenic capacity of EV-based systems for repairing extensive bone defects. Herein, we show that hydrogels loaded with osteoinductive dental pulp stem cell-derived EVs (Ost-EVs) enhanced bone tissue remodeling, resulting in a 2.23 ± 0.25-fold increase in the expression of bone morphogenetic protein 2 (BMP2) compared to the hydrogel control group. Moreover, Ost-EVs led to a higher expression of alkaline phosphatase (ALP) (1.88 ± 0.16 of Ost-EVs relative to Nor-EVs) and the formation of orange-red calcium nodules (1.38 ± 0.10 of Ost-EVs relative to Nor-EVs) in vitro. RNA sequencing revealed that Ost-EVs showed significantly high miR-1246 expression. An ideal hydrogel implant should also adhere to surrounding moist tissues. In this study, we were drawn to mussel-inspired adhesive modification, where the hydrogel carrier was crafted from hyaluronic acid (HA) and polyethylene glycol derivatives, showcasing impressive tissue adhesion, self-healing capabilities, and the ability to promote bone growth. The modified HA (mHA) hydrogel was also responsive to environmental stimuli, making it an effective carrier for delivering EVs. In an ectopic osteogenesis animal model, the Ost-EV/hydrogel system effectively alleviated inflammation, accelerated revascularization, and promoted tissue mineralization. We further used a rat femoral condyle defect model to evaluate the in situ osteogenic ability of the Ost-EVs/hydrogel system. Collectively, our results suggest that Ost-EVs combined with biomaterial-based hydrogels hold promising potential for treating bone defects.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Shengzhao Xiao
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Qiusheng Shi
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jesse Lee
- Arova Biosciences, Inc., Life Sciences Innovation Hub, Calgary Alberta T2L 1Y8, Canada
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P.R. China
| |
Collapse
|
13
|
Li Y, Chen Y, Liu B, Nie Q, Li L, Duan X, Wu L, Chen G. Deciphering the Heterogeneity Landscape of Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Precise Selection in Translational Medicine. Adv Healthc Mater 2023; 12:e2202453. [PMID: 36745771 PMCID: PMC11468895 DOI: 10.1002/adhm.202202453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem/stromal cell-derived extracellular vesicles (MSC-EVs) have been considered promising therapeutics for disease treatments. However, MSC-EVs harvested from different tissues present unique biological features reflective of their origins. The heterogeneity of MSC-EVs constitutes an important barrier to their precise application in clinical translation that may probably lead to uncertain therapeutic effects. To give hints for future clinical translation, five MSCs are employed, whose derived EVs are most intensively utilized, namely bone marrow mesenchymal stem/stromal cells (BMMSCs), umbilical cord stem/stromal cells (UCSCs), adipose-derived stem/stromal cells (ASCs), dermal stem/stromal cells (DSCs) and dental pulp stem/stromal cells (DPSCs) and the heterogeneity landscape of the corresponding MSC-EVs are documented. Overall, the basic parameters, stability, and biosafety of different MSC-EVs are indiscriminate. Strikingly, UCSC-EVs exhibit distinguishing productivity. UCSC-EVs as well as DPSC-EVs present better drug loading/delivery capacity. In addition, the heterogeneity of different MSC-EVs in cargo diversity, cellular affinity, organ biodistribution, and therapeutic effects may cue the rational selection in different disease treatments. Through a combined assessment, a rational strategy is combined for selecting MSC-EVs in future clinics. Offering a panoramic view of MSC-EVs harvested from different tissues, the current study may provide guidelines for the precise selection of MSC-EVs in next-generation therapeutics.
Collapse
Affiliation(s)
- Ye Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Yin‐Hsueh Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Bing‐Yun Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Qing Nie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Li‐Jun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Xu Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Lian‐Zhi Wu
- Department of ObstetricsRenmin Hospital of Wuhan UniversityWuhan430060P. R. China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072P. R. China
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430072P. R. China
| |
Collapse
|