1
|
Alparslan C, Bayraktar Ş. Advances in Digital Light Processing (DLP) Bioprinting: A Review of Biomaterials and Its Applications, Innovations, Challenges, and Future Perspectives. Polymers (Basel) 2025; 17:1287. [PMID: 40363070 PMCID: PMC12074245 DOI: 10.3390/polym17091287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Digital light processing (DLP) technology stands out as a groundbreaking method in the field of biomedical engineering that enables the production of highly precise structures using photopolymerizable materials. Smart materials such as shape memory polymers, hydrogels, and nanocomposites are used as ideal materials for personalized medicine applications thanks to their properties such as superior mechanical strength, biocompatibility, and sensitivity to environmental stimuli in DLP technology. The integration of these materials with DLP enables the production of functional and complex structures, especially in areas such as bone and soft tissue engineering, drug delivery, and biosensor production. However, limited material diversity, scalability problems in production processes, and technical difficulties in optimizing bioprinting parameters are among the main obstacles in this field. This study systematically examines the role of smart biomaterials in DLP-based bioprinting processes. It addresses the innovative applications of these materials in tissue engineering and regenerative medicine. It also comprehensively evaluates its contributions to biomedical applications and discusses future research areas to overcome current limitations.
Collapse
Affiliation(s)
| | - Şenol Bayraktar
- Faculty of Engineering and Architecture, Mechanical Engineering, Recep Tayyip Erdoğan University, Rize 53100, Türkiye;
| |
Collapse
|
2
|
Jeon Y, Kim M, Song KH. Development of Hydrogels Fabricated via Stereolithography for Bioengineering Applications. Polymers (Basel) 2025; 17:765. [PMID: 40292646 PMCID: PMC11945500 DOI: 10.3390/polym17060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The architectures of hydrogels fabricated with stereolithography (SLA) 3D printing systems have played various roles in bioengineering applications. Typically, the SLA systems successively illuminated light to a layer of photo-crosslinkable hydrogel precursors for the fabrication of hydrogels. These SLA systems can be classified into point-scanning types and digital micromirror device (DMD) types. The point-scanning types form layers of hydrogels by scanning the precursors with a focused light, while DMD types illuminate 2D light patterns to the precursors to form each hydrogel layer at once. Overall, SLA systems were cost-effective and allowed the fabrication of hydrogels with good shape fidelity and uniform mechanical properties. As a result, hydrogel constructs fabricated with the SLA 3D printing systems were used to regenerate tissues and develop lab-on-a-chip devices and native tissue-like models.
Collapse
Affiliation(s)
- Youngjin Jeon
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
| | - Kwang Hoon Song
- Department of Nano-Bioengineering, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (Y.J.); (M.K.)
- Research Center of Brain-Machine Interface, Incheon National University, 119, Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
3
|
Shu W, Yang L, Lan W, Yu M, Yuan L, Liu C, Li Z. Efficient and facile biphasic pretreatment for corn stover fractionation with comprehensive utilization of cellulose, xylan and lignin. Int J Biol Macromol 2025; 289:138919. [PMID: 39701241 DOI: 10.1016/j.ijbiomac.2024.138919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Developing a mild and efficient pretreatment technique to fully utilize lignocellulosic biomass remains a challenge. In this work, a biphasic system with 2-phenoxyethanol (EPH) organic solvent and phosphotungstic acid (PTA) aqueous solution was employed to pretreat corn stover. The prominent synergistic effect between EPH and PTA was revealed to play a key role in the fractionation of corn stover. The excellent separation efficiency with 88.55 % cellulose retention, 85.02 % xylan removal, and 86.68 % lignin removal was achieved under mild pretreatment conditions. The 62.18 % of xylose in aqueous phase, and 83.44 % of lignin from organic phase were recovered after the EPH/PTA biphasic pretreatment. Furthermore, the solid residue was digested with high enzymatic glucose yield of 92.69 %, and the xylose was oxidated with xylonic acid yield of 50.06 %. Meanwhile, the high-performance lignin-based films were manufactured by using the recovered lignin. This study presented a promising way for high-value utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Weiwei Shu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Lu Yang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Manman Yu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zengyong Li
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|