1
|
Liu C, Yu B, Zhang Z, Su L, Wang R, Jin Y, Guo W, Li R, Zeng Z, Mei P, Chang J, Xia L, Yang C, Fang B. LIPUS activated piezoelectric pPLLA/SrSiO 3 composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca 2+ signaling pathway. Biomaterials 2025; 317:123084. [PMID: 39754966 DOI: 10.1016/j.biomaterials.2025.123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO3). This innovative scaffold continually releases bioactive Sr2+ and SiO32- ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method. The scaffold's unique dual action, emanating both chemical and electrical signals, activates the purinergic receptor P2X 1 (P2RX1) calcium ion channel, promoting an influx of intracellular calcium ions. This process results in a synergistic enhancement of both chondrogenic activities of rat chondrocytes (rCCs) and osteogenic activities of rat bone marrow mesenchymal stem cells (rBMSCs). Furthermore, the scaffold's effectiveness in integrating articular cartilage and subchondral bone repair is confirmed in a rat model of joint osteochondral injury. This study thereby offers a groundbreaking approach for treating severe osteoarticular cartilage defects.
Collapse
Affiliation(s)
- Chengxiao Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China; Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bin Yu
- State Key Lab for Modification of Chemical Fibers & Polymer Materials, College of Material Science & Engineering, Donghua University, Shanghai, 201620, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Lefeng Su
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Ruiqing Wang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Yu Jin
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Weiming Guo
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China.
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China.
| |
Collapse
|
2
|
Sun P, Zhang Z, Gao F, Yang C, Mang G, Fu S, Tian J, Chang J. Silicate-based therapy for inflammatory dilated cardiomyopathy by inhibiting the vicious cycle of immune inflammation via FOXO signaling. SCIENCE ADVANCES 2025; 11:eadr7208. [PMID: 40203118 PMCID: PMC11980853 DOI: 10.1126/sciadv.adr7208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Inflammatory dilated cardiomyopathy (iDCM) represents a severe immune-related condition provoked by the progression of myocarditis. In patients suffering from myocarditis, a vicious cycle of inflammation orchestrated by CD4+ T cells, neutrophils, and fibroblasts is the culprit that drives the deterioration of myocarditis into iDCM. This study designed composite microneedles and ion solutions using calcium silicate bioceramics, which deliver SiO32- directly into myocardial tissue or indirectly via systemic circulation. These interventions modulate the cell microenvironment by regulating CD4+ T/T helper 17 (TH17) cells and their interactions with neutrophils and fibroblasts through the forkhead box O (FOXO) signaling pathway. Specifically, SiO32- inhibits the hyperdifferentiation of CD4+ T cells to TH17 cells by regulating FOXO1 and neutrophils to neutrophil extracellular traps as well as fibroblasts to myofibroblasts by regulating FOXO3, thereby ultimately disrupting the vicious cycle of myocardial inflammation and subsequent fibrotic lesions in iDCM. This discovery indicates that the biomaterial-based strategy may have great potential for the treatment of iDCM.
Collapse
Affiliation(s)
- Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 1500086, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin 150086, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
| | - Fei Gao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 1500086, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin 150086, China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Ge Mang
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
| | - Shuai Fu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 1500086, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin 150086, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin 1500086, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150086, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin 150086, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
| |
Collapse
|
3
|
Wang P, Gao E, Wang T, Feng Y, Xu Y, Su L, Gao W, Ci Z, Younis MR, Chang J, Yang C, Duan L. Copper hydrogen phosphate nanosheets functionalized hydrogel with tissue adhesive, antibacterial, and angiogenic capabilities for tracheal mucosal regeneration. J Nanobiotechnology 2024; 22:652. [PMID: 39443926 PMCID: PMC11515660 DOI: 10.1186/s12951-024-02920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Timely and effective interventions after tracheal mucosal injury are lack in clinical practices, which elevate the risks of airway infection, tracheal cartilage deterioration, and even asphyxiated death. Herein, we proposed a biomaterial-based strategy for the repair of injured tracheal mucosal based on a copper hydrogen phosphate nanosheets (CuHP NSs) functionalized commercial hydrogel (polyethylene glycol disuccinimidyl succinate-human serum albumin, PH). Such CuHP/PH hydrogel achieved favorable injectability, stable gelation, and excellent adhesiveness within the tracheal lumen. Moreover, CuHP NSs within the CuHP/PH hydrogel effectively stimulate the proliferation and migration of endothelial/epithelial cells, enhancing angiogenesis and demonstrating excellent tissue regenerative potential. Additionally, it exhibited significant inhibitory effects on both bacteria and bacterial biofilms. More importantly, when injected injured site of tracheal mucosa under fiberoptic bronchoscopy guidance, our results demonstrated CuHP/PH hydrogel adhered tightly to the tracheal mucosa. The therapeutic effects of the CuHP/PH hydrogel were further confirmed, which significantly improved survival rates, vascular and mucosal regeneration, reduced occurrences of intraluminal infections, tracheal stenosis, and cartilage damage complications. This research presents an initial proposition outlining a strategy employing biomaterials to mitigate tracheal mucosal injury, offering novel perspectives on the treatment of mucosal injuries and other tracheal diseases.
Collapse
Affiliation(s)
- Pengli Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Tao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanping Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Lefeng Su
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Gao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Ci
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
4
|
Cao Y, Fan R, Zhu K, Gao Y. Advances in Functionalized Hydrogels in the Treatment of Myocardial Infarction and Drug-Delivery Strategies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48880-48894. [PMID: 39227344 DOI: 10.1021/acsami.4c09623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease with high morbidity and mortality rates, posing a significant threat to patient's health and quality of life. Following a MI, the damaged myocardial tissue is typically not fully repaired, leading to permanent impairment of myocardial function. While traditional treatments can alleviate symptoms and reduce pain, their ability to repair damaged heart muscle tissue is limited. Functionalized hydrogels, a broad category of materials with diverse functionalities, can enhance the properties of hydrogels to cater to the needs of tissue engineering, drug delivery, medical dressings, and other applications. Recently, functionalized hydrogels have emerged as a promising new therapeutic approach for the treatment of MI. Functionalized hydrogels possess outstanding biocompatibility, customizable mechanical properties, and drug-release capabilities. These properties enable them to offer scaffold support, drug release, and tissue regeneration promotion, making them a promising approach for treating MI. This paper aims to evaluate the advancements and delivery methods of functionalized hydrogels for treating MI, while also discussing their potential and the challenges they may pose for future clinical use.
Collapse
Affiliation(s)
- Yuchen Cao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Rong Fan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Kaiyi Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030032, China
- Key Laboratory of Cellular Physiology, Shanxi Province, Taiyuan 030032, China
| |
Collapse
|
5
|
Huang L, Jiao Y, Xia H, Li H, Yu J, Que Y, Zeng Z, Fan C, Wang C, Yang C, Chang J. Strontium zinc silicate simultaneously alleviates osteoporosis and sarcopenia in tail-suspended rats via Piezo1-mediated Ca 2+ signaling. J Orthop Translat 2024; 48:146-155. [PMID: 39229332 PMCID: PMC11369381 DOI: 10.1016/j.jot.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Background Long-term physical inactivity probably leads to a co-existence of osteoporosis and sarcopenia which result in a high risk of falls, fractures, disability and even mortality. However, universally applicable and feasible approaches are lacking in the concurrent treatment of osteoporosis and sarcopenia. In this study, we evaluated the effect of strontium zinc silicate bioceramic (SZS) extract on osteoporosis and sarcopenia and explored its underlying mechanisms. Methods Hindlimb osteoporosis and sarcopenia were established in a tail-suspended rat model. The bones were conducted μCT scanning, histological examination, and gene expression analysis, and the muscles were conducted histological examination and gene expression analysis. In vitro, the effect of SZS extract on osteoblasts was determined by alizarin red S staining, immunofluorescence and qPCR. Similarly, the effect of SZS extract on myoblasts was determined by immunofluorescence and qPCR.. At last, the role of Piezo1 and the change of intracellular calcium ion (Ca2+) were explored through blockading the Piezo1 by GsMTx4 in MC3T3-E1 and C2C12 cells, respectively. Results We found that SZS extract could concurrently and efficiently prevent bone structure deterioration, muscle atrophy and fibrosis in hind limbs of the tail-suspended rats. The in vivo study also showed that SZS extract could upregulate the mRNA expression of Piezo1, thereby maintaining the homeostasis of bones and muscles. In vitro study demonstrated that SZS extract could promote the proliferation and differentiation of MC3T3-E1 and C2C12 cells by increasing the intracellular Ca2+ in a Piezo1-dependent manner. Conclusion This study demonstrated that SZS extract could increase Piezo1-mediated intracellular Ca2+, and facilitate osteogenic differentiation of osteoblast and myogenic differentiation of myoblasts, contributing to alleviation of osteoporosis and sarcopenia in a tail-suspended rat model. The translational potential of this article The current study might provide a universally applicable and efficient strategy to treat musculoskeletal disorders based on bioactive ceramics. The verification of the role of Piezo1-modulated intracellular Ca2+ during osteogenesis and myogenesis provided a possible therapeutic target against mechanical related diseases.
Collapse
Affiliation(s)
- Lingwei Huang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Hangbin Xia
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huili Li
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jing Yu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yumei Que
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Zhen Zeng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Fan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Chen Wang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
6
|
Zhong Y, Yang Y, Xu Y, Qian B, Huang S, Long Q, Qi Z, He X, Zhang Y, Li L, Hai W, Wang X, Zhao Q, Ye X. Design of a Zn-based nanozyme injectable multifunctional hydrogel with ROS scavenging activity for myocardial infarction therapy. Acta Biomater 2024; 177:62-76. [PMID: 38237713 DOI: 10.1016/j.actbio.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
The existing strategies for myocardial infarction therapy mainly focus on reinstating myocardial blood supply, often disregarding the intrinsic and intricate microenvironment created by elevated levels of reactive oxygen species (ROS) that accompanies myocardial infarction. This microenvironment entails cardiomyocytes apoptosis, substantial vascular cell death, excessive inflammatory infiltration and fibrosis. In such situation, the present study introduces a zinc-based nanozyme injectable multifunctional hydrogel, crafted from ZIF-8, to counteract ROS effects after myocardial infarction. The hydrogel exhibits both superoxide dismutase (SOD)-like and catalase (CAT)-like enzymatic activities, proficiently eliminating surplus ROS in the infarcted region and interrupting ROS-driven inflammatory cascades. Furthermore, the hydrogel's exceptional immunomodulatory ability spurs a notable transformation of macrophages into the M2 phenotype, effectively neutralizing inflammatory factors and indirectly fostering vascularization in the infarcted region. For high ROS and demanding for zinc of the infarcted microenvironment, the gradual release of zinc ions as the hydrogel degrades further enhances the bioactive and catalytic performance of the nanozymes, synergistically promoting cardiac function post myocardial infarction. In conclusion, this system of deploying catalytic nanomaterials within bioactive matrices for ROS-related ailment therapy not only establishes a robust foundation for biomedical material development, but also promises a holistic approach towards addressing myocardial infarction complexities. STATEMENT OF SIGNIFICANCE: Myocardial infarction remains the leading cause of death worldwide. However, the existing strategies for myocardial infarction therapy mainly focus on reinstating myocardial blood supply. These therapies often ignore the intrinsic and intricate microenvironment created by elevated levels of reactive oxygen species (ROS). Hence, we designed an injectable Zn-Based nanozyme hydrogel with ROS scavenging activity for myocardial infarction therapy. ALG-(ZIF-8) can significantly reduce ROS in the infarcted area and alleviate the ensuing pathological process. ALG-(ZIF-8) gradually releases zinc ions to participate in the repair process and improves cardiac function. Overall, this multifunctional hydrogel equipped with ZIF-8 makes full use of the characteristics of clearing ROS and slowly releasing zinc ions, and we are the first to test the therapeutic efficacy of Zinc-MOFs crosslinked-alginate hydrogel for myocardial infarction.
Collapse
Affiliation(s)
- Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yi Yang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yuze Xu
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaojun He
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Lihui Li
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Sun M, Hu N, Gao Y, Lv N, Fu X, Li Y, Zhai S, Zhang R. Platelet Membrane-Encapsulated Nanocomplexes Based on Profundity Scavenging ROS Strategy for Myocardial Infarction Therapy. Adv Healthc Mater 2024; 13:e2303101. [PMID: 38174837 DOI: 10.1002/adhm.202303101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Ischemia-induced myocardial injury has become a serious threat to human health, and its treatment remains a challenge. The occurrence of ischemic events leads to a burst release of reactive oxygen species (ROS), which triggers extensive oxidative damage and leads to dysfunctional autophagy, making it difficult for cells to maintain homeostasis. Antioxidants and modulation of autophagy have thus become promising strategies for the treatment of ischemic myocardial injury. This study proposes an antioxidant-activated autophagy therapeutic regimen based on combining melanin (Mel), an excellent antioxidant with metformin mimetic ploymetformin via electrostatic interactions, to obtain a nanocomplex (Met-Mel). The nanocomplex is finally encapsulated with platelet membranes (PMN) to construct a biomimetic nanoparticle (PMN@Met-Mel) capable of targeting injured myocardium. The prepared PMN@Met-Mel has good Mel loading capacity and optimal biosafety. It exhibits excellent antioxidant activity and autophagy activation, rapidly restoring mitochondrial function. Moreover, RNA sequencing (RNA-seq) analysis reveals that PMN@Met-Mel operates mechanistically by triggering the activation of the autophagy pathway. Subsequent in vivo experiments showcase promising cardioprotective effects of these nanoparticles. These discoveries present a newly devised nanoplatform with promising potential for the effective treatment of myocardial infarction.
Collapse
Affiliation(s)
- Meng Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Hu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yangyang Gao
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Nan Lv
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaohong Fu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Yafeng Li
- The Nephrology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Shaodong Zhai
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
8
|
Xuan Y, Li L, Yin X, He D, Li S, Zhang C, Yin Y, Xu W, Zhang Z. Bredigite-Based Bioactive Nerve Guidance Conduit for Pro-Healing Macrophage Polarization and Peripheral Nerve Regeneration. Adv Healthc Mater 2024; 13:e2302994. [PMID: 37972314 PMCID: PMC11469136 DOI: 10.1002/adhm.202302994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Structural and functional healing of peripheral nerves damaged by trauma or chronic disease remain major clinical challenges, requiring the development of an effective nerve guidance conduit (NGC). The present study investigates a NGC fabrication strategy based on bredigite (BRT, Ca7MgSi4O16) bioceramic for the treatment of peripheral nerve injury. Here, BRT bioceramic shows good biocompatibility and sustainable release of Ca2+, Mg2+, and Si4+ ions. Both BRT extracts and BRT-incorporating electrospun membranes promote the proliferation and myelination potential of RSC96 cells, as well as accelerate vascular formation by human umbilical vein endothelial cells. Notably, BRT facilitates RAW 264.7 cell polarization to the pro-healing phenotype under LPS-induced inflammatory stimulation. More importantly, the macrophages activated by BRT in turn promote RSC96 cell migration and remyelination. In a rat sciatic nerve defect model, improved electrophysiological performance and alleviated gastrocnemius muscle atrophy are observed at 12 weeks post-implantation. Further experiments verify that BRT-loaded NGC facilitates axonal regrowth and revascularization with high M2-like macrophage infiltration. These findings support the beneficial effects of BRT for creating a pro-healing immune microenvironment and orchestrating multicellular processes associated with functional nerve regeneration, indicating the potential of rationally engineered bioceramics as safe, effective, and economical materials for peripheral nerve repair.
Collapse
Affiliation(s)
- Yaowei Xuan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Lin Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Xuelai Yin
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Dongming He
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Siyao Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Chenping Zhang
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Yuan Yin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi International Joint Research Center for Oral DiseasesDepartment of PeriodontologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Wanlin Xu
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| | - Zhen Zhang
- Department of Oral and Maxillofacial‐Head and Neck OncologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyShanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai200011China
| |
Collapse
|
9
|
Feng K, Ruan Y, Zhang X, Wu X, Liu Z, Sun X. Photothermal-Ionic-Pharmacotherapy of Myocardial Infarction with Enhanced Angiogenesis and Antiapoptosis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38031235 DOI: 10.1021/acsami.3c14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Promoting angiogenesis is an effective therapeutic strategy to repair damaged hearts after myocardial infarction (MI). Copper ions and mild heat (41-42 °C) have been shown to promote angiogenesis, but their efficacy in MI is unknown. Here, a multicomponent hydrogel (EDR@PHCuS HG) is developed by encapsulating edaravone (EDR, a free radical scavenger) loaded porous hollow copper sulfide nanoparticles (PHCuS NPs) in a hyaluronic acid hydrogel (HG). Exposed to 808 nm near-infrared (NIR) light irradiation, the EDR@PHCuS HG exhibits controlled copper-ion release and mild photothermal effect to synergistically promote angiogenesis. In addition, released EDR inhibits cardiomyocyte apoptosis to further repair hearts. In the mouse model of MI, treatment with the EDR@PHCuS HG under an 808 nm laser significantly recovers the cardiac function and inhibits ventricular remodeling. This platform elucidates the cardioprotective effects of copper ions and mild heat and will provide a highly efficient treatment for MI.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinmiao Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaojing Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zixuan Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|