1
|
Medina H, Child N. A Review of Developments in Carbon-Based Nanocomposite Electrodes for Noninvasive Electroencephalography. SENSORS (BASEL, SWITZERLAND) 2025; 25:2274. [PMID: 40218785 PMCID: PMC11991328 DOI: 10.3390/s25072274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Wearable biosensors have been of interest for their wide range of uses, varying from recording biological signals to measuring strain of bending joints. Carbon nanoparticles have been utilized in biocompatible polymers to create nanocomposites with highly tunable mechanical and electrical properties. These nanocomposites have been demonstrated to be highly effective as wearable sensors for recording physiological signals such as electroencephalography (EEG), offering advantages in mechanical and electrical properties and signal quality over commercially available sensors while maintaining feasibility and scalability in manufacturing. This review aims to provide a critical summary of the recent literature on the properties, design, fabrication, and performance of carbon-based nanocomposites for EEG electrodes. The goal of this review is to highlight the various design configurations and properties thereof, manufacturing methods, performance measurements, and related challenges associated with these promising noninvasive dry soft electrodes. While this technology offers many advantages over either other noninvasive or their invasive counterparts, there are still various challenges and opportunities for improvements and innovation. For example, the investigation of gradient composite structures, hybrid nanocomposite/composite materials, hierarchical contact surfaces, and the influence of loading and alignment of the dispersal phase in the performance of these electrodes could lead to novel and better designs. Finally, current practices for evaluating the performance of novel EEG electrodes are discussed and challenged, emphasizing the critical need for the development of standardized assessment protocols, which could provide reliability in the field, enable benchmarking, and hence promote innovation.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, University Blvd, Lynchburg, VA 24515, USA;
| | | |
Collapse
|
2
|
Zhuo S, Wu Z, Williams C, Sundaresan C, Ameri SK. In-Ear Electronics with Mechanical Adaptability for Physiological Sensing. Adv Healthc Mater 2025; 14:e2404296. [PMID: 39663718 PMCID: PMC11773109 DOI: 10.1002/adhm.202404296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Significant developments have been made in the field of wearable healthcare by utilizing soft materials for the construction of electronic sensors. However, the lack of adaptability to complex topologies, such as ear canal, results in inadequate sensing performance. Here, we report an in-ear physiological sensor with mechanical adaptability, which softens upon contact with the ear canal's skin, thus reducing the sensor-skin mechanical mismatch and interface impedance. An efficient strategy of mechanical adjustment and switching is exploited to increase the softness of the device, leading to a significant decrease in Young's modulus from 30.5 MPa of thermoplastic polyurethane (TPU) to 0.86 MPa of TPU/Ecoflex foam (TEF).The mechanical adaptability at body temperature endows the in-ear device improved device-canal contact area and interface stability. As a result, the TEF-based in-ear device demonstrates reliable sensing, low motion artifact, and high comfort in electroencephalography (EEG) and core body temperature sensing. High quality EEG signals of alpha, beta, delta, and gamma are measured during different activities. Moreover, the TEF-based in-ear device exhibits high reusability for over 4 months, which makes it suitable for long-term healthcare monitoring.
Collapse
Affiliation(s)
- Shuyun Zhuo
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Zihuan Wu
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Chris Williams
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Chithiravel Sundaresan
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer EngineeringQueen's UniversityKingstonONK7L 3N6Canada
- Centre for Neuroscience StudiesQueen's UniversityKingstonONK7L 3N6Canada
| |
Collapse
|
3
|
Yang S, Jiang X. Nanoscale Strategies for Enhancing the Performance of Adhesive Dry Electrodes for the Skin. ACS NANO 2024; 18:27107-27125. [PMID: 39327802 DOI: 10.1021/acsnano.4c09477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
High-quality electrophysiological monitoring requires electrodes to maintain a compliant and stable skin contact. This necessitates low impedance, good skin compliance, and strong adhesion to ensure continuous and stable contact under dynamic conditions. In this context, adhesive epidermal dry electrodes are advancing rapidly, which is promising for long-term applications in clinical diagnosis, wearable health monitoring, and human-machine interfaces. However, challenges persist, as conventional technologies usually fall short of meeting the high standards required for electrophysiological electrodes. This Perspective discusses four key aspects for high-performance epidermal electrodes from an adhesive perspective: initial adhesion, water resistance, dynamic stability, and removal simplicity. We review recent nanoscale strategies addressing these issues, providing a comprehensive guideline to enhance the application performance of epidermal dry electrodes. Additionally, we explore key nanoscale strategies and their associated functions, future technology roadmaps, and prospects for dry adhesive epidermal electrodes.
Collapse
Affiliation(s)
- Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
4
|
Tessier A, Zhuo S, Kabiri Ameri S. Ultrasoft Long-Lasting Reusable Hydrogel-Based Sensor Patch for Biosignal Recording. BIOSENSORS 2024; 14:405. [PMID: 39194634 DOI: 10.3390/bios14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Here, we report an ultrasoft extra long-lasting, reusable hydrogel-based sensor that enables high-quality electrophysiological recording with low-motion artifacts. The developed sensor can be used and stored in an ambient environment for months before being reused. The developed sensor is made of a self-adhesive electrical-conductivity-enhanced ultrasoft hydrogel mounted in an Ecoflex-based frame. The hydrogel's conductivity was enhanced by incorporating polypyrrole (PPy), resulting in a conductivity of 0.25 S m-1. Young's modulus of the sensor is only 12.9 kPa, and it is stretchable up to 190%. The sensor was successfully used for electrocardiography (ECG) and electromyography (EMG). Our results indicate that using the developed hydrogel-based sensor, the signal-to-noise ratio of recorded electrophysiological signals was improved in comparison to that when medical-grade silver/silver chloride (Ag/AgCl) wet gel electrodes were used (33.55 dB in comparison to 22.16 dB). Due to the ultra-softness, high stretchability, and self-adhesion of the developed sensor, it can conform to the skin and, therefore, shows low susceptibility to motion. In addition, the sensor shows no sign of irritation or allergic reaction, which usually occurs after long-term wearing of medical-grade Ag/AgCl wet gel electrodes on the skin. Further, the sensor is fabricated using a low-cost and scalable fabrication process.
Collapse
Affiliation(s)
- Alexandre Tessier
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Shuyun Zhuo
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Gao B, Jiang J, Zhou S, Li J, Zhou Q, Li X. Toward the Next Generation Human-Machine Interaction: Headworn Wearable Devices. Anal Chem 2024; 96:10477-10487. [PMID: 38888091 DOI: 10.1021/acs.analchem.4c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Wearable devices are lightweight and portable devices worn directly on the body or integrated into the user's clothing or accessories. They are usually connected to the Internet and combined with various software applications to monitor the user's physical conditions. The latest research shows that wearable head devices, particularly those incorporating microfluidic technology, enable the monitoring of bodily fluids and physiological states. Here, we summarize the main forms, functions, and applications of head wearable devices through innovative researches in recent years. The main functions of wearable head devices are sensor monitoring, diagnosis, and even therapeutic interventions. Through this application, real-time monitoring of human physiological conditions and noninvasive treatment can be realized. Furthermore, microfluidics can realize real-time monitoring of body fluids and skin interstitial fluid, which is highly significant in medical diagnosis and has broad medical application prospects. However, despite the progress made, significant challenges persist in the integration of microfluidics into wearable devices at the current technological level. Herein, we focus on summarizing the cutting-edge applications of microfluidic contact lenses and offer insights into the burgeoning intersection between microfluidics and head-worn wearables, providing a glimpse into their future prospects.
Collapse
Affiliation(s)
- Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shu Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Zhuo S, Zhang A, Tessier A, Williams C, Kabiri Ameri S. Solvent-Free and Cost-Efficient Fabrication of a High-Performance Nanocomposite Sensor for Recording of Electrophysiological Signals. BIOSENSORS 2024; 14:188. [PMID: 38667181 PMCID: PMC11048393 DOI: 10.3390/bios14040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Carbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording. By mechanical compression and thermal treatment of Ag/CNT, a connected conductive network of the fillers was formed, after which the PDMS was added as a polymer matrix. The CNTs make a continuous network for electrons transport, endowing the nanocomposite with high electrical conductivity, mechanical strength, and durability. This process is solvent-free and does not require a high temperature or complex mixing procedure. The sensor shows high flexibility and good conductivity. High-quality electroencephalography (EEG) and electrooculography (EOG) were performed using fabricated dry sensors. Our results show that the Ag/CNT/PDMS sensor has comparable skin-sensor interface impedance with commercial Ag/AgCl-coated dry electrodes, better performance for noninvasive electrophysiological signal recording, and a higher signal-to-noise ratio (SNR) even after 8 months of storage. The SNR of electrophysiological signal recording was measured to be 26.83 dB for our developed sensors versus 25.23 dB for commercial Ag/AgCl-coated dry electrodes. Our process of compress-heating the functional fillers provides a universal approach to fabricate various types of nanocomposites with different nanofillers and desired electrical and mechanical properties.
Collapse
Affiliation(s)
- Shuyun Zhuo
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Anan Zhang
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Alexandre Tessier
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Chris Williams
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shideh Kabiri Ameri
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
7
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
8
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|