1
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
2
|
Fu G, Zhao Y, Mao C, Liu Y. Enhancing nano-immunotherapy of cancer through cGAS-STING pathway modulation. Biomater Sci 2025. [PMID: 40111213 DOI: 10.1039/d4bm01532k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a critical role in cancer immunotherapy due to the secretion of multiple pro-inflammatory cytokines and chemokines. Numerous cGAS-STING agonists have been developed for preclinical and clinical trials in tumor immunity. However, several obstacles, such as agonist molecules requiring multiple doses, rapid degradation and poor targeting, weaken STING activation at the tumor site. The advancement of nanotechnology provides an optimized platform for the clinical application of STING agonists. In this review, we summarize events of cGAS-STING pathway activation, the dilemma of delivering STING agonists, and recent advances in the nano-delivery of cGAS-STING agonist formulations for enhancing tumor immunity. Furthermore, we address the future challenges associated with STING-based therapies and offer insights to guide subsequent clinical applications.
Collapse
Affiliation(s)
- Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Yanan Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, P. R. China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
3
|
Baharom F, Hermans D, Delamarre L, Seder RA. Vax-Innate: improving therapeutic cancer vaccines by modulating T cells and the tumour microenvironment. Nat Rev Immunol 2025; 25:195-211. [PMID: 39433884 DOI: 10.1038/s41577-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
T cells have a critical role in mediating antitumour immunity. The success of immune checkpoint inhibitors (ICIs) for cancer treatment highlights how enhancing endogenous T cell responses can mediate tumour regression. However, mortality remains high for many cancers, especially in the metastatic setting. Based on advances in the genetic characterization of tumours and identification of tumour-specific antigens, individualized therapeutic cancer vaccines targeting mutated tumour antigens (neoantigens) are being developed to generate tumour-specific T cells for improved therapeutic responses. Early clinical trials using individualized neoantigen vaccines for patients with advanced disease had limited clinical efficacy despite demonstrated induction of T cell responses. Therefore, enhancing T cell activity by improving the magnitude, quality and breadth of T cell responses following vaccination is one current goal for improving outcome against metastatic tumours. Another major consideration is how T cells can be further optimized to function within the tumour microenvironment (TME). In this Perspective, we focus on neoantigen vaccines and propose a new approach, termed Vax-Innate, in which vaccination through intravenous delivery or in combination with tumour-targeting immune modulators may improve antitumour efficacy by simultaneously increasing the magnitude, quality and breadth of T cells while transforming the TME into a largely immunostimulatory environment for T cells.
Collapse
Affiliation(s)
| | - Dalton Hermans
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Robert A Seder
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Wu S, Xiang R, Zhong Y, Zhao S, Zhang Z, Kou Z, Zhang S, Zhao Y, Zu C, Zhao G, Xiao Y, Ren S, Gao X, Wang B. TLR7/8/9 agonists and low-dose cisplatin synergistically promotes tertiary lymphatic structure formation and antitumor immunity. NPJ Vaccines 2025; 10:13. [PMID: 39827246 PMCID: PMC11742977 DOI: 10.1038/s41541-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
In situ vaccination (ISV) triggers antitumor immune responses using the patient's own cancer antigens, yet limited neoantigen release hampers its efficacy. Our novel combination therapy involves low-dose local cisplatin followed by ISV with a TLR7/8/9 agonist formulation (CR108), in which CR108 boosts and sustains the antitumor responses induced by the cisplatin-released neoantigens. In mouse models, the cisplatin+CR108 combination significantly outperformed cisplatin or CR108 alone in abrogating established 4T1 and B16 tumors. The synergistic antitumor effects of cisplatin and CR108 were accompanied by markedly increased tumor tertiary lymphatic structures (TLS) formation, higher levels of type I and III interferons and TNF-α in serum, augmented T and B lymphocyte infiltration, antigen-presenting cell activation, as well as reduced functionally of exhausted T cells. Single-cell sequencing analysis uncovered a potential pathway for TLS to serve as a reservoir for functional antitumor effector T cells. Furthermore, cisplatin+CR108 combo therapy, but neither cisplatin nor CR108 alone, effectively inhibited the growth of treated 4T-1 tumor in an effector T cell-dependent manner. Notably, the combo therapy also suppressed the growth of distant untreated 4T-1 tumors, demonstrating systemic antitumor effects. Moreover, combo-therapy led to full regression of 4T-1 tumors in a large percentage of mice, who became strongly resistant to secondary tumor challenge, a clear indication of antitumor immunological memory. The cisplatin+CR108 combo therapy holds promise in converting "cold" tumors into "hot" ones and eliciting robust antitumor immune responses in vivo.
Collapse
Affiliation(s)
- Shuting Wu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Rong Xiang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yiwei Zhong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Shushu Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- The Wistar Institute, Philadelphia, 3601 Spruce Street, PA, 19104, USA
| | - Zhiyu Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Zhihua Kou
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Shijie Zhang
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Yi Zhao
- Precision Scientific (Beijing) LTD., Beijing, 100085, China
| | - Cheng Zu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Gan Zhao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Yanling Xiao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Sulin Ren
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China
| | - Xiaoming Gao
- Advaccine Biopharmaceutics (Suzhou) Co. LTD, Suzhou, 215000, China.
| | - Bin Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Pal S, Chaudhari R, Baurceanu I, Hill BJ, Nagy BA, Wolf MT. Extracellular Matrix Scaffold-Assisted Tumor Vaccines Induce Tumor Regression and Long-Term Immune Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309843. [PMID: 38302823 PMCID: PMC11009079 DOI: 10.1002/adma.202309843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Injectable scaffold delivery is a strategy to enhance the efficacy of cancer vaccine immunotherapy. The choice of scaffold biomaterial is crucial, impacting both vaccine release kinetics and immune stimulation via the host response. Extracellular matrix (ECM) scaffolds prepared from decellularized tissues facilitate a pro-healing inflammatory response that promotes local cancer immune surveillance. Here, an ECM scaffold-assisted therapeutic cancer vaccine that maintains an immune microenvironment consistent with tissue reconstruction is engineered. Several immune-stimulating adjuvants are screened to develop a cancer vaccine formulated with decellularized small intestinal submucosa (SIS) ECM scaffold co-delivery. It is found that the STING pathway agonist cyclic di-AMP most effectively induces cytotoxic immunity in an ECM scaffold vaccine, without compromising key interleukin 4 (IL-4) mediated immune pathways associated with healing. ECM scaffold delivery enhances therapeutic vaccine efficacy, curing 50-75% of established E.G-7OVA lymphoma tumors in mice, while none are cured with soluble vaccine. SIS-ECM scaffold-assisted vaccination prolonged antigen exposure is dependent on CD8+ cytotoxic T cells and generates long-term antigen-specific immune memory for at least 10 months post-vaccination. This study shows that an ECM scaffold is a promising delivery vehicle to enhance cancer vaccine efficacy while being orthogonal to characteristics of pro-healing immune hallmarks.
Collapse
Affiliation(s)
- Sanjay Pal
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Rohan Chaudhari
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
- OHSU School of Medicine, Oregon Health & Science
University, Portland, OR 97239
| | - Iris Baurceanu
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Brenna J. Hill
- AIDS and Cancer Virus Program, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| | - Bethany A. Nagy
- Laboratory Animal Sciences Program (LASP), National Cancer
Institute, Frederick, MD 21702
| | - Matthew T. Wolf
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| |
Collapse
|