1
|
Lu F, Ouyang C, Yu J, González-García J, Wang J, Ou G, Teng H, Yin C, Zhou CQ. Smart Type I Squaraine Nano-Photosensitizer Combined with MnO 2 for Tumor-Targeted and Ferroptosis-Induced Immunogenic Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40366629 DOI: 10.1021/acsami.5c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Most photosensitizers face enormous challenges in tumor hypoxia, the redox microenvironment, and low immune efficacies for reactive oxygen species (ROS). Herein, dye SQ-580 was constructed by coupling the electron-donating indole and thiophenazine-thiophene with the electron-withdrawing dicyanovinyl squaraine. It exhibited a high generation of •OH and O2•- by decreasing ΔES1T2 and acted as an excellent type I photosensitizer for conquering tumor hypoxia. The nanoplatform involving SQ-580, MnO2, and a targeting peptide CREKA was constructed and targeted breast tumor. In the tumor microenvironment, MnO2 reacted with high-expressed GSH and produced Mn2+, which catalyzed H2O2 to decompose into •OH and induced chemodynamic therapy (CDT). The reduction of GSH inhibited the consumption of SQ-580 and maintained its high photodynamic therapy (PDT) efficacy. GSH depletion and ROS resulted in cell ferroptosis. Under the synergy of ferroptosis and ROS, Mn2+ amplified immunogenic cell death (ICD). In the mouse models, SQ-580@MnO2 NPs showed NIRF/MR imaging-guided tumor targeting, effectively inhibited the growth of the primary and distant tumors, and amplified PDT and immune efficacies in the synergy of PDT, CDT, ferroptosis, and ICD. This study provides an effective strategy to design excellent type I photosensitizers and amplify the PDT and ICD efficacies utilizing valence metals and the tumor microenvironment.
Collapse
Affiliation(s)
- Fei Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengren Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jielin Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jorge González-García
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, Paterna 46980, Spain
| | - Junping Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Guanrong Ou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haixin Teng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Chun-Qiong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Tran NA, Moonshi SS, Lam AK, Lu CT, Vu CQ, Arai S, Ta HT. Nanomaterials in cancer starvation therapy: pioneering advances, therapeutic potential, and clinical challenges. Cancer Metastasis Rev 2025; 44:51. [PMID: 40347350 PMCID: PMC12065774 DOI: 10.1007/s10555-025-10267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Gaining significant attention in recent years, starvation therapy based on the blocking nutrients supply to cancer cells via blood occlusion and metabolic interventions is a promisingly novel approach in cancer treatment. However, there are many crucial obstacles to overcome to achieve effective treatment, for example, poor-targeting delivery, cellular hypoxia, adverse effects, and ineffective monotherapy. The starvation-based multitherapy based on multifunctional nanomaterials can narrow these gaps and pave a promising way for future clinical translation. This review focuses on the progression in nanomaterials-mediated muti-therapeutic modalities based on starvation therapy in recent years and therapeutic limitations that prevent their clinical applications. Moreover, unlike previous reviews that focused on a single aspect of the field, this comprehensive review presents a broader perspective on starvation therapy by summarising advancements across its various therapeutic strategies.
Collapse
Affiliation(s)
- Nam Anh Tran
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cu Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4215, Australia
- Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
3
|
Song K, Ming J, Tao B, Zhao F, Huang S, Wu W, Jiang C, Li X. Emerging glucose oxidase-delivering nanomedicines for enhanced tumor therapy. J Control Release 2025; 381:113580. [PMID: 40024341 DOI: 10.1016/j.jconrel.2025.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Abnormalities in glucose metabolism have been shown to characterize malignant tumors. Glucose depletion by glucose oxidase (GOD) has shown great potential in tumor therapy by causing tumor starvation. Since 2017, nanomedicines have been designed and utilized to deliver GOD for more precise and effective glucose modulation, which can overcome intrinsic limitations of different cancer therapeutic modalities by remodeling the tumor microenvironment to enhance antitumor therapy. To date, the topic of GOD-delivering nanomedicines for enhancing tumor therapy has not been comprehensively summarized. Herein, this review aims to provide an overview and discuss in detail recent advances in GOD delivery and directly involved starvation therapy strategies, GOD-sensitized various tumor therapy strategies, and GOD-mediated multimodal antitumor strategies. Finally, the challenges and outlooks for the future progress of the emerging tumor therapeutic nanomedicines are discussed. This review provides intuitive and specific insights to a broad audience in the fields of nanomedicines, biomaterials, and cancer therapy.
Collapse
Affiliation(s)
- Kaiyue Song
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Feng Zhao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Wencheng Wu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Cong Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| | - Xianglong Li
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
4
|
Liu Y, Liu Y, Li X, Li S, Zhang X, Si L, Jiang S, Hu J, Chen J. Versatile Nanomaterials That Interfere with Ferroptosis in the Tumor Microenvironment. Int J Nanomedicine 2025; 20:2461-2473. [PMID: 40027870 PMCID: PMC11871933 DOI: 10.2147/ijn.s508767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by a depletion of glutathione. Although generally less harmful to normal cells, in tumor cells, the high demand for iron ions provides conditions conducive to ferroptosis. In this review, we provide an overview of recent progress in research on the regulation of ferroptosis in tumor cells, summarizing and assessing the current state, trends, and applications of nanomaterials in the regulation of ferroptosis in tumor cells. Given the advantages of nanomaterials in terms of targeting, safety, improved drug efficacy, and reduced side effects, these materials are considered to have potential therapeutic value in modulating ferroptosis in tumor cells via different mechanisms. In this respect, we describe methods for modifying the regulation of iron ions and interfering with glutathione activity and lipid peroxidation. The development of nanomaterials that can be applied to induce or inhibit ferroptosis is anticipated to provide new therapeutic options for the treatment of a diverse range of diseases.
Collapse
Affiliation(s)
- Yurong Liu
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Yunheng Liu
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Xinting Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Song Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Xiaokang Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Longqing Si
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Shaojing Jiang
- Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Jinghui Hu
- Yantai Engineering Research Center for Digital Technology of Stomatology, Characteristic Laboratories of Colleges and Universities in Shandong Province for Digital Stomatology, Institute of Stomatology, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| | - Jing Chen
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, People’s Republic of China
| |
Collapse
|
5
|
Mao L, Ma Y, Wen X, Luo Z, Zhu H, Kong J, Liu S, Fan X, Wang J, He C, Wu YL. Iron-glucose oxidase nanogel assembly for amplified starvation-ferroptosis anti-tumor therapy. Int J Biol Macromol 2025; 289:138804. [PMID: 39689793 DOI: 10.1016/j.ijbiomac.2024.138804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Developing advanced and effective enzyme-drug systems for cancer treatment is of significant interest. Herein, a novel approach is reported to create a highly active and robust enzyme-drug system. Glucose oxidase nanogels (nGOx) are first synthesized by polymerization on the surface of GOx using vinylimidazole as comonomers. Fe3+ are utilized to induce self-assembly of nGOx through the imidazole-metal coordination interaction to form GOx nanogel clusters (Fe@nGOx), enhancing the permeability and retention of nGOx into tumor cells by EPR effect. nGOx can deplete glucose in the presence of oxygen and generate H2O2, which is converted to highly cytotoxic hydroxyl radical (·OH) by Fe3+ and GSH, and the proximity between Fe3+ and GOx act in tandem for enhanced tumor therapy. The FeIII/FeII redox cycle reacts with GSH and H2O2, enabling continuous generation of ·OH within tumor cells, thus facilitating the anticancer effect. Moreover, the generation of H2O2 and ·OH can further promote the repolarization of tumor-associated macrophages from an M2 phenotype towards an M1 phenotype polarization, thus enhancing immune response. The cascade reaction between GOx and Fe3+/Fe2+ endows Fe@nGOx with excellent anti-tumor efficacy in mice models, highlighting its potential as a promising anticancer drug for clinical applications. This work establishes a new platform for utilizing enzyme/protein and metal ion complexes in versatile applications, advancing the field of enzyme-based cancer therapies.
Collapse
Affiliation(s)
- Liuzhou Mao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, PR China
| | - Yedong Ma
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| | - Xiaoqing Wen
- Drug clinical trial institution, The first affiliated hospital of Xiamen university, Xiamen, Fujian, PR China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, PR China
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A∗STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Republic of Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A∗STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Republic of Singapore
| | - Siqi Liu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore
| | - Xiaotong Fan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No. 12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, PR China.
| | - Chaobin He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A∗STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Republic of Singapore.
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
6
|
Zhang L, Chen X, Zhou B, Meng W, Zeng H, Chen Y, Huang G, Zhang Y, Wang H, Chen M, Chen J. Cocktail strategy-based nanomedicine: A synergistic cascade of starvation, NIR-II photothermal, and gas therapy for enhanced tumor immunotherapy. Acta Biomater 2025; 193:316-333. [PMID: 39701339 DOI: 10.1016/j.actbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Immunotherapy has emerged as a highly promising strategy in the realm of cancer treatment, wherein immunogenic cell death (ICD) is considered a potential trigger for anti-tumor immunity by inducing adaptive immunity to dying cell antigens. This process is often accompanied by the exposure, active secretion, or passive release of a large number of damage-associated molecular patterns (DAMPs), which activate dendritic cells (DCs) and enhance their antigen-presenting capacity. Subsequently, it promotes the recruitment and activation of cytotoxic T lymphocytes, ultimately leading to tumor growth inhibition. In addition, polarizing the M2 phenotype of tumor-associated macrophages (TAMs) to the M1 phenotype is another way to activate anti-tumor immunity, which can further enhance the effect of anti-tumor immunotherapy. In this study, we engineered a composite nanoparticle of UiO-66-NH2@Gold nanoshells@GOx-P-Arg (denoted as UGsGP). The gold nano shells in UGsGP exhibit a broad Near-Infrared-II (NIR-II) absorption to give a high photothermal conversion efficiency and achieve photothermal therapy (PTT). The GOx in UGsGP involves the breakdown of glucose, which results in a decrease in ATP levels and an inhibition of HSP90 and HSP70 production, ultimately enhancing the heat sensitivity of the tumor for PTT. In addition, GOx-mediated starvation therapy by glucose exhaustion produces a substantial amount of hydrogen peroxide (H2O2), which can then react with P-Arg to produce intratumoral NO Thus, the synergistic effect of PTT resensitization, the photothermally-enhanced GOx-mediated starvation, and NO-based gas therapy promote the induction of ICD and the polarization of TAMs. The combination therapy exhibits significant antitumor effects both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: (1) Gold nanoshells on the surface of UiO-66-NH2 display a broad absorption spectrum ranging from 900 to 1700 nm, combined with a high photothermal conversion efficiency of 74.0 %, demonstrating their remarkable ability to harness and convert light energy into heat for effective tumor ablation. (2) Under laser irradiation, GOx within the UGsGPs effectively consumes glucose, increasing intratumoral H2O2 levels, which then reacts with P-Arg to produce NO within the tumor. Concurrently, the reduction in ATP levels suppresses HSP90 and HSP70 production, thereby enhancing the tumor's sensitivity to photothermal therapy. (3) The synergistic combination of NO gas therapy, starvation therapy, and PTT promotes ICD induction and TAM polarization, thereby improving the therapeutic outcomes for primary and distant tumors.
Collapse
Affiliation(s)
- Lianying Zhang
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Maoming 525200, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haifeng Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongjian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guoqin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingshan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming 525200, China.
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
7
|
Liu X, Wang X, Zang D, Chang Y, Su W, Li G, Zhang J, Yang P, Ma X, Guo Y. pH-responsive oxygen self-sufficient smart nanoplatform for enhanced tumor chemotherapy and photodynamic therapy. J Colloid Interface Sci 2024; 675:1080-1090. [PMID: 39018635 DOI: 10.1016/j.jcis.2024.07.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Premature drug release in chemotherapy and hypoxic conditions in photodynamic therapy (PDT) are perplexing problems in tumor treatment. Thus, it is of great significance to develop the novel therapeutic system with controllable drug release and effective oxygen generation. Herein, a pH-responsive oxygen self-sufficient smart nanoplatform (named DHCCC), integrating hollow mesoporous silica nanoparticles (HMSNs), chitosan (CS), doxorubicin hydrochloride (DOX), chlorin e6 (Ce6) and catalase (CAT), is fabricated to enhance the tumor therapeutic efficacy efficiently through avoiding premature drug release and mitigating hypoxia of tumor microenvironment (TME). The drug DOX can be efficiently loaded into the HMSNs with large cavity and be controllable released because of the pH responsiveness of CS to the weak acidic TME, thereby elevating the chemotherapy efficacy. Meanwhile, CAT can catalyze the decomposition of endogenous hydrogen peroxide in situ generating oxygen to alleviate the hypoxia and enhance the PDT efficiency considerably. In vitro and in vivo results demonstrate that the combined chemo-photodynamic therapy based on the DHCCC nanoplatform exerts more effective antitumor efficacy than chemotherapy or PDT alone. The current study provides a promising inspiration to construct the pH-responsive oxygen self-sufficient smart nanomedicine with potentials to prevent premature drug leakage and overcome hypoxia for efficient tumor therapy.
Collapse
Affiliation(s)
- Xinhe Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dan Zang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Yi Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Guangyang Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Pengfei Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
8
|
You P, Lu F, Ouyang C, Yu J, González-García J, Song J, Ni W, Wang J, Yin C, Zhou CQ. Acidic Lysosome-Anchoring Croconium-Based Nanoplatform for Enhanced Triple-Mode Bioimaging and Fe 3+-Triggered Tumor Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46066-46078. [PMID: 39172044 DOI: 10.1021/acsami.4c09587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Metal-modulated croconium dyes with multimodal-imaging and synergistic therapy in the tumor microenvironment have exhibited great potential in tumor theranostics. However, their unideal structure optimization always weakened the efficacy of near-infrared fluorescence-photoacoustic (NIRF/PA) imaging and photothermal therapy (PTT). Here, we screened croconium dye containing two indole groups with better NIRF/PA imaging and PTT in their family, linked to two morpholine rings, and obtained CR-736, as a lysosome-targeting and Fe3+-modulated agent. The established CR-736-Fe3+ nanoplatform was accurately delivered to the breast tumor site, released CR-736 and Fe3+ in the lower acidic lysosome microenvironment, and activated pH-responsive NIRF/PA/magnetic resonance imaging and PTT. Furthermore, ferroptosis generated hydroxyl free radicals and lipid peroxide by consuming GSH and H2O2 by dint of the accumulation of Fe3+ in tumor cells, which resulted in the inhibition of the expression of heat shock proteins and the concomitant recovery of PTT. The synergistic therapy of PTT, ferroptosis, and chemodynamics was further optimized to the maximal extent in tumor lysosome acidic microenvironment and proved both in vitro and a mouse tumor model. This study opens a new avenue in designing excellent and unique croconium-based nanoplatforms, synergizing multiple tumor theranostic methods, and further optimizing the theranostic effects in tumor microenvironment.
Collapse
Affiliation(s)
- Peidan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Lu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengren Ouyang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jielin Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jorge González-García
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, Paterna 46980, Spain
| | - Jinxin Song
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weitong Ni
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junping Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Chun-Qiong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|