1
|
Zhao D, Zheng S, Zuo X, Xu H, Ding Y, Liang F. Light-Activated Hypoxia-Responsive Nanoparticles for Photodynamic Chemotherapy. ACS OMEGA 2025; 10:22719-22724. [PMID: 40521527 PMCID: PMC12163835 DOI: 10.1021/acsomega.4c11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/24/2025] [Accepted: 05/19/2025] [Indexed: 06/18/2025]
Abstract
Hypoxia is a characteristic of solid tumors, and it significantly impedes cancer treatment. Here, we report light-activated hypoxia-responsive nanoparticles NPs-TPZ consisting of 5,10,5,20-tetrakis-(4-aminophenyl)-porphine (TAPP) modified with four azobenzene groups, cyclodextrin (CD), and 3-aminobenzotriazine-1,4-di-N-oxide tirapazamine (TPZ) by the synergy of π-π stacking, host-guest, and hydrophobic interactions for synergistic photodynamic chemotherapy (PDT-CT). Under near-infrared (NIR) irradiation, the process of PDT depletes oxygen and generates singlet oxygen (1O2). The induced hypoxia exacerbation further accelerates the release and activation of TPZ. As a result, this hypoxia-responsive nanoparticle provides an effective strategy for the ablation of hypoxic solid tumors by synergistic PDT-CT.
Collapse
Affiliation(s)
- Dan Zhao
- Department
of Intensive Care Unit, The Affiliated Wuxi
People’s Hospital of Nanjing Medical University, Wuxi Medical
Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi214023, Jiangsu, China
| | - Shunliang Zheng
- School
of Chemistry and Chemical Engineering, Nantong
University, Nantong226019, P. R. China
| | - Xinyi Zuo
- School
of Chemistry and Chemical Engineering, Nantong
University, Nantong226019, P. R. China
| | - Hongyang Xu
- Department
of Intensive Care Unit, The Affiliated Wuxi
People’s Hospital of Nanjing Medical University, Wuxi Medical
Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi214023, Jiangsu, China
| | - Yue Ding
- School
of Chemistry and Chemical Engineering, Nantong
University, Nantong226019, P. R. China
| | - Fengming Liang
- Department
of Intensive Care Unit, The Affiliated Wuxi
People’s Hospital of Nanjing Medical University, Wuxi Medical
Center, Nanjing Medical University, Wuxi People’s Hospital, Wuxi214023, Jiangsu, China
| |
Collapse
|
2
|
Ding Y, Xie Y, Zheng L, Lin M, Shi Y, Chen T, Du C, Ding J, Ning B. Hypoxia-responsive core-cross-linked supramolecular nanoprodrug based on dendritic drug-drug conjugates for synergetic anticancer therapy. J Nanobiotechnology 2025; 23:316. [PMID: 40287727 PMCID: PMC12032639 DOI: 10.1186/s12951-025-03394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Recently, the strategy of self-assembling dendritic drug-drug conjugates into supramolecular nanoprodrug was widely explored in biomedical applications. Herein, we construct a hypoxia-responsive core-cross-linked supramolecular nanoprodrug (CSN-IR806/CB) based on a dendritic drug-drug conjugate. METHODS We prepared a hypoxia-responsive dendritic drug-drug conjugates IR806-(Azo-CB)4, which was combined with β-cyclodextrin-pendant poly(ethylene glycol)-block-poly(glutamic acid) block copolymer (PEG-PGlu-CD) to construct the core-cross-linked supramolecular nanoprodrug (CSN-IR806/CB) with enhanced physiological stability through the synergy of π-π stacking interaction, host-guest complexation, hydrogen bonds, and hydrophobic interaction. RESULTS The near-infrared (NIR) light irradiation of the CSN-IR806/CB treated tumor cells induced IR806-mediated PDT and PTT, and aggravated hypoxia, which triggered the disassembly of CSN-IR806/CB and the subsequent release of activated CB for synergetic cancer cell killing. CONCLUSIONS The CSN-IR806/CB can realize a synergistic triple therapeutic effect of photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT; i.e., PTT-PDT-CT).
Collapse
Affiliation(s)
- Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China.
| | - Yu Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Liangshun Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Mingguang Lin
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yihai Shi
- Department of Gastroenterology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chang Du
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China.
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China.
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
3
|
Wei S, Cui X, Li T, Ma X, Liu L. Pillar[n]arene-Based Supramolecular Nanodrug Delivery Systems for Cancer Therapy. ChemMedChem 2025; 20:e202400822. [PMID: 39833508 DOI: 10.1002/cmdc.202400822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Macrocyclic supramolecular materials play an important role in encapsulating anticancer drugs to improve the anticancer efficiency and reduce the toxicity to normal tissues through host-guest interactions. Among them, pillar[n]arenes, as an emerging class of supramolecular macrocyclic compounds, have attracted increasing attention in drug delivery and drug-controlled release due to their high biocompatibility, excellent host-guest chemistry, and simplicity of modification. In this review, we summarize the research progress of pillar[n]arene-based supramolecular nanodrug delivery systems (SNDs) in recent years in the field of tumor therapy, including drug-controlled release, imaging diagnostics and therapeutic modalities. Furthermore, the opportunities and major limitations of pillar[n]arene-based SNDs for tumor therapy are discussed.
Collapse
Affiliation(s)
- Shubin Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xinyi Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Tingting Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Xin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
| | - Luzhi Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi, 535011, PR China
| |
Collapse
|
4
|
Li W, Ding Q, Li M, Zhang T, Li C, Qi M, Dong B, Fang J, Wang L, Kim JS. Stimuli-responsive and targeted nanomaterials: Revolutionizing the treatment of bacterial infections. J Control Release 2025; 377:495-523. [PMID: 39580080 DOI: 10.1016/j.jconrel.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Bacterial infections have emerged as a major threat to global public health. The effectiveness of traditional antibiotic treatments is waning due to the increasing prevalence of antimicrobial resistance, leading to an urgent demand for alternative antibacterial technologies. In this context, antibacterial nanomaterials have proven to be powerful tools for treating antibiotic-resistant and recurring infections. Targeting nanomaterials not only enable the precise delivery of bactericidal agents but also ensure controlled release at the infection site, thereby reducing potential systemic side effects. This review collates and categorizes nanomaterial-based responsive and precision-targeted antibacterial strategies into three key types: exogenous stimuli-responsive (including light, ultrasound, magnetism), bacterial microenvironment-responsive (such as pH, enzymes, hypoxia), and targeted antibacterial action (involving electrostatic interaction, covalent bonding, receptor-ligand mechanisms). Furthermore, we discuss recent advances, potential mechanisms, and future prospects in responsive and targeted antimicrobial nanomaterials, aiming to provide a comprehensive overview of the field's development and inspire the formulation of novel, precision-targeted antimicrobial strategies.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihang Ding
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tianshou Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| | - Jiao Fang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Song M, Zeng Q, Ding X. Hypoxia-Responsive Self-Assembling Nanoparticles Based on an Amphiphilic Copolymer for Targeted Delivery of Tissue Plasminogen Activator in Acute Mesenteric Ischemia Therapy. ACS APPLIED NANO MATERIALS 2024; 7:27400-27407. [DOI: 10.1021/acsanm.4c05408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Affiliation(s)
- Mingze Song
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, P. R. China
| | - Qiongrong Zeng
- Department of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning 530028, P. R. China
| | - Xingwei Ding
- Nanchang University Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
6
|
Wang X, Gao Y, Wang T, Wang Z, Hang H, Li S, Feng F. Photoactivated hydride therapy under hypoxia beyond ROS. Chem Sci 2024; 15:20292-20302. [PMID: 39568933 PMCID: PMC11575613 DOI: 10.1039/d4sc06576j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
As compared to oxidative phototherapy, studies on reactive reductive species-participating photodynamic therapy (PDT) are rare. Porphyrins are typical photosensitizers restricted by the oxygen level, but efficacy and selectivity are always incompatible in PDT. Herein, we report that phlorins are ideal hydride (H-) donors and explore a water-soluble triphenylphosphonium-modified zinc-coordinated porphyrin (mitoZnPor) for in situ photogeneration of zinc-cored phlorin (mitoZnPhl). Driven by 1,4-dihydronicotinamide adenine dinucleotide (NADH), the mitoZnPor/mitoZnPhl couple can reduce electron acceptors like iron heme and ubiquinone that play key roles in the mitochondrial electron transport chain (Mito-ETC). Under hypoxia, mitoZnPor showed excellent cancer-selectivity and a highly efficient in vitro PDT effect with IC50 at nanomolar levels and potent tumor growth inhibition in a 4T1 tumor-xenografted mouse model with good biosafety, which underlines the great potential of Mito-ETC targeted non-classical PDT via a H--transfer mechanism beyond reactive oxygen species (ROS) in precision cancer phototherapy using NADH as a biomarker and original electron donor.
Collapse
Affiliation(s)
- Xia Wang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
| | - Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhaobin Wang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - He Hang
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
| | - Fude Feng
- MOE Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
7
|
Zhao Y, Huang Q, Liu Y. Recent Advances of Light/Hypoxia-Responsive Azobenzene in Nanomedicine Design. Chembiochem 2024:e202400635. [PMID: 39252178 DOI: 10.1002/cbic.202400635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Azobenzene (Azo) and its derivatives are versatile stimuli-responsive molecules. Their reversible photoisomerization and susceptibility to reduction-mediated cleavage make them valuable for various biomedical applications. Upon exposure to the UV light, Azo units undergo a thermodynamically stable trans-to-cis transition, which can be reversed by heating in the dark or irradiation with visible light. Additionally, the N=N bonds in azobenzenes can be cleaved under hypoxic conditions by azoreductase, making azobenzenes useful as hypoxia-responsive linkers. The integration of azobenzenes into nanomedicines holds promise for enhancing therapeutic efficacy, particularly in tumor targeting and controllable drug release. In this Concept paper, recent advances in the design and applications of azobenzene-based nanomedicines are updated, and future development opportunities are also summarized.
Collapse
Affiliation(s)
- Yu Zhao
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Qingqing Huang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| |
Collapse
|
8
|
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomedicine 2024; 19:7547-7566. [PMID: 39071505 PMCID: PMC11283832 DOI: 10.2147/ijn.s471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.
Collapse
Affiliation(s)
- Weiran Ma
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Xiaoying Wang
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
9
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhao D, Zhang Y, Yan Z, Ding Y, Liang F. Hypoxia-Responsive Polymeric Nanoprodrugs for Combo Photodynamic and Chemotherapy. ACS OMEGA 2024; 9:1821-1826. [PMID: 38222587 PMCID: PMC10785608 DOI: 10.1021/acsomega.3c08504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Hypoxia in most solid tumors is a major challenge for photodynamic therapy (PDT), and the combination of hypoxia-activated chemotherapy and PDT is a promising approach for enhanced anticancer activity. Herein, we designed hypoxia-responsive polymeric nanoprodrug PNPs to co-deliver photosensitizer 5,10,5,20-tetrakis(4-aminophenyl)-porphine (TAPP) and chlorambucil (CB) to improve the overall therapeutic efficacy. Upon laser irradiation, the central TAPP converted oxygen to produce single oxygen (1O2) for PDT and induced PDT-reduced hypoxia environment, which accelerated the release of activated CB for synergetic cancer cell killing. Consequently, these hypoxia-responsive polymeric nanoprodrugs with a considerable drug-loading content and synergistic therapeutic effect of PDT-CT had great potential for tumor therapy.
Collapse
Affiliation(s)
- Dan Zhao
- Department
of Intensive Care Unit, The Affiliated Wuxi
People’s Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Yixin Zhang
- School
of Chemistry and Chemical Engineering, Nantong
University, Nantong 226019, China
| | - Ziming Yan
- School
of Chemistry and Chemical Engineering, Nantong
University, Nantong 226019, China
| | - Yue Ding
- School
of Chemistry and Chemical Engineering, Nantong
University, Nantong 226019, China
| | - Fengming Liang
- Department
of Intensive Care Unit, The Affiliated Wuxi
People’s Hospital of Nanjing Medical University, Wuxi 214023, Jiangsu, China
| |
Collapse
|