1
|
Garcia-Sureda L, Jacques C, Pons DG, Sastre-Serra J, Oliver J, Floris I. Active Substances from the Micro-Immunotherapy Medicine 2LMIREG Display Antioxidative Properties In Vitro in Two Colorectal Cancer Cell Lines. Life (Basel) 2025; 15:743. [PMID: 40430171 PMCID: PMC12112867 DOI: 10.3390/life15050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Mitochondria play a crucial role in oxidative stress control and reactive oxygen species (ROS) generation, impacting many cellular processes. Dysregulated mitochondria are linked to diseases such as colorectal cancer (CRC), known for its aggressiveness. Since ROS plays a role in tumor growth and metastasis, there is considerable interest in developing therapies that target these reactives. This study investigates the effects of some active substances from the micro-immunotherapy (MI) medicine 2LMIREG® on mitochondrial metabolism parameters in two CRC-derived cell lines. HT-29 and the metastasis-derived SW620 cell lines, which heavily rely on ROS for proliferation, were used to evaluate the effects of the tested active substances. Cellular viability and various mitochondrial metabolism parameters were measured: ROS production, mitochondrial mass index, and mitochondrial DNA levels. In both cell lines, the tested MI formulation reduced cellular viability as well as ROS production compared to the vehicle used as a control. The treatment also appeared to increase the mitochondrial mass index without affecting mitochondrial DNA levels in the two CRC models. Altogether, these preliminary results report for the first time the mitochondria-related effects of some actives from 2LMIREG® in two CRC cell models and open perspectives for further in-depth metabolism-based studies.
Collapse
Affiliation(s)
| | - Camille Jacques
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Daniel G. Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; (D.G.P.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, 07120 Palma de Mallorca, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Ilaria Floris
- Preclinical Research Department, Labo’life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
2
|
Li J, Wu H, He X, Sathishkumar G, Mo F, Zhang K, Kharaziha M, Yu Y, Kang ET, Xu L. Silk fibroin aerogels with AIE-featured berberine and MXene for rapid hemostasis and efficient wound healing. Int J Biol Macromol 2024; 283:137629. [PMID: 39547631 DOI: 10.1016/j.ijbiomac.2024.137629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Rapid hemostasis and wound healing are crucial in emergency trauma situations for saving patients' lives. Traditional hemostatic materials often have drawbacks such as slow hemostasis and susceptibility to post-hemostasis bacterial infections. Therefore, there is an urgent need for advanced wound dressing materials that can provide both rapid hemostasis and antimicrobial properties. In this study, we designed and fabricated a biocompatible hemostatic silk fibroin (SF) aerogel loaded with aggregation-induced emission (AIE)-featured berberine (BBr) and Ti3C2Tx MXene. The resulting SFMB aerogel demonstrates robust mechanical properties and a porous structure that enables quick hemostasis. This aerogel exhibits photodynamic and photothermal responses for antimicrobial activity, releases BBr upon light exposure to enhance bacterial-killing efficiency (99.33 % in vitro and 99.09 % in vivo), and effectively promotes the healing of infected wounds in vivo through combined photothermal/photodynamic antibacterial and anti-inflammatory mechanisms. Furthermore, the aerogel shows high hemocompatibility and cytocompatibility, supporting its potential biomedical applications. Overall, the synthesized SFMB aerogel holds promise for treating bacteria-infected wounds and for use in first aid applications in clinical settings.
Collapse
Affiliation(s)
- Jing Li
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Huajun Wu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaodong He
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gnanasekar Sathishkumar
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Fangjing Mo
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Kai Zhang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Yunlong Yu
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - En-Tang Kang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Liqun Xu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Chen S, Li J, Yin W, Li W, He X, Liang H, Mahmood Z, Huo Y, Zhao Z, Ji S. Phototherapeutic applications of benzophenone-containing NIR-emitting photosensitizers based on different receptor modulations. J Mater Chem B 2024; 12:9533-9544. [PMID: 39314202 DOI: 10.1039/d4tb01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Photodynamic therapy (PDT) plays a crucial role in treating cancer and major infectious diseases. However, the hypoxic microenvironment and deep-seated tumors often compromise the effectiveness of photosensitizers (PSs). PSs primarily generate type-II reactive oxygen species (ROS), which are limited under hypoxic conditions. Pyridinium salts frequently exhibit critical dark toxicity in vitro. Moreover, PDT alone often fails to achieve optimal anti-tumor effects compared to its combined application with photothermal therapy (PTT). To address these issues, we replaced pyridinium with quinolinium, significantly reducing dark toxicity. Additionally, the incorporation of benzophenone enhanced ROS generation, achieving a synergistic effect of type-I and type-II PDT. Fine-tuning the conjugated structure enhanced the donor-acceptor (D-A) intensity, while the stretching vibrations of carbon-carbon double bonds and carbon-nitrogen triple bonds red-shifted the excitation wavelength to the near-infrared (NIR) region and improved the photothermal conversion efficiency (PCE). This strategy provides a molecular design approach for achieving synergy between PDT and PTT. The synthesized four NIR-emitting aggregation-induced emission quinolinium salts exhibited mitochondrial targeting ability and low dark toxicity. Among them, FCN-TPAQ-BP showed excellent ROS generation capability, a PCE of 39.2%, good biocompatibility, and low dark toxicity, making it an ideal candidate for enhancing PDT's antitumor efficacy.
Collapse
Affiliation(s)
- Shuge Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Weidong Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xitong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zarfar Mahmood
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| | - Shaomin Ji
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, P. R. China.
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|