1
|
Zhang X, Zhou C, Hou J, Feng G, Xu Z, Shao Y, Yang C, Xu G. Conjugated Oligoelectrolyte with DNA Affinity for Enhanced Nuclear Imaging and Precise DNA Quantification. BIOSENSORS 2024; 14:105. [PMID: 38392025 PMCID: PMC10887168 DOI: 10.3390/bios14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Precise DNA quantification and nuclear imaging are pivotal for clinical testing, pathological diagnosis, and drug development. The detection and localization of mitochondrial DNA serve as crucial indicators of cellular health. We introduce a novel conjugated oligoelectrolyte (COE) molecule, COE-S3, featuring a planar backbone composed of three benzene rings and terminal side chains. This unique amphiphilic structure endows COE-S3 with exceptional water solubility, a high quantum yield of 0.79, and a significant fluorescence Stokes shift (λex = 366 nm, λem = 476 nm), alongside a specific fluorescence response to DNA. The fluorescence intensity correlates proportionally with DNA concentration. COE-S3 interacts with double-stranded DNA (dsDNA) through an intercalation binding mode, exhibiting a binding constant (K) of 1.32 × 106 M-1. Its amphiphilic nature and strong DNA affinity facilitate its localization within mitochondria in living cells and nuclei in apoptotic cells. Remarkably, within 30 min of COE-S3 staining, cell vitality can be discerned through real-time nuclear fluorescence imaging of apoptotic cells. COE-S3's high DNA selectivity enables quantitative intracellular DNA analysis, providing insights into cell proliferation, differentiation, and growth. Our findings underscore COE-S3, with its strategically designed, shortened planar backbone, as a promising intercalative probe for DNA quantification and nuclear imaging.
Collapse
Affiliation(s)
- Xinmeng Zhang
- Shenzhen Testing Center of Medical Devices, Shenzhen Institute for Drug Control, Shenzhen 518057, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jianxun Hou
- Shenzhen Testing Center of Medical Devices, Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Shao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Zhou Y, Jiang F, Yue X, Wang X, Guo W. Chromium(III)-Catalyzed Desymmetrization of meso-Epoxides via Remote Stereocontrol: Synthesis of Chiral Fluorenes Bearing All-Carbon Quaternary Stereocenters. Org Lett 2024; 26:877-882. [PMID: 38264979 DOI: 10.1021/acs.orglett.3c04144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
An asymmetric desymmetrization of fluorene-derived meso-epoxides is disclosed for the construction of chiral fluorenes bearing an all-carbon quaternary stereocenter at C9. This desymmetrization is catalyzed by a chiral (salen)CrIII complex via remote stereocontrol, producing diverse chiral fluorenes with excellent yields and stereoselectivity. The practicality of this protocol was demonstrated through the transformation of the obtained products to some intriguing enantioenriched polymerizable monomers.
Collapse
Affiliation(s)
- Ying Zhou
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Feng Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xin Yue
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Xi Wang
- School of Materials Engineering, Changzhou Institute of Light Industry Technology, Changzhou, Jiangsu 213164, P. R. China
| | - Wengang Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
3
|
Calatayud DG, Lledos M, Casarsa F, Pascu SI. Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors. ACS BIO & MED CHEM AU 2023; 3:389-417. [PMID: 37876497 PMCID: PMC10591303 DOI: 10.1021/acsbiomedchemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.
Collapse
Affiliation(s)
- David G. Calatayud
- Department
of Inorganic Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, Madrid 28049, Spain
| | - Marina Lledos
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Federico Casarsa
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
4
|
Rupf SM, Moshtaha AL, Malischewski M. A decacationic ferrocene-based metallostar. Chem Sci 2023; 14:1132-1137. [PMID: 36756324 PMCID: PMC9891387 DOI: 10.1039/d2sc06151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Decacationic metallostars have been prepared by the reaction of permercurated ferrocene FeC10(HgO2CCF3)10 with superacidic (C5F5NH)(SbF6) (pK a = -11 estimated in H2O) in multigram scale. In the resulting compound, [FeC10Hg10(NC5F5) n ][SbF6]10, the labile pentafluoropyridine ligands are readily displaced by acetonitrile (MeCN) or tetrahydrothiophene (THT). In the X-ray structure of [FeC10Hg10(THT)10][SbF6]10·24 MeCN no cation-anion contacts between mercury and fluorine were observed. Moreover, cyclic voltammetry measurements of [FeC10(Hg(MeCN))10]10+ and [FeC10(Hg(THT))10]10+ revealed a (quasi)reversible one-electron oxidation of Fe(ii) to Fe(iii). From the reaction of [FeC10(Hg(MeCN))10]10+ with MoF6 as oxidant the ferrocenium cation [FeC10(Hg(MeCN))10]11+ was obtained and characterized via single crystal XRD. These electrophilic metallostars are promising potential building blocks for the synthesis of dendritic architectures containing a robust, tenfold functionalized ferrocene core.
Collapse
|
5
|
Dascalu M, Stoica AC, Bele A, Macsim AM, Bargan A, Varganici CD, Stiubianu GT, Racles C, Shova S, Cazacu M. Octakis(Carboxyalkyl-Thioethyl)Silsesquioxanes and Derived Metal Complexes: Synthesis, Characterization and Catalytic Activity Assessments. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Hou XF, Zhang S, Chen X, Bisoyi HK, Xu T, Liu J, Chen D, Chen XM, Li Q. Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22443-22453. [PMID: 35513893 DOI: 10.1021/acsami.2c02851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Artificial supramolecular light-harvesting systems have expanded various properties on photoluminescence, enabling promising applications on cell imaging, especially for imaging in organelles. Supramolecular light-harvesting systems have been used for imaging in some organelles such as lysosome, Golgi apparatus, and mitochondrion, but developing a supramolecular light-harvesting platform for imaging two organelles synchronously still remains a great challenge. Here, we report a series of lower-rim dodecyl-modified sulfonato-calix[4]arene-mediated supramolecular light-harvesting platforms for efficient light-harvesting from three naphthalene diphenylvinylpyridiniums containing acceptors, Nile Red, and Nile Blue. All of the constructed supramolecular light-harvesting systems possess high light-harvesting efficiency. Furthermore, when the two acceptors are loaded simultaneously in a single light-harvesting donor system for imaging in human prostate cancer cells, organelle imaging in lysosome and Golgi apparatus can be realized at the same time with distinctive wavelength emission. Nile Red receives the light-harvesting energy from the donors, reaching orange emissions (625 nm) in lysosome while Nile Blue shows a near-infrared light-harvesting emission at 675 nm in Golgi apparatus in the same cells. Thus, the light harvesting system provides a pathway for synchronously efficient cell imaging in two distinct organelles with a single type of photoluminescent supramolecular nanoparticles.
Collapse
Affiliation(s)
- Xiao-Fang Hou
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shu Zhang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiao Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| | - Tianchi Xu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiang Liu
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzhong Chen
- Key Lab of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu-Man Chen
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
7
|
Loman-Cortes P, Binte Huq T, Vivero-Escoto JL. Use of Polyhedral Oligomeric Silsesquioxane (POSS) in Drug Delivery, Photodynamic Therapy and Bioimaging. Molecules 2021; 26:molecules26216453. [PMID: 34770861 PMCID: PMC8588151 DOI: 10.3390/molecules26216453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/18/2023] Open
Abstract
Polyhedral oligomeric silsesquioxanes (POSS) have attracted considerable attention in the design of novel organic-inorganic hybrid materials with high performance capabilities. Features such as their well-defined nanoscale structure, chemical tunability, and biocompatibility make POSS an ideal building block to fabricate hybrid materials for biomedical applications. This review highlights recent advances in the application of POSS-based hybrid materials, with particular emphasis on drug delivery, photodynamic therapy and bioimaging. The design and synthesis of POSS-based materials is described, along with the current methods for controlling their chemical functionalization for biomedical applications. We summarize the advantages of using POSS for several drug delivery applications. We also describe the current progress on using POSS-based materials to improve photodynamic therapies. The use of POSS for delivery of contrast agents or as a passivating agent for nanoprobes is also summarized. We envision that POSS-based hybrid materials have great potential for a variety of biomedical applications including drug delivery, photodynamic therapy and bioimaging.
Collapse
Affiliation(s)
- Paula Loman-Cortes
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (P.L.-C.); (T.B.H.)
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Tamanna Binte Huq
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (P.L.-C.); (T.B.H.)
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Juan L. Vivero-Escoto
- Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (P.L.-C.); (T.B.H.)
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- The Center for Biomedical Engineering and Science, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Correspondence: ; Tel.: +1-704-687-5239
| |
Collapse
|
8
|
Song Y, Cai X, Ostermeyer G, Ding S, Du D, Lin Y. Zeptomole Imaging of Cytosolic MicroRNA Cancer Biomarkers with A Light-Controlled Nanoantenna. NANO-MICRO LETTERS 2021; 13:213. [PMID: 34674052 PMCID: PMC8531139 DOI: 10.1007/s40820-021-00732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 05/04/2023]
Abstract
Detecting and quantifying intracellular microRNAs (miRNAs) are a critical step in resolving a cancer diagnostic and resolving the ensemble of gene products that orchestrate the living state of cells. However, the nanoprobe for detecting low abundance miRNAs in cell cytosol is restricted by either the "one-to-one" signal-trigger model or difficulty for cytosol delivery. To address these challenges, we designed a light-harvesting nanoantenna-based nanoprobe, which directs excitation energy to a single molecule to sensitively detect cytosolic miRNA. With light irradiation, the light-harvesting nanoantenna effectively disrupted lysosomal structures by generation of reactive oxygen species, substantially achieved cytosol delivery. The nanoantenna containing > 4000 donor dyes can efficiently transfer excitation energy to one or two acceptors with 99% efficiency, leading to unprecedented signal amplification and biosensing sensitivity. The designed nanoantenna can quantify cytosolic miR-210 at zeptomolar level. The fluorescence lifetime of the donor exhibited good relationship with miR-210 concentration in the range of 0.032 to 2.97 amol/ngRNA. The zeptomole sensitivity of nanoantenna provides accurate bioimaging of miR-210 both in multiple cell lines and in vivo assay, which creates a pathway for the creation of miRNA toolbox for quantitative epigenetics and personalized medicine.
Collapse
Affiliation(s)
- Yang Song
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
- Nanosong Systems LLC, Redmond, WA, 98052, USA
| | - Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Grayson Ostermeyer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Sun Y, Yao Y, Wang B, Li Y, Li S, Sui Y, Qiu B. Study on the Biosensor Based on Biomimetic PDA Vesicles Fluorescence Resonance Energy Transfer for the Determination of Ovarian Cancer Marker miRNA-21. ANAL SCI 2021; 37:1349-1353. [PMID: 33431737 DOI: 10.2116/analsci.20p404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, more and more research is being conducted on microRNAs and their involvement in the regulation of autophagy phagocytosis which is closely related to tumor growth. MicroRNA-21 is a kind of small RNA that can regulate gene expression and plays a significant role in autophagy of tumor cells. But the detection of microRNAs had always been a problem in the field of biological analysis. In this study, we designed a new fluorescent sensor for the detection of miRNA-21. The sensor was based on the successful signal reporting by E36-encapsulated vesicles and the specific interaction between E36 and miRNA-21. In the presence of miRNA, the E36/miRNA-21 complex formed and served as a donor molecule inside the acceptor PDA vesicles to amplify the fluorescence through FRET. Additionally, the sensor was applied to detect miRNA-21 in complex biological samples with satisfactory results.
Collapse
Affiliation(s)
- Yang Sun
- Department of Gynecology, Fujian Cancer Hospital, Affiliated Cancer Hospital of Fujian Medical University
| | - Yusheng Yao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University &Fujian Provincial Hospital
| | - Bingrong Wang
- Department of Gynecology, Fujian Cancer Hospital, Affiliated Cancer Hospital of Fujian Medical University
| | - Yiying Li
- Department of Gynecology, Fujian Cancer Hospital, Affiliated Cancer Hospital of Fujian Medical University
| | - Siming Li
- Department of Gynecology, Fujian Cancer Hospital, Affiliated Cancer Hospital of Fujian Medical University
| | - Yuxia Sui
- Department of Pharmacy, Shengli Clinical Medical College of Fujian Medical University & Fujian Provincial Hospital
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University
| |
Collapse
|
10
|
Zhu JH, Yiu SM, Tang BZ, Lo KKW. Luminescent Neutral Cyclometalated Iridium(III) Complexes Featuring a Cubic Polyhedral Oligomeric Silsesquioxane for Lipid Droplet Imaging and Photocytotoxic Applications. Inorg Chem 2021; 60:11672-11683. [PMID: 34269564 DOI: 10.1021/acs.inorgchem.1c01728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New neutral iridium(III) complexes featuring a cubic polyhedral oligomeric silsesquioxane (POSS) unit, [Ir(N∧C)2(L1-POSS)] [HN∧C = 2-phenylpyridine (Hppy; 1), 2-phenylbenzothioazole (Hbt; 2), and 2-(1-naphthyl)benzothiazole (Hbsn; 3); L1-POSS = (E)-4-[(2-hydroxybenzylidene)amino]benzyl 3-heptakis(isobutyl)POSS-propyl carbamate], were designed and synthesized. Their POSS-free counterparts, [Ir(N∧C)2(L1)] [L1 = (E)-N-(4-hydroxymethylphenyl)-1-(2-hydroxyphenyl)methanimine; HN∧C = Hppy (1a), Hbt (2a), and Hbsn (3a)], and the poly(ethylene glycol) (PEG) derivatives [Ir(N∧C)2(L1-PEG)] [L1-PEG = (E)-4-[(2-hydroxybenzylidene)amino]benzyl 3-[2-[ω-methoxypoly(1-oxapropyl)]ethyl]carbamate; HN∧C = Hppy (1b), Hbt (2b), and Hbsn (3b)] were also prepared. The photophysical, photochemical, and biological properties of the POSS complexes were compared with those of their POSS-free and PEG-modified counterparts. Upon irradiation, all of these complexes displayed orange-to-red emission and long emission lifetimes under ambient conditions. The bsn complexes 3, 3a, and 3b exhibited the highest singlet oxygen (1O2) generation quantum yields (ΦΔ = 0.85-0.86) in aerated CH3CN. Laser-scanning confocal microscopy images revealed that complexes 1-3 and 1a-3a showed exclusive lipid-droplet staining upon cellular uptake, while the PEG derivatives 1b-3b displayed lysosomal localization. Complex 3 was utilized to study various lipid-droplet-related biological events including lipid-droplet accumulation under oleic acid stimulation, the movement of lipid droplets, and preadipocyte differentiation. Notably, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays indicated that the ppy complexes 1 and 1b and the bt complexes 2 and 2b were noncytotoxic both in the dark and upon irradiation at 450 nm for 5 min (IC50 > 200 μM), while the bsn complexes 3, 3a, and 3b showed low dark cytotoxicity (IC50 = 52.9 to >200 μM) and high photocytotoxicity (IC50 = 1.1-5.3 μM). The cellular uptake, internalization mechanisms, and cell death pathways of these complexes were also investigated. This work not only offers promising luminescent probes for lipid droplets through the structural modification of iridium(III) complexes but also paves the way to the construction of new reagents for theranostics.
Collapse
Affiliation(s)
- Jing-Hui Zhu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.,Center of Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China
| |
Collapse
|
11
|
Lenora C, Hu NH, Furgal JC. Thermally Stable Fluorogenic Zn(II) Sensor Based on a Bis(benzimidazole)pyridine-Linked Phenyl-Silsesquioxane Polymer. ACS OMEGA 2020; 5:33017-33027. [PMID: 33403263 PMCID: PMC7774080 DOI: 10.1021/acsomega.0c04366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 05/05/2023]
Abstract
A 2,6-bis(2-benzimidazolyl) pyridine-linked silsesquioxane-based semi-branched polymer was synthesized, and its photophysical and metal-sensing properties have been investigated. The polymer is thermally stable up to 285 °C and emits blue in both solid and solution state. The emission of the polymer is sensitive to pH and is gradually decreased and quenched upon protonation of the linkers. The initial emission color is recoverable upon deprotonation with triethylamine. The polymer also shows unique spectroscopic properties in both absorption and emission upon long-term UV irradiation, with red-shifted absorption and emission not present in a simple blended system of phenylsilsesquioxane and linker, suggesting that a long-lived energy transfer or charge separated state is present. In addition, the polymer acts as a fluorescence shift sensor for Zn(II) ions, with red shifts observed from 464 to 528 nm, and reversible binding by the introduction of a competitive ligand such as tetrahydrofuran. The ion sensing mechanism can differentiate Zn(II) from Cd(II) by fluorescence color shifts, which is unique because they are in the same group of the periodic table and possess similar chemical properties. Finally, the polymer system embedded in a paper strip acts as a fluorescent chemosensor for Zn(II) ions in solution, showing its potential as a solid phase ion extractor.
Collapse
Affiliation(s)
| | - Nai-hsuan Hu
- Department of Chemistry and Center
for Photochemical Sciences, Bowling Green
State University, Bowling
Green, Ohio 43403, United States
| | - Joseph C. Furgal
- Department of Chemistry and Center
for Photochemical Sciences, Bowling Green
State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
12
|
Özenler S, Yucel M, Tüncel Ö, Kaya H, Özçelik S, Yildiz UH. Single Chain Cationic Polymer Dot as a Fluorescent Probe for Cell Imaging and Selective Determination of Hepatocellular Carcinoma Cells. Anal Chem 2019; 91:10357-10360. [DOI: 10.1021/acs.analchem.9b02300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sezer Özenler
- Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Muge Yucel
- Department of Bioengineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Özge Tüncel
- Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Hakan Kaya
- Department of Bioengineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Serdar Özçelik
- Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
- Department of Photonics, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
- Department of Radiation Oncology, School of Medicine, Stanford University, Palo Alto, California 94305, United States
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
- Department of Photonics, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| |
Collapse
|
13
|
Zhu J, Tang BZ, Lo KK. Luminescent Molecular Octopuses with a Polyhedral Oligomeric Silsesquioxane (POSS) Core and Iridium(III) Polypyridine Arms: Synthesis, Aggregation Induced Emission, Cellular Uptake, and Bioimaging Studies. Chemistry 2019; 25:10633-10641. [DOI: 10.1002/chem.201901029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jing‐Hui Zhu
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Hong Kong P. R. China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of, Science and Technology Clear Water Bay Kowloon, Hong Kong P. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong Kong Tat Chee Avenue Hong Kong P. R. China
- Center of Functional PhotonicsCity University of Hong Kong Tat Chee Avenue Hong Kong P. R. China
| |
Collapse
|
14
|
Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806701. [PMID: 30698856 DOI: 10.1002/adma.201806701] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE, -581 83, Sweden
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
15
|
Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. NANOSCALE 2019; 11:799-819. [PMID: 30603750 PMCID: PMC8112886 DOI: 10.1039/c8nr07769j] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An urgent need for early detection and diagnosis of diseases continuously pushes the advancements of imaging modalities and contrast agents. Current challenges remain for fast and detailed imaging of tissue microstructures and lesion characterization that could be achieved via development of nontoxic contrast agents with longer circulation time. Nanoparticle technology offers this possibility. Here, we review nanoparticle-based contrast agents employed in most common biomedical imaging modalities, including fluorescence imaging, MRI, CT, US, PET and SPECT, addressing their structure related features, advantages and limitations. Furthermore, their applications in each imaging modality are also reviewed using commonly studied examples. Future research will investigate multifunctional nanoplatforms to address safety, efficacy and theranostic capabilities. Nanoparticles as imaging contrast agents have promise to greatly benefit clinical practice.
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001 P. R. China.
| | | | | | | |
Collapse
|
16
|
Liu R, Yang Y, Cui Q, Xu W, Peng R, Li L. A Diarylethene-Based Photoswitch and its Photomodulation of the Fluorescence of Conjugated Polymers. Chemistry 2018; 24:17756-17766. [DOI: 10.1002/chem.201803473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Ronghua Liu
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Yu Yang
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Qianling Cui
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Wenqiang Xu
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Rui Peng
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Lidong Li
- State Key Lab for Advanced Metals and Materials, School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| |
Collapse
|
17
|
Chen G, Wang Y, Xie R, Gong S. A review on core-shell structured unimolecular nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 130:58-72. [PMID: 30009887 PMCID: PMC6149214 DOI: 10.1016/j.addr.2018.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Polymeric unimolecular nanoparticles (NPs) exhibiting a core-shell structure and formed by a single multi-arm molecule containing only covalent bonds have attracted increasing attention for numerous biomedical applications. This unique single-molecular architecture provides the unimolecular NP with superior stability both in vitro and in vivo, a high drug loading capacity, as well as versatile surface chemistry, thereby making it a desirable nanoplatform for therapeutic and diagnostic applications. In this review, we surveyed the architecture of various types of polymeric unimolecular NPs, including water-dispersible unimolecular micelles and water-soluble unimolecular NPs used for the delivery of hydrophobic and hydrophilic agents, respectively, as well as their diverse biomedical applications. Future opportunities and challenges of unimolecular NPs were also briefly discussed.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
18
|
Zhu YX, Jia HR, Pan GY, Ulrich NW, Chen Z, Wu FG. Development of a Light-Controlled Nanoplatform for Direct Nuclear Delivery of Molecular and Nanoscale Materials. J Am Chem Soc 2018; 140:4062-4070. [DOI: 10.1021/jacs.7b13672] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Guang-Yu Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Nathan W. Ulrich
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
19
|
Yokouchi Y, Ishida S, Onodera T, Oikawa H, Iwamoto T. Facile synthesis and bridgehead-functionalization of bicyclo[3.3.3]pentasiloxanes. Chem Commun (Camb) 2018; 54:268-270. [DOI: 10.1039/c7cc08790j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various bicyclo[3.3.3]pentasiloxanes (BPSO) were successfully synthesized via regioselective functionalization at the bridgehead positions.
Collapse
Affiliation(s)
- Yuki Yokouchi
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Sendai 980-8578
| | - Shintaro Ishida
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Sendai 980-8578
| | - Tsunenobu Onodera
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Aoba-ku
- Sendai 980-8577
- Japan
| | - Hidetoshi Oikawa
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Aoba-ku
- Sendai 980-8577
- Japan
| | - Takeaki Iwamoto
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Aoba-ku
- Sendai 980-8578
| |
Collapse
|
20
|
Selective biocompatibility and responsive imaging property of cationic conjugated polyelectrolyte to cancer cells. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Zhu YX, Jia HR, Chen Z, Wu FG. Photosensitizer (PS)/polyhedral oligomeric silsesquioxane (POSS)-crosslinked nanohybrids for enhanced imaging-guided photodynamic cancer therapy. NANOSCALE 2017; 9:12874-12884. [PMID: 28686273 DOI: 10.1039/c7nr02279d] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photodynamic therapy (PDT) has drawn extensive attention as a promising cancer treatment modality. However, most PDT nanoagents suffer from insufficient drug loading capacity, a severe self-quenching effect, premature release of drugs and/or potential toxicity. Herein, we rationally designed an inorganic-organic nanohybrid with high drug loading capacity and superior chemical stability for enhanced PDT. Polyhedral oligomeric silsesquioxane (POSS), an amine-containing cage-shaped building block, was crosslinked with chlorin e6 (Ce6), a carboxyl-containing photosensitizer, via the amine-carboxyl reaction. Polyethylene glycol (PEG) polymers were further modified on the surface of the nanoparticle to improve the aqueous dispersibility and prolong the circulation time of the final nanoconstruct (POSS-Ce6-PEG). The as-prepared POSS-Ce6-PEG has a considerably high loading rate of Ce6 (19.8 wt%) with desirable fluorescence emission and singlet oxygen generation. Besides, in vitro experiments revealed that the nanoagent exhibited enhanced cellular uptake and a preferred intracellular accumulation within mitochondria and the endoplasmic reticulum, resulting in high anticancer efficiency under light irradiation. Furthermore, in vivo imaging-guided PDT was also successfully achieved, showing the effective tumor targeting and ablation ability of POSS-Ce6-PEG. More importantly, the nanoagent possesses negligible dark cytotoxicity and systemic side effects. Therefore, POSS-Ce6-PEG as an eligible PDT theranostic agent holds great potential in clinical applications.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
22
|
Controlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packing. Nat Commun 2017; 8:15256. [PMID: 28508857 PMCID: PMC5440812 DOI: 10.1038/ncomms15256] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
Applications of conjugated polymer nanoparticles (Pdots) for imaging and sensing depend on their size, fluorescence brightness and intraparticle energy transfer. The molecular design of conjugated polymers (CPs) has been the main focus of the development of Pdots. Here we demonstrate that proper control of the physical interactions between the chains is as critical as the molecular design. The unique design of twisted CPs and fine-tuning of the reprecipitation conditions allow us to fabricate ultrasmall (3.0–4.5 nm) Pdots with excellent photostability. Extensive photophysical and structural characterization reveals the essential role played by the packing of the polymer chains in the particles in the intraparticle spatial alignment of the emitting sites, which regulate the fluorescence brightness and the intraparticle energy migration efficiency. Our findings enhance understanding of the relationship between chain interactions and the photophysical properties of CP nanomaterials, providing a framework for designing and fabricating functional Pdots for imaging applications. Synthesis of small conjugated polymer nanoparticles (Pdots) with bright and stable fluorescence is an active challenge. Here, the authors introduce a strategy to fabricate ultrasmall Pdots with high fluorescence intensity by using twisted, rather than planar, conjugated polymers, lending new insight into the molecular design of Pdots.
Collapse
|
23
|
Lv M, Jasieniak JJ, Zhu J, Chen X. A hybrid organic–inorganic three-dimensional cathode interfacial material for organic solar cells. RSC Adv 2017. [DOI: 10.1039/c7ra04044j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An alcohol soluble hybrid organic–inorganic three-dimensional material POSS-FN has been synthesized and assessed as a cathode interlayer within organic solar cells consisting of a PBDT-BT:PC61BM bulk heterojunction.
Collapse
Affiliation(s)
- Menglan Lv
- Guizhou Institute of Technology
- Guiyang
- China
- CSIRO Manufacturing Flagship
- Clayton
| | - Jacek J. Jasieniak
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
| | - Jin Zhu
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiwen Chen
- CSIRO Manufacturing Flagship
- Clayton
- Australia
| |
Collapse
|
24
|
Sun M, Sun B, Liu Y, Shen QD, Jiang S. Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes. Sci Rep 2016; 6:22368. [PMID: 26931282 PMCID: PMC4774269 DOI: 10.1038/srep22368] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/12/2016] [Indexed: 11/09/2022] Open
Abstract
Rapid growth in biological applications of nanomaterials brings about pressing needs for exploring nanomaterial-cell interactions. Cationic blue-emissive and anionic green-emissive conjugated polymers are applied as dual-color fluorescence probes to the surface of negatively charged magnetic nanoparticles through sequentially electrostatic adsorption. These conjugated polymers have large extinction coefficients and high fluorescence quantum yield (82% for PFN and 62% for ThPFS). Thereby, one can visualize trace amount (2.7 μg/mL) of fluorescence-labeled nanoparticles within cancer cells by confocal laser scanning microscopy. Fluorescence labeling by the conjugated polymers is also validated for quantitative determination of the internalized nanoparticles in each individual cell by flow cytometry analysis. Extensive overlap of blue and green fluorescence signals in the cytoplasm indicates that both conjugated polymer probes tightly bind to the surface of the nanoparticles during cellular internalization. The highly charged and fluorescence-labeled nanoparticles non-specifically bind to the cell membranes, followed by cellular uptake through endocytosis. The nanoparticles form aggregates inside endosomes, which yields a punctuated staining pattern. Cellular internalization of the nanoparticles is dependent on the dosage and time. Uptake efficiency can be enhanced three-fold by application of an external magnetic field. The nanoparticles are low cytotoxicity and suitable for simultaneously noninvasive fluorescence and magnetic resonance imaging application.
Collapse
Affiliation(s)
- Minjie Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China.,Department of Polymer Science &Engineering and Key Laboratory of High Performance Polymer Materials &Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry &Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Sun
- Department of Polymer Science &Engineering and Key Laboratory of High Performance Polymer Materials &Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry &Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yun Liu
- Department of Polymer Science &Engineering and Key Laboratory of High Performance Polymer Materials &Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry &Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science &Engineering and Key Laboratory of High Performance Polymer Materials &Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry &Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaojun Jiang
- Department of Pathology and Laboratory of Electron Microscopy, Jinling Hospital, Nanjing 210002, China
| |
Collapse
|
25
|
Gao Y, Xu W, Zhang X, Fu Y, Zhu D, He Q, Cao H, Cheng J. Dual functional and multiple substituted fluorescent star-shaped POSS for a 1 + 1 > 2 explosive vapour detection. RSC Adv 2016. [DOI: 10.1039/c6ra08686a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A dual functional and multiple substituted fluorescent star-shaped POSS was synthesized for highly efficient NG and TNT vapor detection.
Collapse
Affiliation(s)
- Yixun Gao
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Wei Xu
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Xiangtao Zhang
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Yanyan Fu
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Defeng Zhu
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Qingguo He
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Huimin Cao
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| | - Jiangong Cheng
- State Key
- Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
| |
Collapse
|
26
|
Sun L, Liu Y, Dang S, Wang Z, Liu J, Fu J, Shi L. Lanthanide complex-functionalized polyhedral oligomeric silsesquioxane with multicolor emission covered from 450 nm to 1700 nm. NEW J CHEM 2016. [DOI: 10.1039/c5nj02105g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Six new hybrid materials covalently linking ternary lanthanide complexes to POSS were prepared, and the luminescent properties were investigated in detail.
Collapse
Affiliation(s)
- Lining Sun
- Research Center of Nano Science and Technology
- and School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Ying Liu
- Research Center of Nano Science and Technology
- and School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Song Dang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhuyi Wang
- Research Center of Nano Science and Technology
- and School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jinliang Liu
- Research Center of Nano Science and Technology
- and School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jifang Fu
- Research Center of Nano Science and Technology
- and School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Liyi Shi
- Research Center of Nano Science and Technology
- and School of Material Science and Engineering
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
27
|
Ledin PA, Xu W, Friscourt F, Boons GJ, Tsukruk VV. Branched Polyhedral Oligomeric Silsesquioxane Nanoparticles Prepared via Strain-Promoted 1,3-Dipolar Cycloadditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8146-55. [PMID: 26131712 PMCID: PMC5078749 DOI: 10.1021/acs.langmuir.5b01764] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conjugation of small organic molecules and polymers to polyhedral oligosilsesquioxane (POSS) cores results in novel hybrid materials with unique physical characteristics. We report here an approach in which star-shaped organic-inorganic scaffolds bearing eight cyclooctyne moieties can be rapidly functionalized via strain-promoted azide-alkyne cycloaddition (SPAAC) to synthesize a series of nearly monodisperse branched core-shell nanoparticles with hydrophobic POSS cores and hydrophilic arms. We established that SPAAC is a robust method for POSS core octafunctionalization with the reaction rate constant of 1.9 × 10(-2) M(-1) s(-1). Functionalization with poly(ethylene glycol) (PEG) azide, fluorescein azide, and unprotected lactose azide gave conjugates which represent different classes of compounds: polymer conjugates, fluorescent dots, and bioconjugates. These resulting hybrid compounds were preliminarily tested for their ability to self-assemble in solution and at the air-water interface. We observed the formation of robust smooth Langmuir monolayers with diverse morphologies. We found that polar lactose moieties are completely submerged into the subphase whereas the relatively hydrophobic fluorescein arms had extended conformation at the interface, and PEG arms were partially submerged. Finally, we observed the formation of stable micelles with sizes between 70 and 160 nm in aqueous solutions with size and morphology of the structures dependent on the molecular weight and the type of the peripheral hydrophilic moieties.
Collapse
Affiliation(s)
- Petr A. Ledin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Weinan Xu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Frédéric Friscourt
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
28
|
Li J, Tian C, Yuan Y, Yang Z, Yin C, Jiang R, Song W, Li X, Lu X, Zhang L, Fan Q, Huang W. A Water-Soluble Conjugated Polymer with Pendant Disulfide Linkages to PEG Chains: A Highly Efficient Ratiometric Probe with Solubility-Induced Fluorescence Conversion for Thiol Detection. Macromolecules 2015. [DOI: 10.1021/ma5021775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Congcong Tian
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Yan Yuan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Zhen Yang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Chao Yin
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Rongcui Jiang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Wenli Song
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Xiaomei Lu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
- Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics & Information Displays and Institute of Advanced Material, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
29
|
Xu K, Lin W, Wu J, Peng J, Xing Y, Gao S, Ren Y, Chen M. Construction and electronic properties of carbon nanotube hybrids with conjugated cubic silsesquioxane. NEW J CHEM 2015. [DOI: 10.1039/c5nj01376c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hierarchical zero-dimensional cubic silsesquioxane/one-dimensional SWNT hybrids provided excellent charge transfer and synergistic effects compared to both SWNTs and OASQ.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| | - Weihong Lin
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| | - Jiancheng Wu
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| | - Jun Peng
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| | - Yuxiu Xing
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| | - Shuxi Gao
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| | - Yuanyuan Ren
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| | - Mingcai Chen
- Key Laboratory of Polymer Material for Electronics
- Guangzhou Institute of Chemistry
- Chinese Academy of Sciences
- Guangzhou 510650
- P. R. China
| |
Collapse
|
30
|
Huang J, Wang W, Gu J, Li W, Zhang Q, Ding Y, Xi K, Zheng Y, Jia X. New bead type and high symmetrical diallyl-POSS based emissive conjugated polyfluorene. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.10.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Ledin PA, Tkachenko IM, Xu W, Choi I, Shevchenko VV, Tsukruk VV. Star-shaped molecules with polyhedral oligomeric silsesquioxane core and azobenzene dye arms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8856-8865. [PMID: 25010498 DOI: 10.1021/la501930e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We synthesized a series of hybrid nanomaterials combining organic dyes with polyhedral oligomeric silsesquioxanes (POSS) based on three different azobenzenes: monoazobenzene (4-phenylazophenol), bis-azobenzene (Disperse Yellow 7 and Fast Garnet derivative), and push-pull azobenzene (Disperse Red 1) via hydrosilylation coupling. The azo-functionalized POSS compounds possess high thermal stability, and their branched architecture resulted in effective suppression of molecular aggregation and allowed for direct imaging of individual dye-POSS structures with expected molecular dimensions. Stable, uniform, smooth, and ultrathin nanocomposite films with mixed silica-organic composition and relatively low refractive indices can be fabricated from all azo-POSS branched conjugates. Finally, the photoisomerization behavior of POSS-conjugated 4-phenylazophenol was investigated in solution as well as in ultrathin nanocomposite film. We found that conjugation to POSS core did not affect the kinetics of trans-cis photoisomerization and thermal cis-trans relaxation. Furthermore, rapid and reversible photoisomerization was observed in azo-POSS nanocomposite films. We suggest that the highly stable branched azo-POSS conjugates with high dye grafting density described here can be considered for nanometer-sized photoswitches, active layer material with optical-limiting properties, and a medium with photoinduced anisotropy for optical storage.
Collapse
Affiliation(s)
- Petr A Ledin
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | | | | | |
Collapse
|
32
|
Interaction between dye and zinc in the dye-dispersing ZnO films prepared by a wet process. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1761-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Jarosz T, Lapkowski M, Ledwon P. Advances in Star-Shaped π-Conjugated Systems: Properties and Applications. Macromol Rapid Commun 2014; 35:1006-32. [DOI: 10.1002/marc.201400061] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/07/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers; Silesian University of Technology; 44-100 Gliwice M. Strzody 9 Poland
| | - Mieczyslaw Lapkowski
- Department of Physical Chemistry and Technology of Polymers; Silesian University of Technology; 44-100 Gliwice M. Strzody 9 Poland
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 41-819 Zabrze Curie-Sklodowskiej 34 Poland
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers; Silesian University of Technology; 44-100 Gliwice M. Strzody 9 Poland
| |
Collapse
|
34
|
Chen X, Zhang P, Wang T, Li H. The First Europium(III) β-Diketonate Complex Functionalized Polyhedral Oligomeric Silsesquioxane. Chemistry 2014; 20:2551-6. [DOI: 10.1002/chem.201303957] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/25/2013] [Indexed: 11/10/2022]
|
35
|
Zhang WB, Yu X, Wang CL, Sun HJ, Hsieh IF, Li Y, Dong XH, Yue K, Van Horn R, Cheng SZD. Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From “Nanoatoms” to Giant Molecules. Macromolecules 2014. [DOI: 10.1021/ma401724p] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wen-Bin Zhang
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Xinfei Yu
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Chien-Lung Wang
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Hao-Jan Sun
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - I-Fan Hsieh
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Yiwen Li
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Xue-Hui Dong
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Kan Yue
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Ryan Van Horn
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Stephen Z. D. Cheng
- Department of Polymer Science, College
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
36
|
Lin N, Toh GW, Feng Y, Liu XY, Xu H. Two-photon fluorescent Bombyx mori silk by molecular recognition functionalization. J Mater Chem B 2014; 2:2136-2143. [DOI: 10.1039/c3tb21602k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two-photon fluorescent (TPF) Bombyx mori silk fibers were acquired for bioimaging by molecular recognition functionalization.
Collapse
Affiliation(s)
- Naibo Lin
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
- Research Institute for Biomimetics and Soft Matter & College of Materials
- Xiamen University
| | - Guoyang William Toh
- MIT-Singapore Alliance
- Department of Physics
- National University of Singapore
- Singapore, Singapore
| | - Yan Feng
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
| | - X. Y. Liu
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
- Research Institute for Biomimetics and Soft Matter & College of Materials
- Xiamen University
| | - Hongyao Xu
- College of Material Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
- Shanghai, China
| |
Collapse
|
37
|
Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.03.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Fluorescence resonance energy transfer between polydiacetylene vesicles and embedded benzoxazole molecules for pH sensing. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2012.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Liu J, Li K, Geng J, Zhou L, Chandrasekharan P, Yang CT, Liu B. Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging. Polym Chem 2013. [DOI: 10.1039/c2py20837g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
|
41
|
Fabritz S, Hörner S, Avrutina O, Kolmar H. Bioconjugation on cube-octameric silsesquioxanes. Org Biomol Chem 2013; 11:2224-36. [DOI: 10.1039/c2ob26807h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Wang B, Zhu C, Liu L, Lv F, Yang Q, Wang S. Synthesis of a new conjugated polymer for cell membrane imaging by using an intracellular targeting strategy. Polym Chem 2013. [DOI: 10.1039/c3py00097d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Yang G, Lv F, Wang B, Liu L, Yang Q, Wang S. Multifunctional non-viral delivery systems based on conjugated polymers. Macromol Biosci 2012; 12:1600-14. [PMID: 23161784 DOI: 10.1002/mabi.201200267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/04/2012] [Indexed: 12/21/2022]
Abstract
Multifunctional nanomaterials with simultaneous therapeutic and imaging functions explore new strategies for the treatment of various diseases. Conjugated polymers (CPs) are considered as novel candidates to serve as multifunctional delivery systems due to their high fluorescence quantum yield, good photostability, and low cytotoxicity. Highly sensitive sensing and imaging properties of CPs are well reviewed, while the applications of CPs as delivery systems are rarely covered. This feature article mainly focuses on CP-based multifunctional non-viral delivery systems for drug, protein, gene, and cell delivery. Promising directions for the further development of CP-based delivery systems are also discussed.
Collapse
Affiliation(s)
- Gaomai Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | | | | | | | | | | |
Collapse
|
44
|
Feng G, Ding D, Liu B. Fluorescence bioimaging with conjugated polyelectrolytes. NANOSCALE 2012; 4:6150-6165. [PMID: 22964921 DOI: 10.1039/c2nr31392h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This review summarizes the recent developments in fluorescent conjugated polyelectrolytes (CPEs) in bioimaging. The CPEs discussed include linear-, hyperbranched-, and polyhedral oligomeric silsesquioxanes (POSS)-based derivatives. Originating from their special optical properties, good photostability, low cytotoxicity, ease of bioconjugation and tuneable size, CPEs have shown wide applications in in vitro and in vivo protein and cell imaging, drug tracking and gene delivery. Moreover, some CPEs also possess antibacterial and anticancer characteristics as well as apoptosis imaging functions. Finally, this review discusses the future outlook of CPEs in bioimaging applications.
Collapse
Affiliation(s)
- Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | | | | |
Collapse
|
45
|
Liang J, Li K, Gurzadyan GG, Lu X, Liu B. Silver nanocube-enhanced far-red/near-infrared fluorescence of conjugated polyelectrolyte for cellular imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11302-9. [PMID: 22784098 DOI: 10.1021/la302511e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present the study of silver nanocube (Ag NC)-enhanced fluorescence of a cationic conjugated polyelectrolyte (CPE) for far-red/near-infrared fluorescence cell imaging. Layer-by-layer self-assembly of polyelectrolytes on 78 nm Ag NCs is used to control CPE-metal distance and its effect on CPE fluorescence. The highest fluorescence enhancement factor (FEF) is obtained for Ag NCs with two bilayers, corresponding to a CPE-metal spacer thickness of ~6 nm. At the optimal excitation wavelength, the FEF is 13.8 with respect to the control silica nanoparticles (NPs). The fluorescent NPs are further used for cellular imaging studies. The CPE-loaded Ag NCs with two bilayers exhibit excellent image contrast, superior to the control of CPE-silica NP at a similar uptake efficiency. The viability test indicates low cytotoxicity of the CPE-loaded Ag NCs, rendering them as promising cell imaging agents.
Collapse
Affiliation(s)
- Jing Liang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
46
|
Hötzer B, Medintz IL, Hildebrandt N. Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:2297-326. [PMID: 22678833 DOI: 10.1002/smll.201200109] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/22/2012] [Indexed: 05/26/2023]
Abstract
Nanobiotechnology is one of the fastest growing and broadest-ranged interdisciplinary subfields of the nanosciences. Countless hybrid bio-inorganic composites are currently being pursued for various uses, including sensors for medical and diagnostic applications, light- and energy-harvesting devices, along with multifunctional architectures for electronics and advanced drug-delivery. Although many disparate biological and nanoscale materials will ultimately be utilized as the functional building blocks to create these devices, a common element found among a large proportion is that they exert or interact with light. Clearly continuing development will rely heavily on incorporating many different types of fluorophores into these composite materials. This review covers the growing utility of different classes of fluorophores in nanobiotechnology, from both a photophysical and a chemical perspective. For each major structural or functional class of fluorescent probe, several representative applications are provided, and the necessary technological background for acquiring the desired nano-bioanalytical information are presented.
Collapse
Affiliation(s)
- Benjamin Hötzer
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
47
|
Mori H, Yamada M. Synthesis and characterization of cationic silsesquioxane hybrids by hydrolytic condensation of triethoxysilane derived from 2-(dimethylamino)ethyl acrylate. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2726-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Zhu C, Liu L, Yang Q, Lv F, Wang S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 2012; 112:4687-735. [PMID: 22670807 DOI: 10.1021/cr200263w] [Citation(s) in RCA: 857] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chunlei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | | | | | | |
Collapse
|
49
|
Tao Y, Lin Y, Huang Z, Ren J, Qu X. DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets. Analyst 2012; 137:2588-92. [PMID: 22540117 DOI: 10.1039/c2an35373c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, we develop an efficient method for multiple DNA detection by exploring silver nanoclusters (AgNCs)-graphene oxide (GO) nanohybrid materials. Because of the extraordinarily high quenching efficiency of GO, the ssDNA-AgNCs probe exhibits minimal background fluorescence, while strong emission is observed when it forms a double helix with the specific target DNA, leading to a high signal-to-background ratio. Therefore the AgNCs-GO nanohybrid materials can be successfully applied for DNA detection. The system described here exhibits not only high sensitivity with a detection limit of 1 nM, but also an excellent differentiation ability for single-base mismatched sequences. In addition, by exploring AgNCs as signal reporters and GO as the nanoquencher, this approach avoids labeling the probe DNA or target DNA, which offers the advantages of simplicity and cost efficiency. Moreover, the large planar surface of GO allows adsorption of different DNA-AgNCs probes, each with a distinct emission, leading to a multicolor sensor for the detection of multiple DNA targets in the same solution.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Chemical Biology, Graduate School of the Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Jilin, China
| | | | | | | | | |
Collapse
|
50
|
Du F, Tian J, Wang H, Liu B, Jin B, Bai R. Synthesis and Luminescence of POSS-Containing Perylene Bisimide-Bridged Amphiphilic Polymers. Macromolecules 2012. [DOI: 10.1021/ma300100s] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fanfan Du
- CAS Key Laboratory
of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei,
230026, People’s Republic of China
| | - Jiao Tian
- CAS Key Laboratory
of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei,
230026, People’s Republic of China
| | - Hu Wang
- CAS Key Laboratory
of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei,
230026, People’s Republic of China
| | - Bin Liu
- CAS Key Laboratory
of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei,
230026, People’s Republic of China
| | - Bangkun Jin
- CAS Key Laboratory
of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei,
230026, People’s Republic of China
| | - Ruke Bai
- CAS Key Laboratory
of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei,
230026, People’s Republic of China
| |
Collapse
|