1
|
Yang X, Ahmad K, Yang T, Fan Y, Zhao F, Jiang S, Chen P, Hou H. Collagen-based hydrogel sol-gel phase transition mechanism and their applications. Adv Colloid Interface Sci 2025; 340:103456. [PMID: 40037018 DOI: 10.1016/j.cis.2025.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Collagen-based hydrogels represent a crucial class of biomaterials for their desirable physicochemical and biochemical properties. The variation in ingredients, gelation conditions, and crosslinking techniques may impact the physicochemical and biological properties of collagen-based hydrogels. However, the specific effects of these parameters on the gelation mechanisms of novel hydrogels and the relationships between fabrication parameters and the resultant characteristics of these hydrogels remain elusive. This review discussed the sol-gel phase transition mechanisms of collagen-based hydrogels, emphasizing the impact of gelation conditions, crosslinking agents, and additional polymers. This article highlights the potential of natural ingredients and safe modification technologies as effective strategies to mitigate the harmful effects of synthetic toxic components in products. Furthermore, this review summarizes constitutive models of collagen hydrogels, which serve as valuable tools for designing and customizing hydrogels to meet specific application requirements by simulating their mechanical and rheological properties. Additionally, the article concludes by briefly introducing applications of novel collagen-based hydrogels with desirable functions and properties. This review further deals with the theoretical support for the rational design and customization of innovative hydrogels and inspires future collagen-based biomaterial development.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China; Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Tingting Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Fei Zhao
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Shanshan Jiang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Peng Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
2
|
Guo L, Ji C, Wang H, Ma T, Qi J. Design and construction of high strength double network hydrogel with flow-induced orientation. J Colloid Interface Sci 2024; 672:497-511. [PMID: 38852352 DOI: 10.1016/j.jcis.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The design and construction of high strength hydrogels is a widely discussed topic in hydrogel research. In this study, we combined three toughening strategies, including dual network, oriented structure construction and nanophase doping, to develop an alginate/polyacrylamide (PAM)/modified titanium dioxide fiber (TiO2 NF@PAM) dual network composite hydrogel prepared via syringe. The effects of different preparation methods, AM/Alginate ratios, inorganic doping phases and TiO2 NF@PAM/AM ratios on the mechanical properties of composite hydrogels were investigated. The study found that the alginate hydrogel prepared by syringe exhibited superior axial orientation and achieved a tensile strength of (1091 ± 46) kPa. And the composite hydrogel doped with 0.2 wt% TiO2 NF@PAM had a tensile strength of (1006 ± 64) kPa, which was higher than that of the composite hydrogel doped with 0.2 wt% TiO2 nanoparticles (976 ± 66) kPa. The highest tensile strength (1120 ± 67) kPa and elongation at break (182 ± 8) % were achieved when the ratio of TiO2 NF@PAM/AM was 0.6 wt%. The force applied to the gel solution in the syringe affects the orientation of the polymer chains and TiO2 NF@PAM within the gel, which subsequently impacts the mechanical properties of the hydrogel. Therefore, we further investigated the mechanical properties of composite hydrogels under varying propulsion speeds, syringe diameters, and syringe lengths. It was observed that the gel solution's shear strength increased as the syringe diameter decreased. The resulting composite hydrogels were better oriented and had improved mechanical properties. The composite hydrogels' tensile strength peaked at (1117 ± 47) kPa when the syringe advance rate was between 1-7 mL/min. The mechanical properties of the hydrogels were optimal when the syringe length was 30 mm, with a maximum tensile strength of (1131 ± 67) kPa and a tensile ratio of (166 ± 5) %. This study demonstrates the viability of integrating three distinct strengthening methodologies to generate hydrogels of considerable strength. Furthermore, the Alginate/PAM/TiO2 NF@PAM composite hydrogels possess remarkable potential as adaptable, wearable sensors due to their exemplary mechanical properties, knittability, and conductivity.
Collapse
Affiliation(s)
- Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Cheng Ji
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Tianxiao Ma
- Department of Respiratory and Critical Care Medicine, Chifeng Municipal Hospital, Chifeng 024000, PR China.
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
An H, Zhang M, Huang Z, Xu Y, Ji S, Gu Z, Zhang P, Wen Y. Hydrophobic Cross-Linked Chains Regulate High Wet Tissue Adhesion Hydrogel with Toughness, Anti-hydration for Dynamic Tissue Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310164. [PMID: 37925614 DOI: 10.1002/adma.202310164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Indexed: 11/06/2023]
Abstract
Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet-adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti-hydration gelatin-acrylic acid-ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross-linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross-linking points to prepare hydrogels with anti-hydration, toughness, and high wet state adhesion. The hydrophobic cross-linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet-state tissue repair properties. Therefore, the anti-hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.
Collapse
Affiliation(s)
- Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Zhe Huang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongxiang Xu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center ofStomatology & National Clinical Research Center for Oral Diseases & NationalEngineering Laboratory for Digital and Material Technology of Stomatology & BeijingKey Laboratory of Digital Stomatology & Research Center of Engineering and- 3 -Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratoryfor Dental Materials, Beijing, 100081, China
| | - Shen Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Qingdao Hospital, Peking University People's Hospital, Beijing, 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Feng W, Wang Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303326. [PMID: 37544909 PMCID: PMC10558674 DOI: 10.1002/advs.202303326] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/15/2023] [Indexed: 08/08/2023]
Abstract
Hydrogels with tailor-made swelling-shrinkable properties have aroused considerable interest in numerous biomedical domains. For example, as swelling is a key issue for blood and wound extrudates absorption, the transference of nutrients and metabolites, as well as drug diffusion and release, hydrogels with high swelling capacity have been widely applicated in full-thickness skin wound healing and tissue regeneration, and drug delivery. Nevertheless, in the fields of tissue adhesives and internal soft-tissue wound healing, and bioelectronics, non-swelling hydrogels play very important functions owing to their stable macroscopic dimension and physical performance in physiological environment. Moreover, the negative swelling behavior (i.e., shrinkage) of hydrogels can be exploited to drive noninvasive wound closure, and achieve resolution enhancement of hydrogel scaffolds. In addition, it can help push out the entrapped drugs, thus promote drug release. However, there still has not been a general review of the constructions and biomedical applications of hydrogels from the viewpoint of swelling-shrinkable properties. Therefore, this review summarizes the tactics employed so far in tailoring the swelling-shrinkable properties of hydrogels and their biomedical applications. And a relatively comprehensive understanding of the current progress and future challenge of the hydrogels with different swelling-shrinkable features is provided for potential clinical translations.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310058China
| |
Collapse
|
5
|
Injectable and self-healing double network polysaccharide hydrogel as a minimally-invasive delivery platform. Carbohydr Polym 2022; 291:119585. [PMID: 35698401 DOI: 10.1016/j.carbpol.2022.119585] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 01/29/2023]
|
6
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
7
|
Biswakarma D, Dey N, Bhattacharya S. Molecular design of amphiphiles for Microenvironment-Sensitive kinetically controlled gelation and their utility in probing alcohol contents. J Colloid Interface Sci 2022; 615:335-345. [DOI: 10.1016/j.jcis.2021.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
|
8
|
Double-Network Tough Hydrogels: A Brief Review on Achievements and Challenges. Gels 2022; 8:gels8040247. [PMID: 35448148 PMCID: PMC9030633 DOI: 10.3390/gels8040247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023] Open
Abstract
This brief review attempts to summarize research advances in the mechanical toughness and structures of double-network (DN) hydrogels. The focus is to provide a critical and concise discussion on the toughening mechanisms, damage recoverability, stress relaxation, and biomedical applications of tough DN hydrogel systems. Both conventional DN hydrogel with two covalently cross-linked networks and novel DN systems consisting of physical and reversible cross-links are discussed and compared. Covalently cross-linked hydrogels are tough but damage-irreversible. Physically cross-linked hydrogels are damage-recoverable but exhibit mechanical instability, as reflected by stress relaxation tests. This remains one significant challenge to be addressed by future research studies to realize the load-sustaining applications proposed for tough hydrogels. With their special structure and superior mechanical properties, DN hydrogels have great potential for biomedical applications, and many DN systems are now fabricated with 3D printing techniques.
Collapse
|
9
|
Wang Z, Zhang Y, Yin Y, Liu J, Li P, Zhao Y, Bai D, Zhao H, Han X, Chen Q. High-Strength and Injectable Supramolecular Hydrogel Self-Assembled by Monomeric Nucleoside for Tooth-Extraction Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108300. [PMID: 35066934 DOI: 10.1002/adma.202108300] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Hydrogels with high mechanical strength and injectability have attracted extensive attention in biomedical and tissue engineering. However, endowing a hydrogel with both properties is challenging because they are generally inversely related. In this work, by constructing a multi-hydrogen-bonding system, a high-strength and injectable supramolecular hydrogel is successfully fabricated. It is constructed by the self-assembly of a monomeric nucleoside molecular gelator (2-amino-2'-fluoro-2'-deoxyadenosine (2-FA)) with distilled water/phosphate buffered saline as solvent. Its storage modulus reaches 1 MPa at a concentration of 5.0 wt%, which is the strongest supramolecular hydrogel comprising an ultralow-molecular-weight (MW < 300) gelator. Furthermore, it exhibits excellent shear-thinning injectability, and completes the sol-gel transition in seconds after injection at 37 °C. The multi-hydrogen-bonding system is essentially based on the synergistic interactions between the double NH2 groups, water molecules, and 2'-F atoms. Furthermore, the 2-FA hydrogel exhibits excellent biocompatibility and antibacterial activity. When applied to rat molar extraction sockets, compared to natural healing and the commercial hemorrhage agent gelatin sponge, the 2-FA hydrogel exhibits faster degradation and induces less osteoclastic activity and inflammatory infiltration, resulting in more complete bone healing. In summary, this study provides ideas for proposing a multifunctional, high-strength, and injectable supramolecular hydrogel for various biomedical engineering applications.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Peiran Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Ding Bai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
10
|
Ling L, Zhu L, Li Y, Liu C, Cheng L. Ultrasound-Induced Amino Acid-Based Hydrogels With Superior Mechanical Strength for Controllable Long-Term Release of Anti-Cercariae Drug. Front Bioeng Biotechnol 2021; 9:703582. [PMID: 34733826 PMCID: PMC8558479 DOI: 10.3389/fbioe.2021.703582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Stimulus-responsive hydrogels are significantly programmable materials that show potential applications in the field of biomedicine and the environment. Ultrasound as a stimulus can induce the formation of hydrogels, which exhibit the superior performance of different structures. In this study, we reported an ultrasound-induced supramolecular hydrogel based on aspartic acid derivative N,N'-diaspartate-3,4,9,10-perylene tetracarboxylic acid imide, showing superior performance in drug release. The results show that the driving force of this ultrasonic induced hydrogel could be attributed to hydrogen bonding and π-π interaction. The rheological and cytotoxicity test illustrate excellent mechanical properties and biocompatibility of the hydrogel. The anti-Schistosoma japonicum cercariae (CC) drug release results show large drug loadings (500 mg/ml) and long-term release (15 days) of this hydrogel. This study demonstrates that this hydrogel may serve as a slow-release platform for anti-CC.
Collapse
Affiliation(s)
- Liying Ling
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China.,Research Center for Environmental Engineering and Technology, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| | - Lei Zhu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China
| | - Chunhua Liu
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China
| | - Linxiu Cheng
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou, China.,Research Center for Environmental Engineering and Technology, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, China
| |
Collapse
|
11
|
Fan C, Xu Z, Wu T, Cui C, Liu Y, Liu B, Yang J, Liu W. 3D printing of lubricative stiff supramolecular polymer hydrogels for meniscus replacement. Biomater Sci 2021; 9:5116-5126. [PMID: 34254606 DOI: 10.1039/d1bm00836f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
3D printing of a stiff and lubricative hydrogel-based meniscus substitute has been challenging since printability and stiffness compromise each other. In this work, based on an upgraded self-thickening and self-strengthening strategy, a unique multiple H-bonding monomer N-acryloylsemicarbazide (NASC) is firstly copolymerized with a super-hydrophilic monomer carboxybetaine acrylamide (CBAA) in dimethyl sulfoxide (DMSO)/H2O to form a soft poly(NASC-co-CBAA) gel, in which PCBAA serves to weaken the H-bonding interaction and avoid hydrophobic phase separation. The poly(NASC-co-CBAA) gel is then loaded with concentrated NASC and CBAA, followed by heating to form a thickening sol ink, which is printed into different objects that are further photoirradiated to initiate the copolymerization of entrapped NASC and CBAA, resulting in the formation of a high performance hydrogel with a Young's modulus of 10.98 MPa, tensile strength of 1.87 MPa and tearing energy of 5333 J m-2 after DMSO is completely replaced with water, due to the re-establishment of NASC H-bonds. Importantly, PCBAA affords high lubricity in printed hydrogels. The printed PNASC-PCBAA meniscus substitute can substitute rabbit's native meniscus and ameliorate the cartilage surface wear within a set 12-week time window, portending great potential as a meniscal substitute and other soft-supporting tissue scaffolds.
Collapse
Affiliation(s)
- Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Tengling Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Bo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
12
|
Zhan Y, Fu W, Xing Y, Ma X, Chen C. Advances in versatile anti-swelling polymer hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112208. [PMID: 34225860 DOI: 10.1016/j.msec.2021.112208] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
Swelling is ubiquitous for traditional as-prepared hydrogels, but is unfavorable in many situations, especially biomedical applications, such as tissue engineering, internal wound closure, soft actuating and bioelectronics, and so forth. As the swelling of a hydrogel usually leads to a volume expansion, which not only deteriorates the mechanical property of the hydrogel but can bring about undesirable oppression on the surrounding tissues when applied in vivo. In contrast, anti-swelling hydrogels hardly alter their volume when applied in aqueous environment, therefore reserving the original mechanical performance and size-stability and facilitating their potential application. In the past decade, with the development of advanced hydrogels, quite a number of anti-swelling hydrogels with versatile functions have been developed by researchers to meet the practical applications well, through integrating anti-swelling property with certain performance or functionality, such as high strength, self-healing, injectability, adhesiveness, antiseptics, etc. However, there has not been a general summary with regard to these hydrogels. To promote the construction of anti-swelling hydrogels with desirable functionalities in the future, this review generalizes and analyzes the tactics employed so far in the design and manufacture of anti-swelling hydrogels, starting from the viewpoint of classical swelling theories. The review will provide a relatively comprehensive understanding of anti-swelling hydrogels and clues to researchers interested in this kind of materials to develop more advanced ones suitable for practical application.
Collapse
Affiliation(s)
- Yiwei Zhan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| | - Yacheng Xing
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China.
| |
Collapse
|
13
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
14
|
Poly(vinyldiaminotriazine) nanoparticle adsorption of small drug molecules in aqueous phase and the role of synergistic interaction between hydrogen bonding and hydrophobic affinity. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04765-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
|
16
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
17
|
Li X, Peng X, Li R, Zhang Y, Liu Z, Huang Y, Long S, Li H. Multiple Hydrogen Bonds–Reinforced Hydrogels with High Strength, Shape Memory, and Adsorption Anti‐Inflammatory Molecules. Macromol Rapid Commun 2020; 41:e2000202. [DOI: 10.1002/marc.202000202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 P. R. China
- Collaborative Innovation Center of Green Lightweight Materials and Processing Hubei University of Technology Wuhan 430068 P. R. China
| | - Xueyin Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 P. R. China
| | - Rongzhe Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 P. R. China
| | - Yikun Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 P. R. China
| | - Zuifang Liu
- Collaborative Innovation Center of Green Lightweight Materials and Processing Hubei University of Technology Wuhan 430068 P. R. China
| | - Yiwan Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 P. R. China
| | - Shijun Long
- Collaborative Innovation Center of Green Lightweight Materials and Processing Hubei University of Technology Wuhan 430068 P. R. China
| | - Haiyan Li
- Med‐X Research Institute School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030 P. R. China
| |
Collapse
|
18
|
Leganés J, Sánchez-Migallón A, Merino S, Vázquez E. Stimuli-responsive graphene-based hydrogel driven by disruption of triazine hydrophobic interactions. NANOSCALE 2020; 12:7072-7081. [PMID: 32188962 DOI: 10.1039/c9nr10588c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study reported here concerns the preparation of a novel graphene-diaminotriazine (G-DAT) nanocomposite hydrogel for application in the drug delivery field. The hybrid nature of this material is founded on two key elements: the presence of the DAT backbone induced the formation of hydrophobic regions that allowed efficient loading of a series of drugs of increasing hydrophobicity (Metronidazole, Benzocaine, Ibuprofen, Naproxen and Imipramine), while simultaneously endowing swelling-induced pH-responsiveness to the hydrogel. Additionally, the incorporation of graphene was found to interfere with these hydrophobic domains through favourable non-covalent interactions, thus leading to the partial disruption of these aggregates. As a consequence, graphene facilitated and enhanced the release of model hydrophobic drug Imipramine in a synergistic manner with the pH trigger, and increased the swelling capacities and improved mechanical performance. This hybrid hydrogel can therefore be envisaged as a proof-of-concept system for the release of hydrophobic compounds in the field of drug delivery.
Collapse
Affiliation(s)
- Jorge Leganés
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | | | | | | |
Collapse
|
19
|
Fabrication of morphologically modified strong supramolecular nanocomposite antibacterial hydrogels based on sodium deoxycholate with inverted optical activity and sustained release. Colloids Surf B Biointerfaces 2020; 188:110803. [DOI: 10.1016/j.colsurfb.2020.110803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
|
20
|
Yu J, Chen X, Yang Y, Zhao X, Chen X, Jing T, Zhou Y, Xu J, Zhang Y, Cheng Y. Construction of supramolecular hydrogels using imidazolidinyl urea as hydrogen bonding reinforced factor. J Mater Chem B 2020; 8:3058-3063. [DOI: 10.1039/d0tb00331j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new hydrogen bonding reinforced factor was introduced into polymer design for the preparation of supramolecular hydrogels with advanced properties.
Collapse
|
21
|
|
22
|
Bui HL, Huang CJ. Tough Polyelectrolyte Hydrogels with Antimicrobial Property via Incorporation of Natural Multivalent Phytic Acid. Polymers (Basel) 2019; 11:E1721. [PMID: 31640149 PMCID: PMC6835581 DOI: 10.3390/polym11101721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023] Open
Abstract
Tough and antimicrobial dual-crosslinked poly((trimethylamino)ethyl methacrylate chloride)-phytic acid hydrogel (pTMAEMA-PA) has been synthesized by adding a chemical crosslinker and docking a physical crosslinker of multivalent phytic acid into a cationic polyelectrolyte network. By increasing the loading concentration of PA, the tough hydrogel exhibits compressive stress of >1 MPa, along with high elasticity and fatigue-resistant properties. The enhanced mechanical properties of pTMAEMA-PA stem from the multivalent ion effect of PA via the formation of ion bridges within polyelectrolytes. In addition, a comparative study for a series of pTMAEMA-counterion complexes was conducted to elaborate the relationship between swelling ratio and mechanical strength. The study also revealed secondary factors, such as ion valency, ion specificity and hydrogen bond formation, holding crucial roles in tuning mechanical properties of the polyelectrolyte hydrogel. Furthermore, in bacteria attachment and disk diffusion tests, pTMAEMA-PA exhibits superior fouling resistance and antibacterial capability. The results reflect the fact that PA enables chelating strongly with divalent metal ions, hence, disrupting the outer membrane of bacteria, as well as dysfunction of organelles, DNA and protein. Overall, the work demonstrated a novel strategy for preparation of tough polyelectrolyte with antibacterial capability via docking PA to open up the potential use of PA in medical application.
Collapse
Affiliation(s)
- Hoang Linh Bui
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32023, Taiwan.
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32023, Taiwan.
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32023, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
| |
Collapse
|
23
|
Galindo JM, Leganés J, Patiño J, Rodríguez AM, Herrero MA, Díez-Barra E, Merino S, Sánchez-Migallón AM, Vázquez E. Physically Cross-Linked Hydrogel Based on Phenyl-1,3,5-triazine: Soft Scaffold with Aggregation-Induced Emission. ACS Macro Lett 2019; 8:1391-1395. [PMID: 35651154 DOI: 10.1021/acsmacrolett.9b00712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A phenyltriazine compound has been used for the first time as a monomer in the construction of a hydrogel. This physically cross-linked soft material showed blue fluorescence when excited under UV-light. Polymer formation and intermolecular H-bonds arising from triazine moieties operate as aggregation-induced emission (AIE) mechanisms. The combination of soft materials and AIE properties expands the applications of these materials. As a proof of concept, two luminescent dyes have been incorporated into the hydrogel to produce a white-light-emitting material.
Collapse
Affiliation(s)
- Josué M. Galindo
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Jorge Leganés
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Javier Patiño
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ana M. Rodríguez
- Escuela Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - M. Antonia Herrero
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Enrique Díez-Barra
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Sonia Merino
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Ana M. Sánchez-Migallón
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| |
Collapse
|
24
|
Wu X, Wang J, Huang J, Yang S. Room temperature readily self-healing polymer via rationally designing molecular chain and crosslinking bond for flexible electrical sensor. J Colloid Interface Sci 2019; 559:152-161. [PMID: 31622817 DOI: 10.1016/j.jcis.2019.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 01/11/2023]
Abstract
Mechanically tough polymers with excellent room temperature self-healing capacity have aroused strong interest in soft electronics, electronic skins and flexible energy storage devices. However, achieving such polymers remains a challenge due to tardy diffusion dynamics. Herein, a robust and readily self-healing polymer, which is synthesized by one-pot polymerization among 2,4'-tolylene diisocyanate, isophorone diisocyanate, and poly(oxy-1,4-butanediyl), is achieved through reasonably tuning the hardness of the molecular segment and the strength of the dynamic crosslinking bond. The poly(oxy-1,4-butanediyl) that act as a soft segment can effectively avoid the microphase separation, enabling rapid chain mobility of the polymer at the room temperature. Furthermore, the dual H-bonding from 2,4'-tolylene diisocyanate segment acting as a relatively strong crosslinking bond contributes to high mechanical strength, while the weaker single H-bonding from isophorone diisocyanate segment can efficiently dissipate strain energy by bond rupture, endowing the polymer with rapid room temperature self-healing ability. Featuring state-of-the-art of robust stress strength (≈1.3 MPa), high self-healing efficiency (97% within 6 h), and large tensile strain (≈2100%), the resulting polymers are used for the fabrication of stretchable and self-healable electrical sensor, which can be employed to monitor a variety of physiological activities in real time. The described strategy is promising and universal for healable materials, displaying great potential for developing soft electronics.
Collapse
Affiliation(s)
- Xianzhang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengrong Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Hsu WH, Kao YC, Chuang SH, Wang JS, Lai JY, Tsai HC. Thermosensitive double network of zwitterionic polymers for controlled mechanical strength of hydrogels. RSC Adv 2019; 9:24241-24247. [PMID: 35527906 PMCID: PMC9069832 DOI: 10.1039/c9ra03834e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
Zwitterionic hydrogels have promising potential as a result of their anti-fouling and biocompatible properties, but they have recently also gained further attention due to their controllable stimuli responses. We successfully synthesized two zwitterionic polymers, poly(2-methacryloyloxyethyl phosphorylcholine) (poly-MPC) and poly(2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide) (poly-DMAPS), which have complementary ionic sequences in their respective zwitterionic side groups and likely form an interpenetrating double network to improve their mechanical strength. The synthesized poly-MPC was blended in a poly-DMAPS matrix (MD gel) and showed high viscosity, while poly-DMAPS was blended in a poly-MPC hydrogel (DM gel) and revealed UCST behavior as the temperature increased. In addition, cross-section images of the MD hydrogel exhibited its compact and uniform structure, while the DM gel was found to exhibit a porous micro-structure with clear boundaries. The results explained the low viscosity of the DM gel, which was also confirmed via 3D Raman mapping. To sum up, the preliminary data demonstrated that binary zwitterionic hydrogels have thermosensitive mechanical properties, promoting further bio-applications in the future, such as in wound healing. Zwitterionic hydrogels have promising anti-fouling properties but weak mechanical strength. Here, we synthesized two polyzwitterions, formulated them as double network hydrogels for improving strength and for controlled by temperature stimuli.![]()
Collapse
Affiliation(s)
- Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taiwan Republic of China .,Instrument Technology Research Center, National Applied Research Laboratories Taiwan Republic of China
| | - Yu-Chih Kao
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taiwan Republic of China
| | - Shun-Hao Chuang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taiwan Republic of China
| | - Jun-Sheng Wang
- Instrument Technology Research Center, National Applied Research Laboratories Taiwan Republic of China
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taiwan Republic of China .,Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taiwan Republic of China.,R&D Center for Membrane Technology, Chung Yuan Christian University Taoyuan Taiwan Republic of China
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taiwan Republic of China .,Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taiwan Republic of China
| |
Collapse
|
26
|
Xie X, Huang L, Liu Z, Xie W, Wang X. Synthesis of poly(2-vinyl-4,6-diamino-1,3,5-triazine) nanoparticles by semi-continuous precipitation polymerization, characterization and application to bovine hemoglobin adsorption. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Euti EM, Wolfel A, Picchio ML, Romero MR, Martinelli M, Minari RJ, Igarzabal CIA. Controlled Thermoreversible Formation of Supramolecular Hydrogels Based on Poly(vinyl alcohol) and Natural Phenolic Compounds. Macromol Rapid Commun 2019; 40:e1900217. [DOI: 10.1002/marc.201900217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Esteban M. Euti
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Alexis Wolfel
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Matías L. Picchio
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
- Facultad Regional Villa MaríaUniversidad Tecnológica NacionalAv. Universidad 450 Villa María 5900 Argentina
| | - Marcelo R. Romero
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Marisa Martinelli
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICETGrupo de Polímeros y Reactores de PolimerizaciónGüemes 3450 Santa Fe 3000 Argentina
- Facultad de Ingeniería QuímicaUniversidad Nacional del LitoralSantiago de Estero 2829 Santa Fe 3000 Argentina
| | - Cecilia I. Alvarez Igarzabal
- Facultad de Ciencias QuímicasDepartamento de Química OrgánicaUniversidad Nacional de CórdobaHaya de la Torre y Medina Allende Córdoba X5000HUA Argentina
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA) CONICETDepartamento de Química OrgánicaAv. Velez Sarsfield 1611 Córdoba 5000 Argentina
| |
Collapse
|
28
|
Han L, He Y, An R, Wang X, Zhang Y, Shi L, Ran R. Mussel-inspired, robust and self-healing nanocomposite hydrogels: Effective reusable absorbents for removal both anionic and cationic dyes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Su E, Yurtsever M, Okay O. A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as a Superabsorbent Polymer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00032] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Esra Su
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Oguz Okay
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
30
|
Zhang D, Yao Y, Wu J, Protsak I, Lu W, He X, Xiao S, Zhong M, Chen T, Yang J. Super Hydrophilic Semi-IPN Fluorescent Poly(N-(2-hydroxyethyl)acrylamide) Hydrogel for Ultrafast, Selective, and Long-Term Effective Mercury(II) Detection in a Bacteria-Laden System. ACS APPLIED BIO MATERIALS 2019; 2:906-915. [DOI: 10.1021/acsabm.8b00761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yingchun Yao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Iryna Protsak
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Lu
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengwei Xiao
- Department of Polymer Science and Engineering, School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao Chen
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
31
|
Zhang Y, Liang L, Chen Y, Chen XM, Liu Y. Construction and efficient dye adsorption of supramolecular hydrogels by cyclodextrin pseudorotaxane and clay. SOFT MATTER 2018; 15:73-77. [PMID: 30520497 DOI: 10.1039/c8sm02203h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supramolecular hydrogels, which are usually used to develop excellent smart soft materials, are widely applied in miscellaneous fields due to their inherent reversible properties, unique functions and mechanical properties. Compared with covalently linked hydrogels, supramolecular hydrogels have advantages of easy preparation, stimulus responsiveness and good biocompatibility. Herein, after threading amino-modified β-cyclodextrins onto poly(propyleneglycol)bis(2-amionopropylether) (PPG-NH2) chains, the resultant pseudorotaxanes non-covalently interacted with a clay nanosheet (CNS) matrix to construct supramolecular hydrogels bearing negative charges, and the mechanical properties of these hydrogels were positively correlated with the number of amino groups on the pseudorotaxane. Significantly, these hydrogels presented good adsorption properties for cationic dyes. The adsorption capacity (Qe) of the hydrogels towards rhodamine B (RhB), crystal violet (CV), and methylene blue (MB) could reach 181-228 mg g-1, and most of the dyes were adsorbed within 5 min. Thus, these hydrogels may have potential applications in the field of waste water treatment.
Collapse
Affiliation(s)
- Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Lu Liang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Xu-Man Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
32
|
Wang L, Deng F, Wang W, Li A, Lu C, Chen H, Wu G, Nan K, Li L. Construction of Injectable Self-Healing Macroporous Hydrogels via a Template-Free Method for Tissue Engineering and Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36721-36732. [PMID: 30261143 DOI: 10.1021/acsami.8b13077] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Because of their ease of handling and excellent biocompatibility, injectable macroporous hydrogels have received a considerable interest in the fields of tissue engineering and drug delivery systems because of their unique application in minimally invasive surgical procedures. In this study, in situ forming, injectable, macroporous, self-healing gelatin (GE)/oxidized alginate (OSA)/adipic acid dihydrazide (ADH) hydrogels were prepared using a high-speed shearing treatment and were stabilized by Schiff base reaction and acylhydrazone bonds. Their injectability, self-healing ability, rheology, microstructure, equilibrium water content, and in vitro biodegradation were investigated. We found that the injectable GE/OSA/ADH precursors remained in a liquid form and flowed easily for several minutes at room temperature, but however, gelled rapidly at body temperature. The gelation time could be regulated by varying the ratio of GE, OSA, and ADH. The obtained hydrogels had an interconnected macroporous structure and self-healing ability. The porosity of hydrogels was in the range of approximately 60-83%, and pore size varied from approximately 125-380 μm. The porous structure of hydrogel was visualized by field-emission scanning electron microscope, micro-computed tomography, and laser confocal microscope. Human epidermal growth factor was loaded by in situ mixing in GE/OSA/ADH hydrogels and was released with good bioactivity as evaluated by ELISA. Moreover, L929 cells proliferated on GE/OSA/ADH hydrogels, as verified by Cell Counting Kit-8 and LIVE/DEAD assays. Furthermore, encapsulation of NIH 3T3 cells within GE/OSA/ADH hydrogels demonstrated that the hydrogel can support cell survival, proliferation, and migration. In vivo studies showed that the hydrogels had a good injectability, in situ gelation, and tissue biocompatibility. Therefore, GE/OSA/ADH hydrogel represented a novel and safe injectable macroporous self-healing hydrogel for tissue engineering scaffold and drug delivery vehicle purposes.
Collapse
Affiliation(s)
- Lei Wang
- Eye Hospital, School of Opthalmology & Optometry , Wenzhou Medical University , Zhejiang Province 325000 China
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou Medical University , Zhejiang Province 325000 , China
| | - Fen Deng
- Eye Hospital, School of Opthalmology & Optometry , Wenzhou Medical University , Zhejiang Province 325000 China
| | - Wenwen Wang
- Wenzhou Hospital of Integrated Traditional and Western Medicine , Wenzhou 325000 , China
| | - Afeng Li
- Eye Hospital, School of Opthalmology & Optometry , Wenzhou Medical University , Zhejiang Province 325000 China
| | - Conglie Lu
- Eye Hospital, School of Opthalmology & Optometry , Wenzhou Medical University , Zhejiang Province 325000 China
| | - Hao Chen
- Eye Hospital, School of Opthalmology & Optometry , Wenzhou Medical University , Zhejiang Province 325000 China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA) , Vrije Universiteit Amsterdam and University of Amsterdam , NL-1081 LA Amsterdam , The Netherlands
| | - Kaihui Nan
- Eye Hospital, School of Opthalmology & Optometry , Wenzhou Medical University , Zhejiang Province 325000 China
| | - Lingli Li
- Eye Hospital, School of Opthalmology & Optometry , Wenzhou Medical University , Zhejiang Province 325000 China
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou Medical University , Zhejiang Province 325000 , China
| |
Collapse
|
33
|
Zhang K, Fang H, Qin Y, Zhang L, Yin J. Functionalized Scaffold for in Situ Efficient Gene Transfection of Mesenchymal Stem Cells Spheroids toward Chondrogenesis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33993-34004. [PMID: 30207161 DOI: 10.1021/acsami.8b12268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multicellular mesenchymal stem cell (MSC) spheroids possess enhanced chondrogenesis ability and limited fibrosis, exhibiting advantage toward hyaline-like cartilage regeneration. However, because of the limited cell surfaces in spheroid exposed to DNA/vector, it is difficult to realize efficient gene transfection, most of which highly rely on cell-substrate interaction. Here, we report a poly(l-glutamic acid)-based porous scaffold with tunable inner surfaces that can sequentially realize cell-scaffold attachment and detachment, as well as the followed in situ spheroid formation. The attachment and detachment of cells from scaffold is achieved by the capture and release of fibronectin (Fn) via reversible imine linkage between aromatic aldehyde groups of scaffold and amino groups of Fn. Together with N, N, N-trimethyl chitosan chloride condensing plasmid DNA encoding transforming growth factor-β1 (pDNA-TGF-β1), cell attachment realizes efficient surface-mediated gene transfection. Conversion of scaffold stiffness can affect the adhesion shape of cells. Stiffer scaffold reinforces the adhesion, leading to the amplification of peripheral focal adhesions and the promotion of cell spreading, as well as the promotion of gene transfection efficiency. After cellular detachment from the scaffold via lysine treatment, the subsequent spheroid formation with extensive cell-cell interaction up-regulates the corresponding protein expression with a prolonged term. With the induction effect of the expressed TGF-β1, significantly enhanced chondrogenesis of MSCs in spheroids is achieved at 10 d in vitro. Well-regenerated cartilage at 8 weeks in vivo indicates that the present gene transfection system is a platform that can be potentially applied toward cartilage tissue engineering.
Collapse
Affiliation(s)
- Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Yechi Qin
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Lili Zhang
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering , Shanghai University , 99 Shangda Road , Shanghai 200444 , PR China
| |
Collapse
|
34
|
Zhang XN, Wang YJ, Sun S, Hou L, Wu P, Wu ZL, Zheng Q. A Tough and Stiff Hydrogel with Tunable Water Content and Mechanical Properties Based on the Synergistic Effect of Hydrogen Bonding and Hydrophobic Interaction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01496] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xin Ning Zhang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yan Jie Wang
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengtong Sun
- Center for Advanced Low-dimension Materials & College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lei Hou
- Center for Advanced Low-dimension Materials & College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peiyi Wu
- Center for Advanced Low-dimension Materials & College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory for Advanced Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
35
|
Jiao C, Chen Y, Liu T, Peng X, Zhao Y, Zhang J, Wu Y, Wang H. Rigid and Strong Thermoresponsive Shape Memory Hydrogels Transformed from Poly(vinylpyrrolidone- co-acryloxy acetophenone) Organogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32707-32716. [PMID: 30165020 DOI: 10.1021/acsami.8b11391] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Shape memory hydrogels (SMHs) have a wide range of potential practical applications. However, the mechanically weak and soft nature of most SMHs strongly impedes their applications. Here, we report a novel kind of thermal-responsive SMH with high tensile strength and high elastic moduli. Organogels are first prepared by the copolymerization of a hydrophilic monomer N-vinylpyrrolidone (NVP) and a hydrophobic monomer acryloxy acetophenone (AAP) in N, N'-dimethylformamide (DMF) solutions, and then, poly(vinylpyrrolidone- co-acryloxy acetophenone) [poly(NVP- co-AAP)] hydrogels are obtained by solvent exchange with water. Because of the strong and reversible hydrophobic association and π-π stacking of acetophenone groups, the poly(NVP- co-AAP) hydrogels exhibit tensile strengths up to 8.41 ± 0.83 MPa and Young's moduli up to 94.2 ± 1.3 MPa, which are more than 1 or 3 orders of magnitude higher than those of the organogels, respectively. The poly(NVP- co-AAP) hydrogels exhibit good shape memory behaviors, with a complete fixation ratio and a recovery ratio of 74-89%, as well as very fast shape-fixing and recovering rates (in seconds). These rigid and strong hydrogels are demonstrated to be an ideal shape memory material for surgical fixation devices to wrap around and support various shapes of limbs.
Collapse
Affiliation(s)
- Chen Jiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yuanyuan Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Tianqi Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Xin Peng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yaxin Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Jianan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Yuqing Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| | - Huiliang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry , Beijing Normal University , Beijing 100875 , P. R. China
| |
Collapse
|
36
|
Peng S, Liu S, Sun Y, Xiang N, Jiang X, Hou L. Facile preparation and characterization of poly(vinyl alcohol)-NaCl-glycerol supramolecular hydrogel electrolyte. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Li X, Li R, Liu Z, Gao X, Long S, Zhang G. Integrated Functional High-Strength Hydrogels with Metal-Coordination Complexes and H-Bonding Dual Physically Cross-linked Networks. Macromol Rapid Commun 2018; 39:e1800400. [DOI: 10.1002/marc.201800400] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan 430068 P. R. China
- Collaborative Innovation Center of Green Light-Weight Materials and Processing; Hubei University of Technology; Wuhan 430068 P. R. China
| | - Rongzhe Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan 430068 P. R. China
| | - Zuifang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan 430068 P. R. China
| | - Xiang Gao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan 430068 P. R. China
| | - Shijun Long
- Collaborative Innovation Center of Green Light-Weight Materials and Processing; Hubei University of Technology; Wuhan 430068 P. R. China
| | - Gaowen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry; Hubei University of Technology; Wuhan 430068 P. R. China
| |
Collapse
|
38
|
Mozaffari Z, Hatamzadeh M, Massoumi B, Jaymand M. Synthesis and characterization of a novel stimuli-responsive magnetite nanohydrogel based on poly(ethylene glycol) and poly(N
-isopropylacrylamide) as drug carrier. J Appl Polym Sci 2018. [DOI: 10.1002/app.46657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zahra Mozaffari
- Department of Chemistry; Payame Noor University, P.O. Box: 19395-3697; Tehran Iran
| | - Maryam Hatamzadeh
- Department of Chemistry; Payame Noor University, P.O. Box: 19395-3697; Tehran Iran
| | - Bakhshali Massoumi
- Department of Chemistry; Payame Noor University, P.O. Box: 19395-3697; Tehran Iran
| | - Mehdi Jaymand
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
39
|
Liu B, Liu W. Poly(vinyl diaminotriazine): From Molecular Recognition to High-Strength Hydrogels. Macromol Rapid Commun 2018; 39:e1800190. [PMID: 29806117 DOI: 10.1002/marc.201800190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/21/2018] [Indexed: 02/28/2024]
Abstract
Poly(2-vinyl-4,6-diamino-1,3,5-triazine), (PVDT) with diaminotriazine residues is found to form not only intramolecular hydrogen bonds, but also three robust, complementary hydrogen bonds with nucleobases such as thymine and uracil. Taking advantage of the three complementary hydrogen bonds, molecular recognition of a nucleic acid base has been investigated in previous work. Over the past few years, the use of PVDT has been extended to the construction of gene delivery vectors and nonswellable, high-strength hydrogels by copolymerization with a hydrophilic monomer and/or crosslinker. In particular, many fascinating properties, such as excellent mechanical properties, stimuli responsiveness, the shape memory effect, and biodegradability, have emerged in PVDT-based hydrogels. In this article, the molecular recognition and self-assembly of diaminotriazine are introduced first, and then a particular focus is placed on the development of PVDT-based high performance hydrogels, especially their biorelated applications.
Collapse
Affiliation(s)
- Bo Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
40
|
Liu Y, He W, Zhang Z, Lee BP. Recent Developments in Tough Hydrogels for Biomedical Applications. Gels 2018; 4:E46. [PMID: 30674822 PMCID: PMC6209285 DOI: 10.3390/gels4020046] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
A hydrogel is a three-dimensional polymer network with high water content and has been attractive for many biomedical applications due to its excellent biocompatibility. However, classic hydrogels are mechanically weak and unsuitable for most physiological load-bearing situations. Thus, the development of tough hydrogels used in the biomedical field becomes critical. This work reviews various strategies to fabricate tough hydrogels with the introduction of non-covalent bonds and the construction of stretchable polymer networks and interpenetrated networks, such as the so-called double-network hydrogel. Additionally, the design of tough hydrogels for tissue adhesive, tissue engineering, and soft actuators is reviewed.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Weilue He
- FM Wound Care LLC, Hancock, MI 49930, USA.
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
41
|
Ding H, Zhang XN, Zheng SY, Song Y, Wu ZL, Zheng Q. Hydrogen bond reinforced poly(1-vinylimidazole-co-acrylic acid) hydrogels with high toughness, fast self-recovery, and dual pH-responsiveness. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
42
|
|
43
|
A mechanically strong conductive hydrogel reinforced by diaminotriazine hydrogen bonding. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1960-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
|
45
|
Yang N, Yang H, Shao Z, Guo M. Ultrastrong and Tough Supramolecular Hydrogels from Multiurea Linkage Segmented Copolymers with Tractable Processablity and Recyclability. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201700275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/10/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nannan Yang
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Huili Yang
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zengwu Shao
- Department of Orthopaedic Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; 1277 Jiefang Road Wuhan 430022 China
| | - Mingyu Guo
- State-Local Joint Engineering Laboratory of Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
46
|
Wang H, Zhu H, Fu W, Zhang Y, Xu B, Gao F, Cao Z, Liu W. A High Strength Self-Healable Antibacterial and Anti-Inflammatory Supramolecular Polymer Hydrogel. Macromol Rapid Commun 2017; 38. [PMID: 28272767 DOI: 10.1002/marc.201600695] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/01/2017] [Indexed: 11/08/2022]
Abstract
There is a significant cost to mitigate the infection and inflammation associated with the implantable medical devices. The development of effective antibacterial and anti-inflammatory biomaterials with novel mechanism of action has become an urgent task. In this study, a supramolecular polymer hydrogel is synthesized by the copolymerization of N-acryloyl glycinamide and 1-vinyl-1,2,4-triazole in the absence of any chemical crosslinker. The hydrogel network is crosslinked through the hydrogen bond interactions between dual amide motifs in the side chain of N-acryloyl glycinamide. The prepared hydrogels demonstrate excellent mechanical properties-high tensile strength (≈1.2 MPa), large stretchability (≈1300%), and outstanding compressive strength (≈11 MPa) at swelling equilibrium state. A simulation study elaborates the changes of hydrogen bond interactions when 1-vinyl-1,2,4-triazole is introduced into the gel network. It is demonstrated that the introduction of 1-vinyl-1,2,4-triazole endowes the supramolecular hydrogels with self-repairability, thermoplasticity, and reprocessability over a lower temperature range for 3D printing of different shapes and patterns under simplified thermomelting extrusion condition. In addition, these hydrogels exhibit antimicrobial and anti-inflammatory activities, and in vitro cytotoxicity assay and histological staining following in vivo implantation confirm the biocompatibility of the hydrogel. These hydrogels with integrated multifunctions hold promising potential as an injectable biomaterial for treating degenerated soft supporting tissues.
Collapse
Affiliation(s)
- Hongbo Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, 48202, USA
| | - Weigui Fu
- School of Materials Science and Engineering, State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin, 300387, China
| | - Yinyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Bing Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Fei Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, 48202, USA
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
47
|
Yuan N, Xu L, Zhang L, Ye H, Zhao J, Liu Z, Rong J. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:221-230. [DOI: 10.1016/j.msec.2016.04.074] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/30/2016] [Accepted: 04/21/2016] [Indexed: 12/25/2022]
|
48
|
Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomater 2016; 41:282-92. [PMID: 27267781 DOI: 10.1016/j.actbio.2016.06.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/28/2016] [Accepted: 06/02/2016] [Indexed: 01/05/2023]
Abstract
UNLABELLED Nucleic acid-based gene therapy is a promising treatment option to cure numerous intractable diseases. For non-viral gene carriers, low-molecular-weight polymeric vectors generally demonstrate poor transfection performance, but benefit their final removals from the body. Recently, it was reported that aminated poly(glycidyl methacrylate) (PGMA) is one potential gene vector. Based on ethylenediamine (ED)-functionalized low-molecular-weight PGMA (denoted by PGED), a flexible strategy was herein proposed to design new well-defined reducible cationic nanogels (denoted by PGED-NGs) with friendly crosslinking reagents for highly efficient nucleic acid delivery. α-Lipoic acid (LA), one natural antioxidant in human body, was readily introduced into ED-functionalized PGMA and crosslinked to produce cationic PGED-NGs with plentiful reducible lipoyl groups. PGED-NGs could effectively complex plasmid DNA (pDNA) and short interfering RNA (siRNA). Compared with pristine PGED, PGED-NGs exhibited much better performance of pDNA transfection. PGED-NGs also could efficiently transport MALAT1 siRNA (siR-M) into hepatoma cells and significantly suppressed the cancer cell proliferation and migration. The present work indicated that reducible cationic nanogels involving LA crosslinking reagents are one kind of competitive candidates for high-performance nucleic acid delivery systems. STATEMENT OF SIGNIFICANCE Recently, the design of new types of high-performance nanoparticles is of great significance in delivering therapeutics. Nucleic acid-based therapy is a promising treatment option to cure numerous intractable diseases. A facile and straightforward strategy to fabricate safe nucleic acid delivery nanovectors is highly desirable. In this work, based on ethylenediamine-functionalized low-molecular-weight poly(glycidyl methacrylate), a flexible strategy was proposed to design new well-defined reducible cationic nanogels (denoted by PGED-NGs) with α-Lipoic acid, one friendly crosslinking reagent, for highly efficient nucleic acid delivery. Such PGED-NGs possess plentiful reducible lipoyl groups, effectively encapsulated pDNA and siRNA and exhibited excellent abilities of nucleic acid delivery. The present work indicated that reducible cationic nanogels involving α-lipoic acid crosslinking reagents are one kind of competitive candidates for high-performance nucleic acid delivery systems.
Collapse
|
49
|
Li RQ, Wu Y, Zhi Y, Yang X, Li Y, Xua FJ, Du J. PGMA-Based Star-Like Polycations with Plentiful Hydroxyl Groups Act as Highly Efficient miRNA Delivery Nanovectors for Effective Applications in Heart Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7204-7212. [PMID: 27297033 DOI: 10.1002/adma.201602319] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Poly(glycidyl methacrylate)-based star-like polycations with rich hydrophilic hydroxyl groups can efficiently transfer miRNA into primary cardiac fibroblasts for effective applications in cardiac diseases, such as inhibition of cardiac fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Rui-Quan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yina Wu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, P. R. China
| | - Ying Zhi
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, P. R. China
| | - Xinchao Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yulin Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, P. R. China
| | - Fu-Jian Xua
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, P. R. China
| |
Collapse
|
50
|
Hu Y, Zhou Y, Zhao N, Liu F, Xu FJ. Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe3 O4 Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2459-68. [PMID: 26996155 DOI: 10.1002/smll.201600271] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/10/2016] [Indexed: 05/23/2023]
Abstract
It is very desirable to design multifunctional nanocomposites for theranostic applications via flexible strategies. The synthesis of one new multifunctional polycationic Au nanorod (NR)-coated Fe3 O4 nanosphere (NS) hierarchical nanocomposite (Au@pDM/Fe3 O4 ) based on the ternary assemblies of negatively charged Fe3 O4 cores (Fe3 O4 -PDA), polycation-modified Au nanorods (Au NR-pDM), and polycations is proposed. For such nanocomposites, the combined near-infrared absorbance properties of Fe3 O4 -PDA and Au NR-pDM are applied to photoacoustic imaging and photothermal therapy. Besides, Fe3 O4 and Au NR components allow the nanocomposites to serve as MRI and CT contrast agents. The prepared positively charged Au@pDM/Fe3 O4 also can complex plasmid DNA into pDNA/Au@pDM/Fe3 O4 and efficiently mediated gene therapy. The multifunctional applications of pDNA/Au@pDM/Fe3 O4 nanocomposites in trimodal imaging and combined photothermal/gene therapy are demonstrated using a xenografted rat glioma nude mouse model. The present study demonstrates that the proper assembly of different inorganic nanoparticles and polycations is an effective strategy to construct new multifunctional theranostic systems.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiqiang Zhou
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, 100050, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital affiliated to Capital Medical University, Beijing, 100050, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|