1
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|
2
|
Zhu B, Liu W, Liu Y, Zhao X, Zhang H, Luo Z, Jin Y. Jawbone microenvironment promotes periodontium regeneration by regulating the function of periodontal ligament stem cells. Sci Rep 2017; 7:40088. [PMID: 28053317 PMCID: PMC5215380 DOI: 10.1038/srep40088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022] Open
Abstract
During tooth development, the jawbone interacts with dental germ and provides the development microenvironment. Jawbone-derived mesenchymal stem cells (JBMSCs) maintain this microenvironment for root and periodontium development. However, the effect of the jawbone microenvironment on periodontium tissue regeneration is largely elusive. Our previous study showed that cell aggregates (CAs) of bone marrow mesenchymal stem cells promoted periodontium regeneration on the treated dentin scaffold. Here, we found that JBMSCs enhanced not only the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) but also their adhesion to titanium (Ti) material surface. Importantly, the compound CAs of PDLSCs and JBMSCs regenerated periodontal ligament-like fibers and mineralized matrix on the Ti scaffold surface, both in nude mice ectopic and minipig orthotopic transplantations. Our data revealed that an effective regenerative microenvironment, reconstructed by JBMSCs, promoted periodontium regeneration by regulating PDLSCs function on the Ti material.
Collapse
Affiliation(s)
- Bin Zhu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Orthopedics Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Stomatology, PLA Xizang Military Region General Hospital, Lhasa, Tibet, People's Republic of China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yihan Liu
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Stomatology, PLA 301th Hospital, Beijing, People's Republic of China
| | - Xicong Zhao
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuojing Luo
- Department of Orthopedics Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Centre for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Simon CG, Yaszemski MJ, Ratcliffe A, Tomlins P, Luginbuehl R, Tesk JA. ASTM international workshop on standards and measurements for tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 2015; 103:949-59. [PMID: 25220952 PMCID: PMC4886474 DOI: 10.1002/jbm.b.33286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 01/09/2023]
Abstract
The "Workshop on Standards & Measurements for Tissue Engineering Scaffolds" was held on May 21, 2013 in Indianapolis, IN, and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active "guide" documents for educational purposes, but few standard "test methods" or "practices." Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition, and drug release from scaffolds. Discussions highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Workshop participants emphasized the need to promote the use of standards in scaffold fabrication, characterization, and commercialization. Finally, participants noted that standards would be more broadly accepted if their impact in the TEMPs community could be quantified. Many scaffold standard needs have been identified and focus is turning to generating these standards to support the use of scaffolds in TEMPs.
Collapse
Affiliation(s)
- Carl G. Simon
- Biosystems & Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Michael J. Yaszemski
- Departments of Orthopedic Surgery & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Paul Tomlins
- European Standards Consultant, Egham, United Kingdom
| | - Reto Luginbuehl
- Department of Chemistry and Biology, RMS Foundation, Bettlach, Switzerland
| | - John A. Tesk
- Biomedical Materials and Devices Consulting, Highland, MD, USA
| |
Collapse
|
4
|
Salmasi S, Kalaskar DM, Yoon WW, Blunn GW, Seifalian AM. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells. World J Stem Cells 2015; 7:266-80. [PMID: 25815114 PMCID: PMC4369486 DOI: 10.4252/wjsc.v7.i2.266] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023] Open
Abstract
Recent regenerative medicine and tissue engineering strategies (using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional (3D) organs, such as bone, skin, liver, kidney and ear, using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nano-surface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.
Collapse
Affiliation(s)
- Shima Salmasi
- Shima Salmasi, Deepak M Kalaskar, Alexander M Seifalian, UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, NW3 2PF London, United Kingdom
| | - Deepak M Kalaskar
- Shima Salmasi, Deepak M Kalaskar, Alexander M Seifalian, UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, NW3 2PF London, United Kingdom
| | - Wai-Weng Yoon
- Shima Salmasi, Deepak M Kalaskar, Alexander M Seifalian, UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, NW3 2PF London, United Kingdom
| | - Gordon W Blunn
- Shima Salmasi, Deepak M Kalaskar, Alexander M Seifalian, UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, NW3 2PF London, United Kingdom
| | - Alexander M Seifalian
- Shima Salmasi, Deepak M Kalaskar, Alexander M Seifalian, UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, NW3 2PF London, United Kingdom
| |
Collapse
|
5
|
Browne S, Pandit A. Multi-modal delivery of therapeutics using biomaterial scaffolds. J Mater Chem B 2014; 2:6692-6707. [DOI: 10.1039/c4tb00863d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalisation of biomaterials with therapeutic moieties (proteins, drugs, genes) is a pre-requisite to tissue regeneration and restoration of function following injury or disease.
Collapse
Affiliation(s)
- S. Browne
- Network of Excellence for Functional Biomaterials
- National University of Ireland
- Galway, Ireland
| | - A. Pandit
- Network of Excellence for Functional Biomaterials
- National University of Ireland
- Galway, Ireland
| |
Collapse
|
6
|
Cantu DA, Kao WJ. Combinatorial biomatrix/cell-based therapies for restoration of host tissue architecture and function. Adv Healthc Mater 2013; 2:1544-63. [PMID: 23828863 PMCID: PMC3896550 DOI: 10.1002/adhm.201300063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/08/2013] [Indexed: 12/13/2022]
Abstract
This Progress Report reviews recent advances in the utility of extracellular matrix (ECM)-mimic biomaterials in presenting and delivering therapeutic cells to promote tissue healing. This overview gives a brief introduction of different cell types being used in regenerative medicine and tissue engineering while addressing critical issues that must be overcome before cell-based approaches can be routinely employed in the clinic. A selection of five commonly used cell-associated, biomaterial platforms (collagen, hyaluronic acid, fibrin, alginate, and poly(ethylene glycol)) are reviewed for treatment of a number of acute injury or diseases with emphasis on animal models and clinical trials. This article concludes with current challenges and future perspectives regarding foreign body host response to biomaterials and immunological reactions to allogeneic or xenogeneic cells, vascularization and angiogenesis, matching mechanical strength and anisotropy of native tissues, as well as other non-technical issues regarding the clinical translation of biomatrix/cell-based therapies.
Collapse
Affiliation(s)
- David Antonio Cantu
- School of Pharmacy, Division of Pharmaceutical Sciences University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - W. John Kao
- School of Pharmacy, Division of Pharmaceutical Sciences University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Univeristy of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
7
|
Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim DH, Suh KY. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2013; 65:536-58. [PMID: 22921841 PMCID: PMC5444877 DOI: 10.1016/j.addr.2012.07.014] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end.
Collapse
Affiliation(s)
- Hong Nam Kim
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Alex Jiao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processing, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Sung Kim
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Do Hyun Kang
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kahp-Yang Suh
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
- Institute of Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
8
|
Oerlemans AJ, Feitz WF, van Leeuwen E, Dekkers WJ. Regenerative Urology Clinical Trials: An Ethical Assessment of Road Blocks and Solutions. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:41-7. [DOI: 10.1089/ten.teb.2012.0136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anke J.M. Oerlemans
- Scientific Institute for Quality of Healthcare, Section Ethics, Philosophy and History of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wouter F.J. Feitz
- Department of Urology, Radboud University Nijmegen Medical Centre, Radboud Children's Hospital, Nijmegen, The Netherlands
| | - Evert van Leeuwen
- Scientific Institute for Quality of Healthcare, Section Ethics, Philosophy and History of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wim J.M. Dekkers
- Scientific Institute for Quality of Healthcare, Section Ethics, Philosophy and History of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Kumar G, Waters MS, Farooque TM, Young MF, Simon CG. Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials 2012; 33:4022-30. [PMID: 22417619 PMCID: PMC3428138 DOI: 10.1016/j.biomaterials.2012.02.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/26/2012] [Indexed: 11/20/2022]
Abstract
We demonstrate that freeform fabricated (FFF) scaffolds with a roughened surface topography can support hBMSC proliferation, while also inducing osteogenic differentiation, for maximized generation of calcified, bone-like tissue. Previously, hBMSCs rapidly proliferated, without osteogenic differentiation, during culture in FFF scaffolds. In contrast, hBMSCs underwent osteogenic differentiation, with slow proliferation, during culture in nanofiber scaffolds. Analysis of cell morphology showed that the topography presented by the nanofiber scaffolds drove hBMSC differentiation by guiding them into a morphology that induced osteogenic differentiation. Herein, we hypothesized that using the high-surface area architecture of FFF scaffolds to present a surface roughness that drives hBMSCs into a morphology that induces osteogenic differentiation would yield a maximum amount differentiated hBMSCs and bone-like tissue. Thus, a solvent etching method was developed that imparted a 5-fold increase in roughness to the surface of the struts of poly(ε-caprolactone) (PCL) FFF scaffolds. The etched scaffolds induced osteogenic differentiation of the hBMSCs while un-etched scaffolds did not. The etched scaffolds also supported the same high levels of hBMSC proliferation that un-etched scaffolds supported. Finally, hBMSCs on un-etched scaffolds had a large spread area, while hBMSCs on etched scaffolds has a smaller area and were more rounded, indicating that the surface roughness from the etched scaffolds dictated the morphology of the hBMSCs. The results demonstrate that FFF scaffolds with surface roughness can support hBMSC proliferation, while also inducing osteogenic differentiation, to maximize generation of calcified tissue. This work validates a rational approach to scaffold fabrication where the structure of the scaffold was designed to optimize stem cell function by controlling cell morphology.
Collapse
Affiliation(s)
- Girish Kumar
- Polymers Division, National Institute of Standards & Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- National Institute of Dental & Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892, USA
- Division of Biology, Office of Science & Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food & Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Michael S. Waters
- Polymers Division, National Institute of Standards & Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Tanya M. Farooque
- Polymers Division, National Institute of Standards & Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Marian F. Young
- National Institute of Dental & Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD, 20892, USA
| | - Carl G. Simon
- Polymers Division, National Institute of Standards & Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| |
Collapse
|
10
|
Regulation of Stem Cell-Based Therapies in Canada: Current Issues and Concerns. Stem Cell Rev Rep 2012; 8:623-8. [DOI: 10.1007/s12015-012-9360-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|