1
|
Mohan BVG, Shobhana VG, Boopathi NM. A Comparison of the Optical Properties of Fibre-Based Luminescent Solar Concentrators and Transparent Wood Towards Sustainable Waveguides. LUMINESCENCE 2025; 40:e70093. [PMID: 39844452 DOI: 10.1002/bio.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/14/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
Aiming at net-zero emissions, most international and national policies focus on sustainable development goals. Hence, there is an immediate need for replacing carbon-intensive materials with biomaterials. In this respect, this article presents a road-map for moving from polymeric to sustainable waveguides in optical devices. Previous reports indicate that luminescent fibres exhibit better photon concentrations of nearly 30%-33% higher than flat-plate polymeric waveguides. It is also verified that the photon in-out ratio increases by 3.44 times when the waveguide geometry is changed from planar to an equivalent area of fibre bundle with the same luminophore. Meanwhile, transparent wood (Twood) is gaining attention as a green alternative to acrylic sheets. The structure and function of transparent wood conforms well with the fibre-based waveguides of luminescent solar concentrators (LSCs). Therefore, it is intriguing to compare Twood with intrinsic micro fibrillary interior with fibre-based LSC as a natural alternative. This review provides an in-depth analysis, emphasizing the benefits and associated challenges in using cylindrical concentrators over planar LSCs. The paper collects and compares the phenomenon of light guiding of cylindrical and fibre-based LSCs with that of Twood. It is important to consider the key points discussed here while making a transition towards sustainable waveguides.
Collapse
Affiliation(s)
- Brindha V G Mohan
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - V G Shobhana
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - N Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Chen S, Zu B, Wu L. Optical Applications of CuInSe 2 Colloidal Quantum Dots. ACS OMEGA 2024; 9:43288-43301. [PMID: 39494032 PMCID: PMC11525504 DOI: 10.1021/acsomega.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 11/05/2024]
Abstract
The distinctive chemical, physical, electrical, and optical properties of semiconductor quantum dots (QDs) make them a highly fascinating nanomaterial that has been extensively studied. The CuInSe2 (CIS) QDs demonstrates great potential as a nontoxic alternative to CdSe and PbSe QDs for realizing high-performance solution-processed semiconductor devices. The CIS QDs show strong light absorption and bright emission across the visible and infrared spectrum and have been designed to exhibit optical gain. The special characteristics of these properties are of great significance in the fields of solar energy conversion, display, and electronic devices. Here, we present a comprehensive overview of the potential applications of colloidal CIS QDs in various fields, with a particular focus on solar energy conversion (such as QD solar cells, QD-sensitized solar cells, and QD luminescence solar concentrators), solar-to-hydrogen production (such as photocatalytic and photoelectrochemical H2 production), and QD electronics (such as QD transistors, QD light-emitting diodes, and QD photodetectors). Furthermore, we offer our insights into the current challenges and future opportunities associated with CIS QDs for further research.
Collapse
Affiliation(s)
- Song Chen
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Bingqian Zu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Liang Wu
- School of Chemistry and Materials
Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| |
Collapse
|
3
|
Figueiredo G, Correia SFH, Falcão BP, Sencadas V, Fu L, André PS, Ferreira RAS. Multi-Surface Adhesion Luminescent Solar Concentrators for Supply-Less IoT. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400540. [PMID: 39010670 PMCID: PMC11425244 DOI: 10.1002/advs.202400540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The growing prevalence of Internet of Things (IoT) devices hinges on resolving the challenge of powering sensors and transmitters. Addressing this, supply-less IoT devices are gaining traction by integrating energy harvesters. This study introduces a temperature sensor devoid of external power sources, achieved through a novel luminescent solar concentrator (LSC) device based on a stretchable, adhesive elastomer. Leveraging a lanthanide-doped styrene-ethylene-butylene-styrene matrix, the LSC yielded 0.09% device efficiency. The resultant temperature sensor exhibits a thermal sensitivity of 2.1%°C-1 and a 0.06 °C temperature uncertainty, autonomously transmitting real-time data to a server for user visualization via smartphones. Additionally, the integration of LED-based lighting enables functionality in low-light conditions, ensuring 24 h cycle operation and the possibility of having four distinct thermometric parameters without changing the device configuration, stating remarkable robustness and reliability of the system.
Collapse
Affiliation(s)
- Gonçalo Figueiredo
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
- Department of Electrical and Computer Engineering and Instituto de TelecomunicaçõesInstituto Superior TécnicoUniversity of LisbonLisbon1049‐001Portugal
| | - Sandra F. H. Correia
- Instituto de Telecomunicações and University of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Bruno P. Falcão
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Vitor Sencadas
- Department of Materials and Ceramic Engineering and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Lianshe Fu
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Paulo S. André
- Department of Electrical and Computer Engineering and Instituto de TelecomunicaçõesInstituto Superior TécnicoUniversity of LisbonLisbon1049‐001Portugal
| | - Rute A. S. Ferreira
- Department of Physics and CICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| |
Collapse
|
4
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
5
|
Tatsi E, De Marzi M, Mauri L, Colombo A, Botta C, Turri S, Dragonetti C, Griffini G. Semi-Transparent Luminescent Solar Concentrators Based on Intramolecular Energy Transfer in Polyurethane Matrices. Macromol Rapid Commun 2024; 45:e2300724. [PMID: 38485136 DOI: 10.1002/marc.202300724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Luminescent solar concentrators (LSCs) are spectral conversion devices offering interesting opportunities for the integration of photovoltaics into the built environment and portable systems. The Förster-resonance energy transfer (FRET) process can boost the optical response of LSCs by reducing energy losses typically associated to non-radiative processes occurring within the device under operation. In this work, a new class of FRET-based thin-film LSC devices is presented, in which the synthetic versatility of linear polyurethanes (PU) is exploited to control the photophysical properties and the device performance of the resulting LSCs. A series of luminescent linear PUs are synthesized in the presence of two novel bis-hydroxyl-functionalized luminophores of suitable optical properties, used as chain extenders during the step-growth polyaddition reaction for the formation of the linear macromolecular network. By synthetically tuning their composition, the obtained luminescent PUs can achieve a high energy transfer efficiency (≈90%) between the covalently linked luminophores. The corresponding LSC devices exhibit excellent photonic response, with external and internal photon efficiencies as high as ≈4% and ≈37%, respectively. Furthermore, their optimized power conversion efficiency combined with their enhanced average visible-light transmittance highlight their suitability for potential use as transparent solar energy devices.
Collapse
Affiliation(s)
- Elisavet Tatsi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Matteo De Marzi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Luca Mauri
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, Milano, 20133, Italy
| | - Alessia Colombo
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, Milano, 20133, Italy
| | - Chiara Botta
- Institute of Sciences and Chemical Technologies "Giulio Natta" (SCITEC) of CNR, via Corti 12, Milano, 20133, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Claudia Dragonetti
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, Milano, 20133, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| |
Collapse
|
6
|
Nara M, Fujiwara E, Vyšniauskas A, Gulbinas V, Ando S. Photophysical analysis of dual fluorescence and phosphorescence emissions observed for semi-aliphatic polyimides at lower temperatures. Phys Chem Chem Phys 2024; 26:15461-15471. [PMID: 38748239 DOI: 10.1039/d4cp00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The photoluminescence (PL) properties of four types of blue fluorescent semi-aliphatic polyimides (PIs) derived from aromatic dianhydrides (ODPA, BPDA, HQDEA, and BPADA) and an alicyclic diamine (DCHM) were investigated at temperatures ranging from room temperature (RT, 298 K) to 30 K to analyse the origins of their non-radiative relaxation (NR) processes. These PIs exhibited significant increases in fluorescence (FL) intensity and lifetimes when lowering the temperature, stabilising below 100 K. The PIs containing ether (-O-) linkages showed a shoulder peak at around 500 nm below 150 K, which is attributable to phosphorescence (PH). These results show that the NR deactivation at RT includes three processes: intersystem crossing (ISC) from the excited singlet (S1) to the triplet (T1) state, temperature-dependent NR from the S1 state, which becomes suppressed below around 100 K, and temperature-independent NR. Based on the analyses of the temperature dependences, polymer structures, and quantum chemical analysis of molecular orbitals, we contemplate that the temperature-dependent NR is attributable to the excitation quenching by defect states mediated by excitation migration, and the temperature-independent NR may be caused by the deactivation of the excited state induced by molecular vibrations.
Collapse
Affiliation(s)
- Mayuko Nara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan.
| | - Eisuke Fujiwara
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan.
| | - Aurimas Vyšniauskas
- Centre for Physical Sciences and Technology, Sauletekio av. 3, Vilnius 10257, Lithuania.
| | - Vidmantas Gulbinas
- Centre for Physical Sciences and Technology, Sauletekio av. 3, Vilnius 10257, Lithuania.
| | - Shinji Ando
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
7
|
Nakanishi T, Hirai Y, Xu J, Takeda T, Watanabe S, Yasumori A, Hakamada S, Kitagawa Y, Hasegawa Y. Structural metamorphosis and photophysical properties of thermostable nano- and microcrystalline lanthanide polymer with flexible coordination chains. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2183711. [PMID: 36891540 PMCID: PMC9987761 DOI: 10.1080/14686996.2023.2183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Luminescent lanthanide coordination polymer crystals (LCPCs) represent an area of growing interest in materials chemistry owing to their unique and tailorable functional properties. The LCPCs provide a high level of structural tunability, including size- and morphology-dependent properties; therefore, they are promising materials for next-generation phosphors in a wide range of applications such as light emitting diodes. Here, by controlling the morphology of thermostable europium coordination polymer crystals, [Eu(hfa)3(dpbp)]n, hfa: hexafluoroacetylacetonate and dpbp:4,4'-bis(diphenyl phosphoryl) biphenyl), we realized a novel red phosphor with narrow linewidth emission (FWHM = 7.8 nm). The obtained luminescent LCPCs with unique structures were characterized by X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS) and thermogravimetric analysis. Among, them, size tunable crystalline polymer spheres were found to have high internal quantum efficiency (ex., IQE = 79%) and highly thermostability (>300°C), and to exhibit dispersibility in PMMA media. The obtained results on the structural tunability of these materials can be used for the development of synthesis techniques for nanoscale materials based on crystalline lanthanide-based coordination phosphors.
Collapse
Affiliation(s)
- Takayuki Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Yuichi Hirai
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Jian Xu
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Takashi Takeda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Shunsuke Watanabe
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Atsuo Yasumori
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shou Hakamada
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Xu Z, Portnoi M, Papakonstantinou I. Micro-cone arrays enhance outcoupling efficiency in horticulture luminescent solar concentrators. OPTICS LETTERS 2023; 48:183-186. [PMID: 36563401 DOI: 10.1364/ol.478206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Luminescent solar concentrators (LSCs) have shown the ability to realize spectral conversion, which could tailor the solar spectrum to better match photosynthesis requirements. However, conventional LSCs are designed to trap, rather than extract, spectrally converted light. Here, we propose an effective method for improving outcoupling efficiency based on protruded and extruded micro-cone arrays patterned on the bottom surface of LSCs. Using Monte Carlo ray tracing, we estimate a maximum external quantum efficiency (EQE) of 37.73% for our horticulture LSC (HLSC), corresponding to 53.78% improvement relative to conventional, planar LSCs. Additionally, structured HLSCs provide diffuse light, which is beneficial for plant growth. Our micro-patterned surfaces provide a solution to light trapping in LSCs and a foundation for the practical application of HLSCs.
Collapse
|
9
|
Fang M, Lu H, Li R, Wei W, Mao L, Christoforo T, Chen G, Guan Y, Pei X, Chen Q, Tian M, Wei Y. Triphenylamine derivatives functionalized di-ureasil hybrids for information encipherment. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
10
|
Nagler O, Krause AM, Shoyama K, Stolte M, Dubey RK, Liu L, Xie Z, Würthner F. Yellow Light-Emitting Highly Soluble Perylene Bisimide Dyes by Acetalization of Bay-Hydroxy Groups. Org Lett 2022; 24:6839-6844. [DOI: 10.1021/acs.orglett.2c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Oliver Nagler
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| | - Ana-Maria Krause
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| | - Rajeev K. Dubey
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), 510640 Guangzhou, China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), 510640 Guangzhou, China
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Luminescent Downshifting Silicon Quantum Dots for Performance Enhancement of Polycrystalline Silicon Solar Cells. ELECTRONICS 2022. [DOI: 10.3390/electronics11152433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silicon quantum dots (Si-QDs) with luminescent downshifting properties have been used for the efficiency enhancement of solar cells. In this study, Phenylacetylene-capped silicon quantum dots (PA Si-QDs) have been fabricated and applied as luminescent downshifting material on polycrystalline silicon solar cells, by dropcasting. The PA Si-QD coated solar cell samples presented an average increase in the short circuit current (Isc) of 0.75% and 1.06% for depositions of 0.15 mg and 0.01 mg on 39 mm × 39 mm pc-Si solar cells, respectively. The increase was further enhanced by full encapsulation of the sample leading to overall improved performance of about 3.4% in terms of Isc and 4.1% in terms of power output (Pm) when compared to the performance of fully encapsulated reference samples. The PA Si-QD coating achieved a reduction in specular reflectance at 377 nm of 61.8%, and in diffuse reflectance of 44.4%. The increase observed in the Isc and Pm is a promising indicator for the use of PA Si-QDs as luminescent downshifting material to improve the power conversion efficiency of pc-Si solar cells.
Collapse
|
12
|
Zhang B, Lyu G, Kelly EA, Evans RC. Förster Resonance Energy Transfer in Luminescent Solar Concentrators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201160. [PMID: 35678107 PMCID: PMC9376834 DOI: 10.1002/advs.202201160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Luminescent solar concentrators (LSCs) are an emerging technology to collect and channel light from a large absorption area into a smaller one. They are a complementary technology for traditional solar photovoltaics (PV), particularly suitable for application in urban or indoor environments where their custom colors and form factors, and performance under diffuse light conditions may be advantageous. Förster resonance energy transfer (FRET) has emerged as a valuable approach to overcome some of the intrinsic limitations of conventional single lumophore LSCs, such as reabsorption or reduced quantum efficiency. This review outlines the potential of FRET to boost LSC performance, using highlights from the literature to illustrate the key criteria that must be considered when designing an FRET-LSC, including both the photophysical requirements of the FRET lumophores and their interaction with the host material. Based on these criteria, a list of design guidelines intended to aid researchers when they approach the design of a new FRET-LSC system is presented. By highlighting the unanswered questions in this field, the authors aim to demonstrate the potential of FRET-LSCs for both conventional solar-harvesting and emerging LSC-inspired technologies and hope to encourage participation from a diverse researcher base to address this exciting challenge.
Collapse
Affiliation(s)
- Bolong Zhang
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MaterialsChinese Academy of SciencesFuzhouFujian350002China
| | - Guanpeng Lyu
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Elaine A. Kelly
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Rachel C. Evans
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| |
Collapse
|
13
|
Uncovering the Use of Fucoxanthin and Phycobiliproteins into Solid Matrices to Increase Their Emission Quantum Yield and Photostability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the search for a better and brighter future, the use of natural luminescent renewable materials as substitutes for synthetic ones in the energy field is of prime importance. The incorporation of natural pigments (e.g., xanthophylls and phycobiliproteins) is a fundamental step in a broad spectrum of applications that are presently marred by their limited stability. The incorporation of bio-based luminescent molecules into solid matrices allows the fabrication of thin films, which may dramatically increase the range of applications, including sustainable photovoltaic systems, such as luminescent solar concentrators or downshifting layers. In this work, we incorporated R-phycoerythrin (R-PE), C-phycocyanin (C-PC), and fucoxanthin (FX) into poly(vinyl alcohol) (PVA) and studied their optical properties. It was found that the emission and excitation spectra of the phycobiliproteins and FX were not modified by incorporation into the PVA matrix. Moreover, in the case of FX, the emission quantum yield (η) values also remained unaltered after incorporation, showing the suitability of the PVA as a host matrix. A preliminary photostability study was performed by exposing the solid samples to continuous AM1.5G solar radiation, which evidenced the potential of these materials for future photovoltaics.
Collapse
|
14
|
Sadhu AS, Huang YM, Chen LY, Kuo HC, Lin CC. Recent Advances in Colloidal Quantum Dots or Perovskite Quantum Dots as a Luminescent Downshifting Layer Embedded on Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:985. [PMID: 35335798 PMCID: PMC8954604 DOI: 10.3390/nano12060985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
The solar cell has a poor spectral response in the UV region, which affects its power conversion efficiency (PCE). The utilization of a luminescent downshifting (LDS) layer has been suggested to improve the spectral response of the photovoltaics in the short wavelength region through photoluminescence (PL) conversion and antireflection effects, which then enhance the PCE of the solar cell. Recently, colloidal quantum dots (CQDs) or perovskite quantum dots (PQDs) have been gaining prime importance as an LDS material due to their eminent optical characteristics, such as their wide absorption band, adjustable visible emission, short PL lifetime, and near-unity quantum yields. However, the instability of QDs that occurs under certain air, heat, and moisture conditions limits its commercialization. Thus, in this review, we will focus on the physical and optical characteristics of QDs. Further, we will discuss different synthesis approaches and the stability issues of QDs. Different approaches to improve the stability of QDs will be discussed in detail alongside the recent breakthroughs in QD-based solar cells for various applications and their current challenges. We expect that this review will provide an effective gateway for researchers to fabricate LDS-layer-based solar cells.
Collapse
Affiliation(s)
- Annada Sankar Sadhu
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
- International Ph.D. Program in Photonics (UST), College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Ming Huang
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
| | - Li-Yin Chen
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
| | - Hao-Chung Kuo
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; (A.S.S.); (Y.-M.H.); (H.-C.K.)
- Semiconductor Research Center, Hon Hai Research Institute, Taipei 11492, Taiwan
| | - Chien-Chung Lin
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan;
- Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Mohammed N, Shakkor SJ, Abdalhadi SM, Al-Bayati YK. Two multifunctional benzoquinone derivatives as small molecule organic semiconductors for bulk heterojunction and perovskite solar cells. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-210187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two novel quinone derivatives (NN3 and NN4) were synthesized in this work and they were characterized to be used as small organic semiconductor molecules in different types of photovoltaic applications. To make accessible compounds, three simple steps were followed to prepare NN3 and NN4 compounds. Furthermore, energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were determined for the computationally optimized models of the investigated compounds. The obtained optical and electrochemical results of this work indicated that NN3 and NN4 compounds were good candidates for application in the fields of bulk heterojunction (BHJ) and perovskite solar cells. Indeed, investigating new energy resources has been seen an important topic of research for producing clean energies and portable storage systems.
Collapse
Affiliation(s)
- Nabeel Mohammed
- College of Education Al-Hawija, University of Kirkuk, Kirkuk, Iraq
| | | | - Saifaldeen M. Abdalhadi
- Department of Chemistry, Faculty of Remote Sensing and Geophysics, Al-Karkh, University of Science, Baghdad, Iraq
| | - Yehya K. Al-Bayati
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
16
|
Lin H, Cheng Z, Xu D, Zheng X, Liu T, Xu L, Ma Y, Zhang Y. Second Near-Infrared Upconverting and Downshifting Luminescence in a Core-Multishell Nanophotoswitch. NEW J CHEM 2022. [DOI: 10.1039/d2nj01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of NIR-II (near-infrared-II: 1000-1700 nm) nanophotoswitch is urgently needed, due to their deeper-tissue penetration and higher-resolution imaging. In this work, a new type of NIR-II upconversion (UC) and...
Collapse
|
17
|
Masson TM, Zondag SDA, Kuijpers KPL, Cambié D, Debije MG, Noël T. Development of an Off-Grid Solar-Powered Autonomous Chemical Mini-Plant for Producing Fine Chemicals. CHEMSUSCHEM 2021; 14:5417-5423. [PMID: 34644441 PMCID: PMC9298775 DOI: 10.1002/cssc.202102011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Photochemistry using inexhaustible solar energy is an eco-friendly way to produce fine chemicals outside the typical laboratory or chemical plant environment. However, variations in solar irradiation conditions and the need for an external energy source to power electronic components limits the accessibility of this approach. In this work, a chemical solar-driven "mini-plant" centred around a scaled-up luminescent solar concentrator photomicroreactor (LSC-PM) was built. To account for the variations in solar irradiance at ground level and passing clouds, a responsive control system was designed that rapidly adapts the flow rate of the reagents to the light received by the reaction channels. Supplying the plant with solar panels, integrated into the module by placing it behind the LSC to utilize the transmitted fraction of the solar irradiation, allowed this setup to be self-sufficient and fully operational off-grid. Such a system can shine in isolated environments and in a distributed manufacturing world, allowing to decentralize the production of fine chemicals.
Collapse
Affiliation(s)
- Tom M. Masson
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Stefan D. A. Zondag
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
| | - Koen P. L. Kuijpers
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Technology & EngineeringJanssen R&DTurnhoutseweg 302340BeerseBelgium
| | - Dario Cambié
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
- Current address: Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Michael G. Debije
- Department of Chemical Engineering and ChemistryStimuli-responsive Functional Materials & DevicesEindhoven University of TechnologyGroene Loper 3, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| | - Timothy Noël
- Flow Chemistry Groupvan't Hoff Institute for Molecular Sciences (HIMS)Universiteit van Amsterdam (UvA)Science Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical Engineering and ChemistrySustainable Process Engineering, Micro Flow Chemistry & Synthetic MethodologyEindhoven University of TechnologyHet Kranenveld, Bldg 14 – Helix5600 MBEindhovenThe Netherlands
| |
Collapse
|
18
|
Wei T, Wang L, Sun C, Xu D, Tao J, Zhang H, Han J, Fan C, Zhang Z, Bi W. Eco-Friendly and Efficient Luminescent Solar Concentrators Based on a Copper(I)-Halide Composite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56348-56357. [PMID: 34783239 DOI: 10.1021/acsami.1c18361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Luminescent solar concentrators (LSCs) show great promise in reducing the cost of silicon solar cells due to their potential use for high-efficiency energy harvesting. Compared to narrow absorption organic dyes, quantum dots (QDs) are a favorable approach to acquire stable LSCs. However, the use of toxic heavy metals in QDs and the small Stokes shift largely restrict their development. Here, a toxic metal-free, highly luminescent ink based on a copper(I)-halide hybrid cluster is reported, whose quantum yield (QY) exceeds 68%. Under the interaction with halohydrocarbon, CuI and phenethylamine (PEA) can be easily dissolved and the ink can be facilely acquired. The obtained film exhibits strong orange light emission with a large Stokes shift. As a proof-of-concept experiment, (PEA)4Cu4I4 has been used to fabricate LSCs. The as-prepared LSC (4 cm × 4 cm × 0.3 cm) exhibits an internal quantum efficiency (ηint) as high as 44.1%. After coupling to a solar cell, an optical conversion efficiency (ηopt) of 6.85% is acquired from this LSC. In addition, the LSC possesses high stability such as air stability, water stability, and photostability. These results demonstrate that the (PEA)4Cu4I4 film can be employed as a promising candidate for large-area and high-efficiency LSCs.
Collapse
Affiliation(s)
- Tong Wei
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Le Wang
- BOE MLED Technology CO., LTD, No. 8 Xihuanzhonglu, BDA, Beijing 100176, P. R. China
| | - Chun Sun
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Da Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Jiaqi Tao
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Hu Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Jiachen Han
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Chao Fan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Zihui Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Wengang Bi
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| |
Collapse
|
19
|
Synthesis and Characterization of White-Light Luminescent End-Capped Polyimides Based on FRET and Excited State Intramolecular Proton Transfer. Polymers (Basel) 2021; 13:polym13224050. [PMID: 34833349 PMCID: PMC8621099 DOI: 10.3390/polym13224050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
N-cyclohexylphthalimide-substituted trifluoroacetylamino (CF3CONH-) group (3TfAPI), which forms an intramolecular hydrogen bond, was synthesized, and it exhibited a bright yellow fluorescence owing to the excited-state intramolecular proton transfer (ESIPT) in the solution and crystalline states. In addition, CF3CONH-substituted phthalic anhydride (3TfAPA) was synthesized, which was attached to the termini of a blue-fluorescent semi-aromatic polyimide (PI) chain. Owing to the efficient Förster resonance energy transfer (FRET) occurring from the main chain to the termini and the suppression of deprotonation (anion formation) at the 3TfAPA moiety by H2SO4 doping, the resulting PI films display bright white fluorescence. Moreover, the enhancement of the chain rigidity by substituting the diamine moiety results in an increase in the quantum yield of white fluorescence (Φ) by a factor of 1.7, due to the suppression of local molecular motion. This material design strategy is promising for preparing thermally stable white-light fluorescent PIs applicable to solar spectral convertors, displays, and ICT devices.
Collapse
|
20
|
Lyu G, Southern TJF, Charles BL, Roger M, Gerbier P, Clément S, Evans RC. Aggregation-induced emission from silole-based lumophores embedded in organic-inorganic hybrid hosts. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:13914-13925. [PMID: 34745631 PMCID: PMC8515938 DOI: 10.1039/d1tc02794h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/05/2021] [Indexed: 05/29/2023]
Abstract
Aggregation-induced emitters - or AIEgens - are often symbolised by their photoluminescence enhancement as a result of aggregation in a poor solvent. However, for some applications, it is preferable for the AIE response to be induced in the solid-state. Here, the ability of an organic-inorganic hybrid polymer host to induce the AIE response from embedded silole-based lumophores has been explored. We have focussed on understanding how the incorporation method controls the extent of lumophore aggregation and thus the associated photophysical properties. To achieve this, two sample concentration series have been prepared, based on either the parent AIEgen 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS) or the silylated analogue (DMTPS-Sil), which were physically doped or covalently grafted, respectively, to dU(600) - a member of the ureasil family of poly(oxyalkylene)/siloxane hybrids. Steady-state and time-resolved photoluminescence measurements, coupled with confocal microscopy studies, revealed that covalent grafting leads to improved dispersibility of the AIEgen, reduced scattering losses, increased photoluminescence quantum yields (up to ca. 40%) and improved chemical stability. Moreover, the ureasil also functions as a photoactive host that undergoes excitation energy transfer to the embedded DMTPS-Sil with an efficiency of almost 70%. This study highlights the potential for designing complex photoluminescent hybrid polymers exhibiting an ehanced AIE response for solid-state optical applications.
Collapse
Affiliation(s)
- Guanpeng Lyu
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Thomas J F Southern
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Bethan L Charles
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Maxime Roger
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | | - Rachel C Evans
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
21
|
Barciela R, Quintero F, Doval AF, Fernández-Arias M, Del Val J, Comesaña R, Pou J. Monte Carlo simulation of a LSC based on stacked layers of fiber arrays with core-coating different absorbing properties. OPTICS EXPRESS 2021; 29:19566-19585. [PMID: 34266065 DOI: 10.1364/oe.422694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
In this work, a Monte Carlo ray-tracing model for the simulation and optimization of a fiber Luminescent Solar Concentrator (LSC) based on stacked layers of fiber arrays is developed and validated. The fiber LSC efficiency improvements are compared against a conventional planar LSC. We developed a new model to analyze the performance of different configurations of bulk-doped fibers and fibers constituted by a doped coating and a passive core. These configurations are analyzed also varying fiber packing geometry diameters, and length. Due to the exceptionally low absorption coefficient of the silica fibers (αwg ≈ 10-4 cm-1), concentration factors of up to 1.9 are predicted when dimensions are scaled over 1 m2, which improve more than twice the maximum concentration factor ever reported. These results serve as a preliminary theoretical study for the future development of a new LSC design based on flexible silica micro-fibers coated with Si-QDs doped poly(lauryl methacrylate) (PLMA) layers.
Collapse
|
22
|
Kim A, Hosseinmardi A, Annamalai PK, Kumar P, Patel R. Review on Colloidal Quantum Dots Luminescent Solar Concentrators. ChemistrySelect 2021. [DOI: 10.1002/slct.202100674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art New York City, NY 10003 USA
| | - Alireza Hosseinmardi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pratheep K. Annamalai
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pawan Kumar
- Institut National de la Recherche Scientifique, Centre Énergie Materiaux Télecommunications (INRS-EMT) Varennes QC Canada
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE) Integrated Science and Engineering Division (ISED) Underwood International College Yonsei University 85 Songdogwahak-ro, Yeonsugu Incheon 21938 South Korea
| |
Collapse
|
23
|
Xu Y, Zhang L, Dong L, Yin S, Wu X, You H. Novel SrGd 2Al 2O 7:Mn 4+, Nd 3+, and Yb 3+ phosphors for c-Si solar cells. Dalton Trans 2021; 50:7017-7025. [PMID: 33949505 DOI: 10.1039/d1dt00320h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel single-doped and codoped SrGd2Al2O7-based (SGA) phosphors with tunable emission were synthesized via the solid-state reaction approach. The optimal SGA:0.0008Mn4+ phosphor presents an emission band peaking at 709 nm and shows great red luminescence properties. With the incorporation of Nd3+/Yb3+ into SGA:0.0008Mn4+, an efficient energy transfer Mn4+→ Nd3+/Yb3+ was observed. When Nd3+ and Yb3+ were codoped into SGA:0.0008Mn4+, an energy transfer mechanism from Mn4+ to Nd3+ to Yb3+ was found on the basis of the energy transfer mediation of Nd3+ connecting the Mn4+ and Yb3+ luminescent centers. It results in a strong near-infrared emission in the spectral region of high response of c-Si solar cells, which suggests a potential approach to improve the energy conversion efficiency of c-Si solar cells. The findings offer a novel route to design new down-conversion luminescent materials for the c-Si solar cells.
Collapse
Affiliation(s)
- Yonghui Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | | | | | | | | | | |
Collapse
|
24
|
Jeong WL, Jang J, Kim J, Joo SK, Park MD, Kwak HM, Baik J, Kim HJ, Kim JH, Lee DS. Improving Ultraviolet Responses in Cu 2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Quantum Dot-Based Luminescent Down-Shifting Layer. NANOMATERIALS 2021; 11:nano11051166. [PMID: 33946918 PMCID: PMC8145200 DOI: 10.3390/nano11051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Quantum dot (QD)-based luminescent down-shifting (LDS) layers were deposited on Cu2ZnSn(S,Se)4 (CZTSSe) solar cells via the drop-casting method. The LDS layers can easily widen the narrow absorption wavelength regions of single-junction solar cells and enable improvement of the short-circuit current. The optical properties of LDS layers deposited on glass and containing different QD contents were analyzed based on their transmittance, reflectance, and absorbance. The absorber films to be used in the CZTSSe solar cells were determined by X-ray diffraction measurements and Raman spectroscopy to determine their crystal structures and secondary phases, respectively. The completed CZTSSe solar cells with LDS layers showed increased ultraviolet responses of up to 25% because of wavelength conversion by the QDs. In addition, the impact of the capping layer, which was formed to protect the QDs from oxygen and moisture, on the solar cell performance was analyzed. Thus, a maximal conversion efficiency of 7.3% was achieved with the 1.0 mL QD condition; furthermore, to the best of our knowledge, this is the first time that LDS layers have been experimentally demonstrated for CZTSSe solar cells.
Collapse
Affiliation(s)
- Woo-Lim Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (W.-L.J.); (M.-D.P.); (H.-M.K.); (J.B.)
| | - Junsung Jang
- Optoelectronic Convergence Research Center, Department of Materials Science and Engieering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Jihun Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (J.K.); (H.-J.K.)
| | - Soo-Kyung Joo
- College of Basic and General Education, Dongshin University, 67 Dongshinedae-gil, Naju-si 58246, Jeollanam-do, Korea;
| | - Mun-Do Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (W.-L.J.); (M.-D.P.); (H.-M.K.); (J.B.)
| | - Hoe-Min Kwak
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (W.-L.J.); (M.-D.P.); (H.-M.K.); (J.B.)
| | - Jaeyoung Baik
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (W.-L.J.); (M.-D.P.); (H.-M.K.); (J.B.)
| | - Hyeong-Jin Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (J.K.); (H.-J.K.)
| | - Jin Hyeok Kim
- Optoelectronic Convergence Research Center, Department of Materials Science and Engieering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- Correspondence: (J.H.K.); (D.-S.L.)
| | - Dong-Seon Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; (W.-L.J.); (M.-D.P.); (H.-M.K.); (J.B.)
- Correspondence: (J.H.K.); (D.-S.L.)
| |
Collapse
|
25
|
Li Y, Sun Y, Zhang Y, Li Y, Verduzco R. High‐performance hybrid luminescent‐scattering solar concentrators based on a luminescent conjugated polymer. POLYM INT 2021. [DOI: 10.1002/pi.6189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yilin Li
- Department of Chemical and Biomolecular Engineering Rice University Houston TX USA
| | - Yujian Sun
- School of Environmental and Forest Sciences University of Washington Seattle WA USA
| | - Yongcao Zhang
- Department of Mechanical Engineering University of Houston Houston TX USA
| | - Yuxin Li
- Department of Chemistry University of Cincinnati Cincinnati OH USA
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering Rice University Houston TX USA
| |
Collapse
|
26
|
Garnett EC, Ehrler B, Polman A, Alarcon-Llado E. Photonics for Photovoltaics: Advances and Opportunities. ACS PHOTONICS 2021; 8:61-70. [PMID: 33506072 PMCID: PMC7821300 DOI: 10.1021/acsphotonics.0c01045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 05/03/2023]
Abstract
Photovoltaic systems have reached impressive efficiencies, with records in the range of 20-30% for single-junction cells based on many different materials, yet the fundamental Shockley-Queisser efficiency limit of 34% is still out of reach. Improved photonic design can help approach the efficiency limit by eliminating losses from incomplete absorption or nonradiative recombination. This Perspective reviews nanopatterning methods and metasurfaces for increased light incoupling and light trapping in light absorbers and describes nanophotonics opportunities to reduce carrier recombination and utilize spectral conversion. Beyond the state-of-the-art single junction cells, photonic design plays a crucial role in the next generation of photovoltaics, including tandem and self-adaptive solar cells, and to extend the applicability of solar cells in many different ways. We address the exciting research opportunities and challenges in photonic design principles and fabrication that will accelerate the massive upscaling and (invisible) integration of photovoltaics into every available surface.
Collapse
Affiliation(s)
- Erik C. Garnett
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Bruno Ehrler
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Albert Polman
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Esther Alarcon-Llado
- Center for Nanophotonics, NWO-Institute
AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
27
|
Corsini F, Apostolo M, Botta C, Turri S, Griffini G. Poly(vinylidenefluoride) polymers and copolymers as versatile hosts for luminescent solar concentrators: compositional tuning for enhanced performance. RSC Adv 2021; 11:29786-29796. [PMID: 35479540 PMCID: PMC9040912 DOI: 10.1039/d1ra04537g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
Novel host matrices based on fluoropolymers blended with poly(methyl methacrylate) (PMMA) are presented in this work for application in efficient and photochemically stable thin-film luminescent solar concentrators (LSCs). These systems consist of blends of PMMA with three different partially fluorinated polymers in different proportions: polyvinylidenefluoride homopolymer, a copolymer of vinylidenefluoride and chloro-trifluoro-ethylene, and a terpolymer of vinylidenefluoride, hexafluoropropylene and hydroxyl-ethyl acetate. A detailed chemical, physical and structural characterization of the obtained materials allowed us to shed light on the structure–property relationships underlying the response of such blends as a LSC component, revealing the effect of the degree of crystallinity of the polymers on their functional characteristics. An optimization study of the optical and photovoltaic (PV) performance of these fluoropolymer-based LSC systems was carried out by investigating the effect of blend chemical composition, luminophore concentration and film thickness on LSC device output. LSCs featuring copolymer/PMMA blends as the host matrix were found to outperform their homopolymer- and terpolymer-based blend counterparts, attaining efficiencies comparable to those of reference PMMA-based LSC/PV assemblies. All optimized LSC systems were subjected to weathering tests for over 1000 h of continuous light exposure to evaluate the effect of the host matrix system on LSC performance decline and to correlate chemical composition with photochemical durability. It was found that all fluoropolymer/PMMA-based LSCs outperformed reference PMMA-based LSCs in terms of long-term operational lifetime. This work provides the first demonstration of thermoplastic fluoropolymer/PMMA blends for application as host matrices in efficient and stable LSCs and widens the scope of high-performance thermoplastic materials for the PV field. Novel fluoropolymer–polymethylmethacrylate blends used as host matrices in luminescent solar concentrators (LSCs) are presented. Fluoropolymer/PMMA-based LSC efficiency is comparable to that of PMMA-based LSCs and is stable over 1000 h of aging test.![]()
Collapse
Affiliation(s)
- Francesca Corsini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Marco Apostolo
- Solvay Specialty Polymers, Viale Lombardia, 20, 20021 Bollate, Italy
| | - Chiara Botta
- Institute of Sciences and Chemical Technologies “Giulio Natta” (SCITEC) of CNR, via Corti 12, 20133 Milano, Italy
| | - Stefano Turri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Gianmarco Griffini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
28
|
van Son MHC, Berghuis AM, Eisenreich F, de Waal B, Vantomme G, Gómez Rivas J, Meijer EW. Highly Ordered 2D-Assemblies of Phase-Segregated Block Molecules for Upconverted Linearly Polarized Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004775. [PMID: 33118197 DOI: 10.1002/adma.202004775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/17/2020] [Indexed: 05/24/2023]
Abstract
Materials based on the laminar ordering of self-assembled molecules have a unique potential for applications requiring efficient energy migration through densely packed chromophores. Here, employing molecular assemblies of coil-rod-coil block molecules for triplet-triplet annihilation upconversion (TTA-UC) based on triplet energy migration with linearly polarized emission is reported. By covalently attaching discrete-length oligodimethylsiloxane (oDMS) to 9,10-diphenylanthracene (DPA), highly ordered 2D crystalline DPA sheets separated by oDMS layers are obtained. Transparent films of this material doped with small amounts of triplet sensitizer PtII octaethylporphyrin show air-stable TTA-UC under non-coherent excitation. Upon annealing, an increase in TTA-UC up to two orders of magnitude is observed originating from both an improved molecular ordering of DPA and an increased dispersion of the sensitizer. The molecular alignment in millimeter-sized domains leads to upconverted linearly polarized emission without alignment layers. By using a novel technique, upconversion imaging microscopy, the TTA-UC intensity is spatially resolved on a micrometer scale to visually demonstrate the importance of molecular dispersion of sensitizer molecules for efficient TTA-UC. The reported results are promising for anti-counterfeiting and 3D night-vision applications, but also exemplify the potential of discrete oligodimethylsiloxane functionalized chromophores for highly aligned and densely packed molecular materials.
Collapse
Affiliation(s)
- Martin H C van Son
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Anton M Berghuis
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Fabian Eisenreich
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Bas de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Jaime Gómez Rivas
- Department of Applied Physics and Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
29
|
Santos MV, Paula KT, de Andrade MB, Gomes EM, Marques LF, Ribeiro SJL, Mendonça CR. Direct Femtosecond Laser Printing of Silk Fibroin Microstructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50033-50038. [PMID: 33090755 DOI: 10.1021/acsami.0c13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fabrication of functional silk fibroin microstructures has extensive applications in biotechnology and photonics. Considerable progress has been made based on lithographic methods and self-assembly approaches. However, most methods require chemical modification of silk fibroin, which restricts the functionalities of the designed materials. At the same time, femtosecond laser-induced forward transfer (fs-LIFT) has been explored as a simple and attractive processing tool for microprinting of high-resolution structures. In this paper, we propose the use of LIFT with fs-pulses for creating high-resolution structures of regenerated silk fibroin (SF). Furthermore, upon adding Eu3+/Tb3+ complexes to SF, we have been able to demonstrate the printing by LIFT of luminescent SF structures with a resolution on the order of 2 μm and without material degradation. This approach provides a facile method for printing well-defined two-dimensional (2D) micropatterns of pure and functionalized SF, which can be used in a wide range of optical and biomedical applications.
Collapse
Affiliation(s)
- Moliria V Santos
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, São Carlos, SP 13560-970, Brazil
| | - Kelly T Paula
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, São Carlos, SP 13560-970, Brazil
| | - Marcelo B de Andrade
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, São Carlos, SP 13560-970, Brazil
| | - Emmanuel M Gomes
- Grupo de Materiais Inorgânicos Multifuncionais, Institute of Chemistry, Rio de Janeiro State University, Rio de Janeiro, RJ 20550-013, Brazil
| | - Lippy F Marques
- Grupo de Materiais Inorgânicos Multifuncionais, Institute of Chemistry, Rio de Janeiro State University, Rio de Janeiro, RJ 20550-013, Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14801-970, Brazil
| | - Cleber R Mendonça
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
30
|
Singh AK. Light management using CsPbBr 3colloidal quantum dots for luminescent solar concentrators. Methods Appl Fluoresc 2020; 8. [PMID: 32942272 DOI: 10.1088/2050-6120/abb99c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/17/2020] [Indexed: 11/11/2022]
Abstract
CsPbBr3 colloidal quantum dots have been synthesized by hot-injection method showing spherical shape with an average diameter of ~ 10.5 nm. UV-vis absorption of CsPbBr3 colloidal quantum dots shows a broad spectrum with an optical bandgap of ~ 2.3682 eV. The steady-state photoluminescence measurement reveals a narrow emission peak at 2.352 eV with full-width at half maximum of 0.113 eV. Absolute photoluminescence quantum yield of colloidal quantum dots dispersed in poly(methyl methacrylate) was found to be 60±1%. The time-resolved photoluminescence data recorded at 266 nm excitation were well fitted using a mono-exponential curve with a decay time of 25.36 (5) ns. A luminescent solar concentrator was fabricated using colloidal quantum dots in transparent poly(methyl methacrylate) polymer uniformly coated over glass substrate that shows an external optical conversion efficiency of ~ 5.4 % under one sun illumination. The experimental results presented in this manuscript reveals that luminescent solar concentrator prepared using colloidal CsPbBr3 quantum dots shows absorption in wide spectral range, high absorption coefficient, high photoluminescence quantum yield, high external optical conversion efficiency, and good photostability, thermal stability and long-term stability under ambient conditions and therefore are in many ways superior to the other luminescent materials explored for LSC devices.
Collapse
Affiliation(s)
- Akhilesh K Singh
- Department of Physical Sciences, Banasthali Vidyapith Department of Physical Sciences, Niwai, Rajasthan, INDIA
| |
Collapse
|
31
|
Gao S, Balan B, Yoosaf K, Monti F, Bandini E, Barbieri A, Armaroli N. Highly Efficient Luminescent Solar Concentrators Based on Benzoheterodiazole Dyes with Large Stokes Shifts. Chemistry 2020; 26:11013-11023. [PMID: 32301186 DOI: 10.1002/chem.202001210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Five extended π-conjugated systems with electron donor (D) and acceptor (A) moieties have been synthesized. Their basic D-A-D structural motif is a benzothiadiazole unit symmetrically equipped with two thiophene rings (S2T). Its variants include 1) the same molecular framework in which sulfur is replaced by selenium (Se2T), also with four thiophene units (Se4T) and 2) a D'-D-A-D system having a N-carbazole donor moiety at one end (CS2T) and a D'-D-A-D-A' array with a further acceptor carbonyl unit at the other extremity (CS2TCHO). The goal is taking advantage of the intense luminescence and large Stokes shifts of the five molecules for use in luminescent solar concentrators (LSCs). All of them exhibit intense absorption spectra in the UV/Vis region down to 630 nm, which are fully rationalized by DFT. Emission properties have been studied in CH2 Cl2 (298 and 77 K) as well as in PMMA and PDMS matrices, measuring photoluminescence quantum yields (up to 98 %) and other key optical parameters. The dye-PMMA systems show performances comparable to the present state-of-the-art, in terms of optical and external quantum efficiencies (OQE=47.6 % and EQE=31.3 %, respectively) and flux gain (F=10.3), with geometric gain close to 90. LSC devices have been fabricated and tested in which the five emitters are embedded in PDMS and their wave-guided VIS luminescence feeds crystalline silicon solar cells.
Collapse
Affiliation(s)
- Sheng Gao
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Bamisha Balan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, Kerala, India
| | - Karuvath Yoosaf
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram, 695019, Kerala, India
| | - Filippo Monti
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Elisa Bandini
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Andrea Barbieri
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
32
|
Wang L, Wang Y, Wang H, Xu G, Döring A, Daoud WA, Xu J, Rogach AL, Xi Y, Zi Y. Carbon Dot-Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells. ACS NANO 2020; 14:10359-10369. [PMID: 32686934 DOI: 10.1021/acsnano.0c03986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy harvesting has drawn worldwide attention as a sustainable technology, while combining several approaches in a single device to maximize the overall energy output holds great promise to offer valuable technologies able to alleviate the energy crisis. Here, we present a hybrid cell composed of a silicon solar cell and a water-droplet-harvesting triboelectric nanogenerator (WH-TENG) with the capacity of harvesting both solar and raindrop energies. A transparent and solution processable carbon dot-based composite film is introduced as a dual-functional layer, acting as the transmittance enhancement layer of the solar cell as well as an ionic conductor of the WH-TENG. At an optimal loading of carbon dots in the composite, the significant enhancement of transmittance in visible spectral range increases the short-circuit current density of the solar cell, which results in an increase of its power conversion efficiency from 13.6% to 14.6%. In addition, the transparent WH-TENG consisting of fluorinated ethylene propylene as a triboelectrification layer can generate a maximum power of 13.9 μW by collecting raindrop energy. This study provides a promising strategy to boost the energy conversion through multiple sources with the aid of a dual-functional layer for enhancing solar cell performance as well as harvesting raindrop energy.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yu Wang
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Han Wang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guoqiang Xu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Aaron Döring
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Walid A Daoud
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jianbin Xu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Yi Xi
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Yunlong Zi
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
33
|
Abstract
This study reports for the first time the use of waterborne polymers as host matrices for luminescent solar concentrators (LSCs). Notably, three types of waterborne polymer dispersions based either on acrylic acid esters and styrene (Polidisp® 7602), acrylic and methacrylic acid esters (Polidisp® 7788) or aliphatic polyester-based polyurethane (Tecfin P40) were selected as amorphous coatings over glass substrates. Water soluble Basic Yellow 40 (BY40) and Disperse Red 277 (DR277) were utilized as fluorophores and the derived thin polymer films (100 μm) were found homogeneous within the dye range of concentration investigated (0.3–2 wt.%). The optical efficiency determination (ηopt) evidenced LSCs performances close to those collected from benchmark polymethylmethacrylate (PMMA) thin films and Lumogen Red F350 (LR) with the same experimental setup. Noteworthy, maximum ηopt of 9.5 ± 0.2 were recorded for the Polidisp® 7602 matrix containing BY40, thus definitely supporting the waterborne polymer matrices for the development of high performance and cost-effective LSCs.
Collapse
|
34
|
Zhang B, Yang H, Warner T, Mulvaney P, Rosengarten G, Wong WWH, Ghiggino KP. A luminescent solar concentrator ray tracing simulator with a graphical user interface: features and applications. Methods Appl Fluoresc 2020; 8:037001. [PMID: 32492666 DOI: 10.1088/2050-6120/ab993d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A Monte-Carlo ray tracing simulator with a graphical user interface (MCRTS-GUI) has been developed to provide a quantitative description, performance evaluation and photon loss analysis of luminescent solar concentrators (LSCs). The algorithm is applied to several practical LSC device structures including multiple dyes in the same waveguiding layer, and structures where a dye layer is sandwiched between clear substrates. The effect of the host matrix absorption and the influence of the neighboring layers are investigated. Validations demonstrate that the MCRTS-GUI developed provides a reliable and accurate description of LSC performance. Code for the mixed-dye single layer configuration is converted into a ray-tracing package with a user-friendly interface and is made available as open source software.
Collapse
Affiliation(s)
- Bolong Zhang
- School of Chemistry and ARC Centre of Excellence in Exciton Science, University of Melbourne, Victoria 3010, Australia. Bio21 Institute, University of Melbourne, 30 Flemington Road, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Nara M, Orita R, Ishige R, Ando S. White-Light Emission and Tunable Luminescence Colors of Polyimide Copolymers Based on FRET and Room-Temperature Phosphorescence. ACS OMEGA 2020; 5:14831-14841. [PMID: 32596621 PMCID: PMC7315587 DOI: 10.1021/acsomega.0c01949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 05/15/2023]
Abstract
Thermally stable copolyimide (CoPI) films exhibiting high optical transparency and room-temperature phosphorescence (RTP) were prepared by copolymerizing fluorescent dianhydride and brominated phosphorescent dianhydride with an alicyclic diamine. The CoPI films underwent a 5 wt % degradation at a temperature higher than 349 °C and exhibited dual fluorescent and phosphorescent emissions owing to their efficient Förster resonance energy transfer from the fluorescent to phosphorescent dianhydride moieties in the main chains, followed by an intersystem crossing from the singlet to triplet state of the latter moiety atoms. The CoPIs displayed bright RTP under a vacuum with various colors produced when adjusting the copolymerization ratio. CoPI with 5 mol % phosphorescent moiety (CoPI-05) emitted white light with high optical transparency owing to the suppression of the PI chain aggregation that causes a yellowish coloration. The copolymerization of fluorescent and phosphorescent PI moieties can control the photoluminescent properties of PI films and is applicable to color-tunable solid-state emitters, ratiometric oxygen sensors, and solar-spectrum converters.
Collapse
Affiliation(s)
- Mayuko Nara
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryoji Orita
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryohei Ishige
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinji Ando
- Department of Chemical Science
and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
36
|
Cardoso M, Correia S, Frias A, Gonçalves H, Pereira R, Nunes S, Armand M, André P, de Zea Bermudez V, Ferreira R. Solar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: Down-shifting layers and luminescent solar concentrators. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Abstract
As buildings are a large energy user, it is important to not only reduce their consumption, but also have them generate their own electricity. Here, we describe a smart window that could reduce electricity consumption, normally used for air conditioning and lighting, by absorbing excess solar radiation with dichroic fluorescent dye molecules aligned in a switchable liquid crystal host and guiding the re-emitted light energy to the edges of the device, where it can be used to generate electricity via attached photovoltaic cells. The liquid crystals are responsive both to temperature changes and applied electrical fields. At higher temperatures, transmission decreases due to increased disorder in the liquid crystals, while the application of an electrical field increases transmission by effectively realigning the dyes for minimal absorption. Using alternative configurations, a window with a transparent rest state was also produced, in which transmission can be decreased by applying an electrical field; the thermal response remains identical.
Collapse
|
38
|
Tashi L, Kumar M, ul Nisa Z, Nelofar N, Sheikh HN. An efficient down conversion luminescencent probe based on a NaGdF 4:Eu 3+/Ce 3+ nanophosphor for chemical sensing of heavy metal ions (Cd 2+, Pb 2+ and Cr 3+) in waste water. NEW J CHEM 2020. [DOI: 10.1039/c9nj04889h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eu3+ doped and Eu3+/Ce3+ co-doped NaGdF4 nanophosphors are fabricated via a facile hydrothermal route. The codoped counterpart is demonstrated for efficient photoluminescence sensing of heavy metal ions (Cd2+, Pb2+ and Cr3+) present in industrial effluents.
Collapse
Affiliation(s)
- Lobzang Tashi
- Department of Chemistry
- University of Jammu
- Jammu-180006
- India
| | - Manesh Kumar
- Department of Chemistry
- University of Jammu
- Jammu-180006
- India
| | - Zaib ul Nisa
- Department of Chemistry
- University of Jammu
- Jammu-180006
- India
| | - Nargis Nelofar
- Department of Zoology
- Govt Degree College R. S. Pura
- Jammu-181102
- India
| | | |
Collapse
|
39
|
Timmermans GH, Saes BWH, Debije MG. Dual-responsive "smart" window and visually attractive coating based on a diarylethene photochromic dye. APPLIED OPTICS 2019; 58:9823-9828. [PMID: 31873626 DOI: 10.1364/ao.58.009823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Controlling the intensity and manipulating the spectral composition of sunlight are critical for many devices including "smart" windows, greenhouses, and photomicroreactors, but these are also important in more decorative applications. Here, we use a diarylethene dye incorporated in a liquid crystal host to create a dual-responsive "smart" window regulated both by an electrical trigger and by specific wavelengths of light. By incorporating the same diarylethene dye in a polymerizable host and using inkjet printing, coatings can be made with complete freedom in the applied pattern design, although the electrical response is lost. The color change of the diarylethene dye can be controlled in simulated sunlight by concurrent light exposure from an LED source, allowing a manual override for outdoor use. Photoluminescence of the closed isomer of the diarylethene from the light guide edges could be used for lighting or electricity generation in a luminescent solar concentrator architecture.
Collapse
|
40
|
Jo K, Lee S, Yi A, Jeon TY, Lee HH, Moon D, Lee DM, Bae J, Hong ST, Gene J, Lee SG, Kim HJ. Alkyl Conformation and π-π Interaction Dependent on Polymorphism in the 1,8-Naphthalimide (NI) Derivative. ACS OMEGA 2019; 4:19705-19709. [PMID: 31788601 PMCID: PMC6881847 DOI: 10.1021/acsomega.9b02377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The 1,8-naphthalimide (NI) derivative Lumogen F Violet 570 exhibits different photoluminescence (PL) and aggregation-caused quenching properties due to its crystal polymorphism, which depends on the solvent evaporation process in tetrahydrofuran solution. In the slow drying process, molecules aggregated into an energetically more stable form (time-dependent density functional theory calculation), of which the PL peak maximum was 453 nm, corresponding to blue emission at the 365 nm excitation. However, the fast evaporation process induces an energetically less stable form, with a PL peak maximum of 508 nm, corresponding to green emission. The main difference between the two crystal structures is the alkyl conformation, as confirmed by X-ray single-crystal analysis. Due to the different alkyl conformations, NI groups aggregated into more obliquely aligned structures that emit blue PL, which plays a role in weakening the π-π interactions between molecules relative to green PL crystals. We found that the conformational stable molecular stacking induced instability in the electronic energy levels of the blue crystal compared to the green crystal.
Collapse
Affiliation(s)
- Kukhyun Jo
- Department
of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic
of Korea
| | - Siwoo Lee
- Department
of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic
of Korea
| | - Ahra Yi
- Department
of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic
of Korea
| | - Tae-Yeol Jeon
- Pohang
Accelerator Lab, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyun Hwi Lee
- Pohang
Accelerator Lab, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dohyun Moon
- Pohang
Accelerator Lab, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dongmin M. Lee
- Department
of Energy Science and Engineering, DGIST
(Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, Republic of Korea
| | - Jiyoung Bae
- Department
of Energy Science and Engineering, DGIST
(Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, Republic of Korea
| | - Seung-Tae Hong
- Department
of Energy Science and Engineering, DGIST
(Daegu Gyeongbuk Institute of Science and Technology), Daegu 42988, Republic of Korea
| | - Jinhwa Gene
- Korean
Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Seung Geol Lee
- Department
of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic
of Korea
| | - Hyo Jung Kim
- Department
of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic
of Korea
| |
Collapse
|
41
|
Lyu G, Kendall J, Meazzini I, Preis E, Bayseç S, Scherf U, Clément S, Evans RC. Luminescent Solar Concentrators Based on Energy Transfer from an Aggregation-Induced Emitter Conjugated Polymer. ACS APPLIED POLYMER MATERIALS 2019; 1:3039-3047. [PMID: 31737866 PMCID: PMC6849335 DOI: 10.1021/acsapm.9b00718] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/19/2019] [Indexed: 05/28/2023]
Abstract
Luminescent solar concentrators (LSCs) are solar-harvesting devices fabricated from a transparent waveguide that is doped or coated with lumophores. Despite their potential for architectural integration, the optical efficiency of LSCs is often limited by incomplete harvesting of solar radiation and aggregation-caused quenching (ACQ) of lumophores in the solid state. Here, we demonstrate a multilumophore LSC design that circumvents these challenges through a combination of nonradiative Förster resonance energy transfer (FRET) and aggregation-induced emission (AIE). The LSC incorporates a green-emitting poly(tetraphenylethylene), p-O-TPE, as an energy donor and a red-emitting perylene bisimide molecular dye (PDI-Sil) as the energy acceptor, within an organic-inorganic hybrid diureasil waveguide. Steady-state photoluminescence studies demonstrate the diureasil host induced AIE from the p-O-PTE donor polymer, leading to a high photoluminescence quantum yield (PLQY) of ∼45% and a large Stokes shift of ∼150 nm. Covalent grafting of the PDI-Sil acceptor to the siliceous domains of the diureasil waveguide also inhibits nonradiative losses by preventing molecular aggregation. Due to the excellent spectral overlap, FRET was shown to occur from p-O-TPE to PDI-Sil, which increased with acceptor concentration. As a result, the final LSC (4.5 cm × 4.5 cm × 0.3 cm) with an optimized donor-acceptor ratio (1:1 by wt %) exhibited an internal photon efficiency of 20%, demonstrating a viable design for LSCs utilizing an AIE-based FRET approach to improve the solar-harvesting performance.
Collapse
Affiliation(s)
- Guanpeng Lyu
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - James Kendall
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Ilaria Meazzini
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Eduard Preis
- Macromolecular
Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universität Wuppertal, Gausss-Strasse 20, D-42119 Wuppertal, Germany
| | - Sebnem Bayseç
- Macromolecular
Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universität Wuppertal, Gausss-Strasse 20, D-42119 Wuppertal, Germany
| | - Ullrich Scherf
- Macromolecular
Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universität Wuppertal, Gausss-Strasse 20, D-42119 Wuppertal, Germany
| | - Sébastien Clément
- Institut
Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Rachel C. Evans
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
42
|
Takasu S, Hagiwara M, Fujihara S. Hydrothermal synthesis of monodispersed CePO4:Tb3+ porous microspheres and their redox-responsive luminescence. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0854-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
43
|
Tan Q, Wu XG, Zhang M, Meng L, Zhong H, Cai Y, Wang L. Performance analysis of PQDCF-coated silicon image sensor using Monte-Carlo ray-trace simulation. OPTICS EXPRESS 2019; 27:9079-9087. [PMID: 31052717 DOI: 10.1364/oe.27.009079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Perovskite quantum dots embedded composite film (PQDCF) exhibits strong photoluminescence emissions and is expected to be excellent down-shifting material for enhancing ultraviolet (UV) response of silicon devices. In this work, light conversion process is analyzed by combining the experiments with Monte-Carlo ray-trace simulation. Results show that external quantum efficiency (EQE) in the UV region was mainly determined by absorption loss and match of peak wavelength. Moreover, resolution was correlated with thickness and reabsorption. This conclusion provides a guideline for designing novel materials with enhanced UV sensitivity and an EQE of 28% is predicted. Our experimental results showed that the use of red emissive PQDCF achieved an EQE of 20%.
Collapse
|
44
|
Transparent Luminescent Solar Concentrators Using Ln3+-Based Ionosilicas Towards Photovoltaic Windows. ENERGIES 2019. [DOI: 10.3390/en12030451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The integration of photovoltaic (PV) elements in urban environments is gaining visibility due to the current interest in developing energetically self-sustainable buildings. Luminescent solar concentrators (LSCs) may be seen as a solution to convert urban elements, such as façades and windows, into energy-generation units for zero-energy buildings. Moreover, LSCs are able to reduce the mismatch between the AM1.5G spectrum and the PV cells absorption. In this work, we report optically active coatings for LSCs based on lanthanide ions (Ln3+ = Eu3+, Tb3+)-doped surface functionalized ionosilicas (ISs) embedded in poly(methyl methacrylate) (PMMA). These new visible-emitting films exhibit large Stokes-shift, enabling the production of transparent coatings with negligible self-absorption and large molar extinction coefficient and brightness values (~2 × 105 and ~104 M−1∙cm−1, respectively) analogous to that of orange/red-emitting organic dyes. LSCs showed great potential for efficient and environmentally resistant devices, with optical conversion efficiency values of ~0.27% and ~0.34%, respectively.
Collapse
|
45
|
Ma J, Chen S, Ye C, Li M, Liu T, Wang X, Song Y. A green solvent for operating highly efficient low-power photon upconversion in air. Phys Chem Chem Phys 2019; 21:14516-14520. [PMID: 31069357 DOI: 10.1039/c9cp01296f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
d-Limonene, obtained from the rind of citrus fruits, was demonstrated as a green solvent to realize air-stable and highly efficient triplet-triplet annihilation photon upconversion (TTA-UC). This natural low-toxic compound also contributed to noncoherent UC excited by a solar simulator in air, making TTA-UC materials promising candidates in solar energy and other practical applications. The rapid deoxygenating ability of d-limonene was thoroughly investigated. This system demonstrated very good UC performance for a fluid solution under ambient conditions. Besides, other eight types of terpene were also explored to enrich the alternatives for air-stable TTA-UC in protic and aprotic fluidic environments. This work provides a terpene-based protective platform for oxygen-sensitive TTA-UC applications ranging from life science to photonic devices.
Collapse
Affiliation(s)
- Jinsuo Ma
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Shuoran Chen
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Changqing Ye
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Teng Liu
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Xiaomei Wang
- Research Centre for Green Printing Nanophotonic Materials, Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
46
|
Lin H, Xu D, Li Y, Yao L, Xu L, Ma Y, Yang S, Zhang Y. Enhanced Red Emission in Er 3+-Sensitized NaLuF 4 Upconversion Crystals via Energy Trapping. Inorg Chem 2018; 57:15361-15369. [PMID: 30480436 DOI: 10.1021/acs.inorgchem.8b02654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Luminescence efficiency of trivalent lanthanide-doped upconversion (UC) materials is significantly limited by luminescence concentration quenching. In this work, red UC emission is dramatically enhanced in Er3+-sensitized NaLuF4 UC crystals through energy trapping under multiple excitation wavelengths. Cross-relaxation quenching and the energy migration to internal lattice defects are simultaneously suppressed by confining the excitation energy in the Er3+ activator after introducing the Tm3+ or Ho3+ energy trapping center. The enhanced red UC emission (Er3+: 660 nm) mainly comes from the effective excitation energy confinement by Tm3+ and Ho3+ trapping centers through an easy energy transfer between Er3+ and Tm3+/Ho3+: 4I11/2 (Er3+) → 3H5 (Tm3+) → 4I13/2 (Er3+) and 4I11/2 (Er3+) → 5I6 (Ho3+) → 4I13/2 (Er3+). It is found that the confining efficiency of excitation energy in Er3+-sensitized NaLuF4 crystals is higher than that in Yb3+/Er3+ cosensitized NaLuF4 crystals, and the luminescence efficiency of Er3+-sensitized NaLuF4 crystals is much higher than that of Er3+-based host sensitization UC crystals (NaErF4). Moreover, Er3+-sensitized UC particles can be efficiently excited by three different wavelengths (808, 980, and 1532 nm), indicating huge advantages for applications in bioimaging, anticounterfeiting, and solar cells.
Collapse
Affiliation(s)
- Hao Lin
- School of Physics and Electronic Engineering , Guangzhou University , Guangzhou 510006 , P. R. China
| | - Dekang Xu
- School of Chemistry and Materials Engineering , Huizhou University , Huizhou 516007 , P. R. China
| | - Yongjin Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering/School of Physics , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Lu Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering/School of Physics , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Liqin Xu
- School of Physics and Electronic Engineering , Guangzhou University , Guangzhou 510006 , P. R. China
| | - Ying Ma
- School of Physics and Electronic Engineering , Guangzhou University , Guangzhou 510006 , P. R. China
| | - Shenghong Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering/School of Physics , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering/School of Physics , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
47
|
Geervliet TA, Gavrila I, Iasilli G, Picchioni F, Pucci A. Luminescent Solar Concentrators Based on Renewable Polyester Matrices. Chem Asian J 2018; 14:877-883. [DOI: 10.1002/asia.201801690] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/30/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Tristan A. Geervliet
- Department of Chemical Engineering/Product Technology, ENTEGUniversity of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Ionela Gavrila
- Department of Chemical Engineering/Product Technology, ENTEGUniversity of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Giuseppe Iasilli
- Department of Chemistry and Industrial ChemistryUniversity of Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Francesco Picchioni
- Department of Chemical Engineering/Product Technology, ENTEGUniversity of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Andrea Pucci
- Department of Chemistry and Industrial ChemistryUniversity of Pisa Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
48
|
Mai H, Lu T, Li Q, Sun Q, Vu K, Chen H, Wang G, Humphrey MG, Kremer F, Li L, Withers RL, Liu Y. Photovoltaic Effect of a Ferroelectric-Luminescent Heterostructure under Infrared Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29786-29794. [PMID: 30088753 DOI: 10.1021/acsami.8b09745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this report, a ferroelectric-luminescent heterostructure is designed to convert infrared light into electric power. We use BiFeO3 (BFO) as the ferroelectric layer and Y2O3:Yb,Tm (YOT) as the upconversion layer. Different from conventional ferroelectric materials, this heterostructure exhibits switchable and stable photovoltaic effects under 980 nm illumination, whose energy is much lower than the band gap of BFO. The energy transfer mechanism in this heterostructure is therefore studied carefully. It is found that a highly efficient nonradiative energy transfer process from YOT to BFO plays a critical role in achieving the below-band-gap photon-excited photovoltaic effects in this heterostructure. Our results also indicate that by introducing asymmetric electrodes, both the photovoltage and photocurrent are further enhanced when the built-in field and the depolarization field are aligned. The construction of ferroelectric-luminescent heterostructure is consequently proposed as a promising route to enhance the photovoltaic effects of ferroelectric materials by extending the absorption of the solar spectrum.
Collapse
Affiliation(s)
| | | | - Qian Li
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Errulat D, Gabidullin B, Murugesu M, Hemmer E. Probing Optical Anisotropy and Polymorph-Dependent Photoluminescence in [Ln 2 ] Complexes by Hyperspectral Imaging on Single Crystals. Chemistry 2018; 24:10146-10155. [PMID: 29665186 DOI: 10.1002/chem.201801224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/15/2018] [Indexed: 01/24/2023]
Abstract
Two homodinuclear and one heterodinuclear lanthanide (Ln)-based complexes of the general formula [Ln2 (bpm)(tfaa)6 ] (Ln=Eu (1), Tb (2), Eu-Tb (3), bpm=2,2'-bipyrimidine, tfaa- =1,1,1-trifluoroacetylacetonate) were synthesized and characterized by single-crystal photoluminescence spectroscopy and hyperspectral imaging. Complexes 1 and 2 crystallize in two polymorphic structures, while three polymorphs were isolated for 3, namely having needle-, plate-, and block-like morphologies. Single-crystal photoluminescence spectroscopy and imaging on Eu3+ -containing 1 and 3 revealed polymorph-dependent J-splitting of the hypersensitive 5 D0 →7 F2 Eu3+ transition as well as electric-to-magnetic dipole emission intensity ratios. According to these observations, the lowest symmetry chemical environment was attributed to the Eu3+ ions present in the needle-like polymorph, also in agreement with single-crystal X-ray diffraction analysis. More importantly, hyperspectral imaging on all three single-crystal polymorphs of 3 exhibits optical anisotropy with photoluminescence enhancement at specific crystallographic faces. This behavior was ascribed to the distinct molecular packing of the Ln-Ln dimers in each polymorphic crystal as well as to face-specific local symmetry of the Eu3+ centers. Overall, opto-structural relationships of three Ln-Ln dimers and their single-crystal polymorphs were established as a particularly promising avenue for control of photoluminescence by chemical crystal engineering.
Collapse
Affiliation(s)
- Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
50
|
Affiliation(s)
- Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; Via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|