1
|
Wang Y, Chen H, Yang X, Diao X, Zhai J. Biological electricity generation system based on mitochondria-nanochannel-red blood cells. NANOSCALE 2024; 16:7559-7565. [PMID: 38501607 DOI: 10.1039/d3nr05879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The high-efficiency energy conversion process in organisms is usually carried out by organelles, proteins and membrane systems. Inspired by the cellular aerobic respiration process, we present an artificial electricity generation device, aimed at sustainable and efficient energy conversion using biological components, to demonstrate the feasibility of bio-inspired energy generation for renewable energy solutions. This approach bridges biological mechanisms and technology, offering a pathway to sustainable, biocompatible energy sources. The device features a mitochondria anode and oxygen-carrying red blood cells (RBCs) cathode, alongside a sandwich-structured sulfonated poly(ether ether ketone) and polyimide composite nanochannel for efficient proton transportation, mimicking cellular respiration. Achieving significant performance with 40 wt% RBCs, it produced a current density of 6.42 mA cm-2 and a maximum power density of 1.21 mW cm-2, maintaining over 50% reactivity after 8 days. This research underscores the potential of bio-inspired systems for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- College of New Energy and Materials, China University of Petroleum, Beijing, Beijing 102249, PR China
| | - Huaxiang Chen
- College of New Energy and Materials, China University of Petroleum, Beijing, Beijing 102249, PR China
| | - Xiaoda Yang
- State Key Laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center Beijing 100191, P. R. China
| | - Xungang Diao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Jin Zhai
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
- State Key Laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University Health Science Center Beijing 100191, P. R. China
| |
Collapse
|
2
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
3
|
Hao Z, Zhou T, Xiao T, Gong H, Zhang Q, Wang H, Zhai J. Electrochromic Nanochannels for Visual Nanofluidic Manipulation in Integrated Ionic Circuits. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57314-57321. [PMID: 33301676 DOI: 10.1021/acsami.0c16409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanochannel system provides a promising platform to create nanofluidic components in large-scale integrated circuits for "lab-on-a-chip" applications. However, it is a big challenge to achieve in situ monitoring on microscopic nanofluidic manipulation of single nanofluidic components in the integrated ionic circuit. Herein, we present a simple approach to realize visual nanofluidic manipulation in asymmetric nanochannels by the functionalization of an electrochromic polyaniline coating, which demonstrates redox-tunable surface charge accompanied by a visible color variation. The electrochromic nanochannels present a green color when behaving as ionic diodes, while the color turns to light yellow in a manner of ionic resistor. Moreover, both ionic transport behavior and color transition could respond well with alternating switch between redox states, contributing to a reversible and stable visual nanofluidic manipulation of electrochromic nanochannels. This work will create new avenues on in situ characterizing nanofluidic manipulation of nanofluidic components in integrated ionic circuits for intelligent sensing and detection applications.
Collapse
Affiliation(s)
- Zhendong Hao
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Ting Zhou
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Tianliang Xiao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Hui Gong
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Qianqian Zhang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hao Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Wang M, Hou Y, Yu L, Hou X. Anomalies of Ionic/Molecular Transport in Nano and Sub-Nano Confinement. NANO LETTERS 2020; 20:6937-6946. [PMID: 32852959 DOI: 10.1021/acs.nanolett.0c02999] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding and exploring the transport behaviors of ions and molecules in the nano and sub-nano confinement has great meaning in the fields of nanofluidics and basic transport physics. With the rapid progress in nanofabrication technology and effective characterization protocols, more and more anomalous transport behaviors have been observed and the ions/molecules inside small confinement can behave dramatically differently from bulk systems and present new mechanisms. In this Mini Review, we summarize the recent advances in the anomalous ionic/molecular transport behaviors in nano and sub-nano confinement. Our discussion includes the ionic/molecular transport of various confinement with different surface properties, static structures, and dynamic structures. Furthermore, we provide a brief overview of the latest applications of nanofluidics in membrane separation and energy conversion.
Collapse
Affiliation(s)
- Miao Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xu Hou
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen 361102, Fujian, China
| |
Collapse
|
5
|
Hao Z, Zhang Q, Xu X, Zhao Q, Wu C, Liu J, Wang H. Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: a review. NANOSCALE 2020; 12:15923-15943. [PMID: 32510069 DOI: 10.1039/d0nr02464c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical power sources, as one of the most promising energy storage and conversion technologies, provide great opportunities for developing high energy density electrochemical devices and portable electronics. However, uncontrolled ionic transport in electrochemical energy conversion, typically undesired anion transfer, usually causes some issues degrading the performance of energy storage devices. Nanochannels offer an effective strategy to solve the ionic transport problems for boosting electrochemical energy storage and conversion. In this review, the advantages of nanochannels for electrochemical energy storage and conversion and the construction principle of nanochannels are introduced, including ion selectivity and ultrafast ion transmission of nanochannels, which are considered as two critical factors to achieve highly efficient energy conversion. Recent advances in applications of nanochannels in lithium secondary batteries (LSBs), electrokinetic energy conversion systems and concentration cells are summarized in detail. Nanochannels exist in the above systems in two typical forms: functional separator and electrode protective layer. Current research on nanochannel-based LSBs is still at the early stage, and deeper and broader applications are expected in the future. Finally, the remaining challenges of nanochannel fabrication, performance improvement, and intelligent construction are presented. It is envisioned that this paper will provide new insights for developing high-performance and versatile energy storage electronics based on nanochannels.
Collapse
Affiliation(s)
- Zhendong Hao
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Xu L, Graham NJD, Wei C, Zhang L, Yu W. Abatement of the membrane biofouling: Performance of an in-situ integrated bioelectrochemical-ultrafiltration system. WATER RESEARCH 2020; 179:115892. [PMID: 32388047 DOI: 10.1016/j.watres.2020.115892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The practical applications of membrane-based water treatment techniques are constrained by the problem of membrane fouling. Various studies have revealed that interactions between extracellular polymeric substances (EPS) and the membrane surface determine the extent of irreversible fouling. Herein, we describe a novel bioelectrochemical system (BES) integrated with an ultrafiltration (UF) membrane in order to provide an enhanced antifouling property. It was found that the integrated BES membrane system had a superior performance compared to a conventional (control) UF system, as manifested by a much lower development of transmembrane pressure. The BES significantly reduced microbial viability in the membrane tank and the imposed electrode potential contributed to the degradation of biopolymers, which favored the alleviation of membrane fouling. Notably, the electron transfer between the acclimated microorganisms and the conductive membrane in the BES integrated system exhibited an increasing trend with the operation time, indicating a gradual increase in microbial electrical activity. Correspondingly, the accumulation of extracellular polymeric substances (EPS) on the membrane surface of the BES integrated system showed a substantial decrease compared to the control system, which could be attributed to a series of synergistic effects induced by the BES integration. The differences in the microbial diversity between the control and the BES integrated system revealed the microbial selectivity of the poised potential. Specifically, microbial strains with relatively high EPS production, like the genus of Zoogloea and Methyloversatilis, were reduced significantly in the BES integrated system, while the expression of the electroactive bacteria was promoted, which facilitated extracellular electron transfer (EET) and therefore the bioelectrochemical reactions. Overall, this study has presented a feasible and promising new approach for membrane fouling mitigation during the process of water treatment.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Chaocheng Wei
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
7
|
Cai J, Ma W, Xu L, Hao C, Sun M, Wu X, Colombari FM, Moura AF, Silva MC, Carneiro‐Neto EB, Chaves Pereira E, Kuang H, Xu C. Self‐Assembled Gold Arrays That Allow Rectification by Nanoscale Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiarong Cai
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Felippe Mariano Colombari
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and Materials 13083-970 Campinas, SP Brazil
| | - André Farias Moura
- Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | | | | | | | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| |
Collapse
|
8
|
Cai J, Ma W, Xu L, Hao C, Sun M, Wu X, Colombari FM, Moura AF, Silva MC, Carneiro‐Neto EB, Chaves Pereira E, Kuang H, Xu C. Self‐Assembled Gold Arrays That Allow Rectification by Nanoscale Selectivity. Angew Chem Int Ed Engl 2019; 58:17418-17424. [DOI: 10.1002/anie.201909447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jiarong Cai
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Felippe Mariano Colombari
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and Materials 13083-970 Campinas, SP Brazil
| | - André Farias Moura
- Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | | | | | | | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| |
Collapse
|
9
|
Kim DY, Jeong KU. Light responsive liquid crystal soft matters: structures, properties, and applications. LIQUID CRYSTALS TODAY 2019. [DOI: 10.1080/1358314x.2019.1653588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dae-Yoon Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, Korea
| |
Collapse
|
10
|
Ding D, Gao P, Ma Q, Wang D, Xia F. Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804878. [PMID: 30756522 DOI: 10.1002/smll.201804878] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Indexed: 05/12/2023]
Abstract
Solid-state ion nanochannels/nanopores, the biomimetic products of biological ion channels, are promising materials in real-world applications due to their robust mechanical and controllable chemical properties. Functionalizations of solid-state ion nanochannels/nanopores by biomolecules pave a wide way for the introduction of varied properties from biomolecules to solid-state ion nanochannels/nanopores, making them smart in response to analytes or external stimuli and regulating the transport of ions/molecules. In this review, two features for nanochannels/nanopores functionalized by biomolecules are abstracted, i.e., specificity and signal amplification. Both of the two features are demonstrated from three kinds of nanochannels/nanopores: nucleic acid-functionalized nanochannels/nanopores, protein-functionalized nanochannels/nanopores, and small biomolecule-functionalized nanochannels/nanopores, respectively. Meanwhile, the fundamental mechanisms of these combinations between biomolecules and nanochannels/nanopores are explored, providing reasonable constructs for applications in sensing, transport, and energy conversion. And then, the techniques of functionalizations and the basic principle about biomolecules onto the solid-state ion nanochannels/nanopores are summarized. Finally, some views about the future developments of the biomolecule-functionalized nanochannels/nanopores are proposed.
Collapse
Affiliation(s)
- Defang Ding
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Qun Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Wang M, Meng H, Wang D, Yin Y, Stroeve P, Zhang Y, Sheng Z, Chen B, Zhan K, Hou X. Dynamic Curvature Nanochannel-Based Membrane with Anomalous Ionic Transport Behaviors and Reversible Rectification Switch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805130. [PMID: 30633407 DOI: 10.1002/adma.201805130] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/29/2018] [Indexed: 05/08/2023]
Abstract
Biological nanochannels control the movements of different ions through cell membranes depending on not only those channels' static inherent configurations, structures, inner surface's physicochemical properties but also their dynamic shape changes, which are required in various essential functions of life processes. Inspired by ion channels, many artificial nanochannel-based membranes for nanofluidics and biosensing applications have been developed to regulate ionic transport behaviors by using the functional molecular modifications at the inner surface of nanochannel to achieve a stimuli-responsive layer. Here, the concept of a dynamic nanochannel system is further developed, which is a new way to regulate ion transport in nanochannels by using the dynamic change in the curvature of channels to adjust ionic rectification in real time. The dynamic curvature nanochannel-based membrane displays the advanced features of the anomalous effect of voltage, concentration, and ionic size for applying simultaneous control over the curvature-tunable asymmetric and reversible ionic rectification switching properties. This dynamic approach can be used to build smart nanochannel-based systems, which have strong implications for flexible nanofluidics, ionic rectifiers, and power generators.
Collapse
Affiliation(s)
- Miao Wang
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Haiqiang Meng
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
| | - Dan Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yajun Yin
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Pieter Stroeve
- Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, CA, 95616, USA
| | - Yunmao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhizhi Sheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Baiyi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Kan Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xu Hou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
12
|
Li R, Fan X, Liu Z, Zhai J. Smart Bioinspired Nanochannels and their Applications in Energy-Conversion Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702983. [PMID: 28833604 DOI: 10.1002/adma.201702983] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Smart bioinspired nanochannels exhibiting ion-transport properties similar to biological ion channels have attracted extensive attention. Like ion channels in nature, smart bioinspired nanochannels can respond to various stimuli, which lays a solid foundation for mass transport and energy conversion. Fundamental research into smart bioinspired nanochannels not only furthers understanding of life processes in living bodies, but also inspires researchers to construct smart nanodevices to meet the increasing demand for the use of renewable resources. Here, a brief summary of recent research progress regarding the design and preparation of smart bioinspired nanochannels is presented. Moreover, representative applications of smart bioinspired nanochannels in energy-conversion systems are also summarized. Finally, an outlook for future challenges in this field is given.
Collapse
Affiliation(s)
- Ruirui Li
- Key Laboratory of Smart bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Smart bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- Key Laboratory of Smart bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Smart bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|