1
|
Li Y, Xu S, Zhang Z, Yang Y, Xie X, Ye W, Liu F, Xue H, Jing L, Wang Z, Chen QD, Sun HB, Li E, Chen H, Gao F. Polarization-Orthogonal Nondegenerate Plasmonic Higher-Order Topological States. PHYSICAL REVIEW LETTERS 2023; 130:213603. [PMID: 37295078 DOI: 10.1103/physrevlett.130.213603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023]
Abstract
Photonic topological states, providing light-manipulation approaches in robust manners, have attracted intense attention. Connecting photonic topological states with far-field degrees of freedom (d.o.f.) has given rise to fruitful phenomena. Recently emerged higher-order topological insulators (HOTIs), hosting boundary states two or more dimensions lower than those of bulk, offer new paradigms to localize or transport light topologically in extended dimensionalities. However, photonic HOTIs have not been related to d.o.f. of radiation fields yet. Here, we report the observation of polarization-orthogonal second-order topological corner states at different frequencies on a designer-plasmonic kagome metasurface in the far field. Such phenomenon stands on two mechanisms, i.e., projecting the far-field polarizations to the intrinsic parity d.o.f. of lattice modes and the parity splitting of the plasmonic corner states in spectra. We theoretically and numerically show that the parity splitting originates from the underlying interorbital coupling. Both near-field and far-field experiments verify the polarization-orthogonal nondegenerate second-order topological corner states. These results promise applications in robust optical single photon emitters and multiplexed photonic devices.
Collapse
Affiliation(s)
- Yuanzhen Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Su Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zijian Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Yumeng Yang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Xinrong Xie
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Wenzheng Ye
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Feng Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Haoran Xue
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Liqiao Jing
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Zuojia Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| | - Erping Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Fei Gao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
| |
Collapse
|
2
|
Yang Y, Xie X, Li Y, Zhang Z, Peng Y, Wang C, Li E, Li Y, Chen H, Gao F. Radiative anti-parity-time plasmonics. Nat Commun 2022; 13:7678. [PMID: 36509769 PMCID: PMC9744817 DOI: 10.1038/s41467-022-35447-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Space and guided electromagnetic waves, as widely known, are two crucial cornerstones in extensive wireless and integrated applications respectively. To harness the two cornerstones, radiative and integrated devices are usually developed in parallel based on the same physical principles. An emerging mechanism, i.e., anti-parity-time (APT) symmetry originated from non-Hermitian quantum mechanics, has led to fruitful phenomena in harnessing guided waves. However, it is still absent in harnessing space waves. Here, we propose a radiative plasmonic APT design to harness space waves, and experimentally demonstrate it with subwavelength designer-plasmonic structures. We observe two exotic phenomena unrealized previously. Rotating polarizations of incident space waves, we realize polarization-controlled APT phase transition. Tuning incidence angles, we observe multi-stage APT phase transition in higher-order APT systems, constructed by using the scalability of leaky-wave couplings. Our scheme shows promise in demonstrating novel APT physics, and constructing APT-symmetry-empowered radiative devices.
Collapse
Affiliation(s)
- Yumeng Yang
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Xinrong Xie
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Yuanzhen Li
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Zijian Zhang
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Yiwei Peng
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Chi Wang
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Erping Li
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Ying Li
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Hongsheng Chen
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| | - Fei Gao
- grid.13402.340000 0004 1759 700XInterdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XInternational Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400 China ,grid.13402.340000 0004 1759 700XKey Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099 China ,grid.13402.340000 0004 1759 700XShaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000 China
| |
Collapse
|
3
|
Multipole resonance and Vernier effect in compact and flexible plasmonic structures. Sci Rep 2021; 11:22817. [PMID: 34819584 PMCID: PMC8613286 DOI: 10.1038/s41598-021-02333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Spoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending. Moreover, by combining two resonators of slightly different sizes, we demonstrate spectral filtering via the Vernier effect. We selectively address a target higher-order resonance while suppressing the other modes. Finally, we investigate the index-sensing capability of printed plasmonic resonators. In the Vernier structure, we can control the resonance amplitude and frequency by adjusting a resonance overlap between two coupled resonators. The transmission amplitude can be maximized at a target refractive index, and this can provide more functionalities and increased design flexibility. The metal-ink printing of microwave photonic structures can be applied to various flexible devices. Therefore, we expect that the compact, flexible plasmonic structures demonstrated in this study may be useful for highly functional elements that can enable tight field confinement and manipulation.
Collapse
|
4
|
Frizyuk K, Melik-Gaykazyan E, Choi JH, Petrov MI, Park HG, Kivshar Y. Nonlinear Circular Dichroism in Mie-Resonant Nanoparticle Dimers. NANO LETTERS 2021; 21:4381-4387. [PMID: 33983751 DOI: 10.1021/acs.nanolett.1c01025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We studied the nonlinear response of a dimer composed of two identical Mie-resonant dielectric nanoparticles illuminated normally by a circularly polarized light. We developed a general theory describing hybridization of multipolar modes of the coupled nanoparticles and reveal nonvanishing nonlinear circular dichroism (CD) in the second-harmonic generation (SHG) signal enhanced by the multipolar resonances in the dimer, provided its axis is oriented under an angle to the crystalline lattice of the dielectric material. We supported our multipolar hybridization theory by experimental results obtained for the AlGaAs dimers placed on an engineered substrate.
Collapse
Affiliation(s)
- Kristina Frizyuk
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Elizaveta Melik-Gaykazyan
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jae-Hyuck Choi
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Mihail I Petrov
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
5
|
Fu T, Liu X, Xiao G, Sun T, Li H. Deep-subwavelength spoof magnetic localized surface plasmon waveguiding over arbitrary bending angles. OPTICS EXPRESS 2020; 28:38934-38941. [PMID: 33379451 DOI: 10.1364/oe.411770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A deep-subwavelength metal spiral structure (MSS) waveguide with arbitrary bending angles was proposed and demonstrated to propagate magnetic localized surface plasmons (MLSPs) in theoretical, simulated and experimental ways. The uniform coupling strengths and frequencies for adjacent MSSs with different azimuthal angles represent a significant advancement in the development of structures supporting MLSPs over arbitrary bending angles. The consistency among spectra, dispersion, and field distributions for five MSSs indicates that backward propagation of MLSPs over arbitrary bending angles is possible. In addition, a long S-chain consisting of adjacent MSSs at various angles holds promise for applications involving long-distance MLSPs waveguides.
Collapse
|
6
|
Sun B, Yu YY, Zhang S, Yang WX. Propagation of toroidal localized spoof surface plasmons using conductive coupling. OPTICS LETTERS 2019; 44:3861-3864. [PMID: 31368987 DOI: 10.1364/ol.44.003861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Here, on a platform of two split-ring resonator (SRR) disks in the microwave regime, we have numerically and experimentally investigated the coupling of toroidal localized spoof surface plasmons (LSSPs). The coupling effect is investigated both theoretically and experimentally. We observe that magnetic dipole coupling exists in the toroidal LSSPs coupling and causes a rearrangement of the toroidal LSSPs, which suppresses the propagation of toroidal LSSPs. To realize the propagation of toroidal LSSPs, we introduce conductive coupling into the SRR disks. The conductive coupling can correct magnetic dipole coupling and enhance toroidal LSSPs coupling. Both numerical simulations and experiments are in good agreement. The toroidal LSSPs can be effectively propagated, even in the three right-angle-bent SRR disks. This study paves the way toward a better understanding of toroidal LSSPs coupling and finds many applications in the transfer of electromagnetic energy using toroidal moments.
Collapse
|
7
|
Zhang J, Zhang HC, Gao XX, Zhang LP, Niu LY, He PH, Cui TJ. Integrated spoof plasmonic circuits. Sci Bull (Beijing) 2019; 64:843-855. [PMID: 36659674 DOI: 10.1016/j.scib.2019.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/21/2023]
Abstract
Using a metamaterial consisting of metals with subwavelength surface patterning, one can mimic surface plasmon polaritons (SPPs) and achieve surface waves with subwavelength confinement at microwave and terahertz frequencies, thus bringing most of the advantages associated with the optical SPPs to lower frequencies. Due to the properties of strong field confinement and high local field intensity, spoof SPPs have demonstrated the improved performance for data transmission and device miniaturization in an intensively integrated environment. The distinctive abilities, such as suppression of transmission loss and bending loss, and increase of signal integrity, make spoof SPPs a promising candidate for future generation of electronic circuits and electromagnetic systems. This article reviews the progress in spoof SPPs with a special focus on their applications in circuits from transmission lines to passive and active devices in microwave and terahertz regimes. The integration of versatile spoof SPP devices on a single platform, which is compatible with established electronic circuits, is also discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Hao-Chi Zhang
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Xin-Xin Gao
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Le-Peng Zhang
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Ling-Yun Niu
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Pei-Hang He
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Tie-Jun Cui
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China.
| |
Collapse
|
8
|
Nikolka M, Broch K, Armitage J, Hanifi D, Nowack PJ, Venkateshvaran D, Sadhanala A, Saska J, Mascal M, Jung SH, Lee JK, McCulloch I, Salleo A, Sirringhaus H. High-mobility, trap-free charge transport in conjugated polymer diodes. Nat Commun 2019; 10:2122. [PMID: 31073179 PMCID: PMC6509340 DOI: 10.1038/s41467-019-10188-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 04/02/2019] [Indexed: 11/28/2022] Open
Abstract
Charge transport in conjugated polymer semiconductors has traditionally been thought to be limited to a low-mobility regime by pronounced energetic disorder. Much progress has recently been made in advancing carrier mobilities in field-effect transistors through developing low-disorder conjugated polymers. However, in diodes these polymers have to date not shown much improved mobilities, presumably reflecting the fact that in diodes lower carrier concentrations are available to fill up residual tail states in the density of states. Here, we show that the bulk charge transport in low-disorder polymers is limited by water-induced trap states and that their concentration can be dramatically reduced through incorporating small molecular additives into the polymer film. Upon incorporation of the additives we achieve space-charge limited current characteristics that resemble molecular single crystals such as rubrene with high, trap-free SCLC mobilities up to 0.2 cm2/Vs and a width of the residual tail state distribution comparable to kBT. Charge transport in organic diodes based on conjugated polymers is severely limited by the high water-related trap concentration and energetic disorder. Here, the authors report high-mobility trap-free charge transport in low-disorder conjugated polymers by incorporating small molecular additives.
Collapse
Affiliation(s)
- Mark Nikolka
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Katharina Broch
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - John Armitage
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - David Hanifi
- Department of Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Peer J Nowack
- Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Deepak Venkateshvaran
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Aditya Sadhanala
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Jan Saska
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA
| | - Mark Mascal
- Department of Chemistry, University of California Davis, Davis, CA, 95616, USA
| | - Seok-Heon Jung
- Department of Polymer Science and Engineering, Inha University, Incheon, 402-751, South Korea
| | - Jin-Kyun Lee
- Department of Polymer Science and Engineering, Inha University, Incheon, 402-751, South Korea
| | - Iain McCulloch
- King Abdullah University of Science and Technology (KAUST), Kaust Solar Center (KSC), Thuwal, 23955-6900, Saudi Arabia.,Department of Chemistry and Centre for Plastic, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Alberto Salleo
- Department of Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
9
|
Gao Z, Wu L, Gao F, Luo Y, Zhang B. Spoof Plasmonics: From Metamaterial Concept to Topological Description. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706683. [PMID: 29782662 DOI: 10.1002/adma.201706683] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Advances in metamaterials have offered the opportunity of engineering electromagnetic properties beyond the limits of natural materials. A typical example is "spoof" surface plasmon polaritons (SPPs), which mimic features of SPPs without penetrating into metal, but only with periodic corrugations on metal surfaces. They hold considerable promise in device applications from microwaves to the far infrared, where real SPP modes do not exist. The original spoof SPP concept is derived from the description of corrugated surfaces by a metamaterial that hosts an effective plasma frequency. Later, studies have attempted to describe spoof SPP modes with the band structure by strictly solving Maxwell's equations, which can possess band gaps from polaritonic anticrossing principle or Bragg interference. More recently, as inspired by the development of topological framework in condensed matter physics, the topological description of spoof SPPs is used to propose topologically protected waveguiding phenomena. Here, the developments of spoof SPPs from both practical and fundamental perspectives are reviewed.
Collapse
Affiliation(s)
- Zhen Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Lin Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Fei Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Yu Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798, Singapore
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|