1
|
Wu C, Liu S, Zhou L, Chen Z, Yang Q, Cui Y, Chen M, Li L, Ke B, Li C, Yin S. Cellular and Molecular Insights into the Divergence of Neural Stem Cells on Matrigel and Poly-l-lysine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31922-31935. [PMID: 38874539 PMCID: PMC11212020 DOI: 10.1021/acsami.4c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Poly-l-lysine (PLL) and Matrigel, both classical coating materials for culture substrates in neural stem cell (NSC) research, present distinct interfaces whose effect on NSC behavior at cellular and molecular levels remains ambiguous. Our investigation reveals intriguing disparities: although both PLL and Matrigel interfaces are hydrophilic and feature amine functional groups, Matrigel stands out with lower stiffness and higher roughness. Based on this diversity, Matrigel surpasses PLL, driving NSC adhesion, migration, and proliferation. Intriguingly, PLL promotes NSC differentiation into astrocytes, whereas Matrigel favors neural differentiation and the physiological maturation of neurons. At the molecular level, Matrigel showcases a wider upregulation of genes linked to NSC behavior. Specifically, it enhances ECM-receptor interaction, activates the YAP transcription factor, and heightens glycerophospholipid metabolism, steering NSC proliferation and neural differentiation. Conversely, PLL upregulates genes associated with glial cell differentiation and amino acid metabolism and elevates various amino acid levels, potentially linked to its support for astrocyte differentiation. These distinct transcriptional and metabolic activities jointly shape the divergent NSC behavior on these substrates. This study significantly advances our understanding of substrate regulation on NSC behavior, offering novel insights into optimizing and targeting the application of these surface coating materials in NSC research.
Collapse
Affiliation(s)
- Cuiping Wu
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Suru Liu
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lei Zhou
- Department
of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Zhengnong Chen
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quanjun Yang
- Department
of Pharmacy, Shanghai Sixth People’s
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yaqi Cui
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ming Chen
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Linpeng Li
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bingbing Ke
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chunyan Li
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Shankai Yin
- Shanghai
Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head
and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
2
|
Liu M, Zhang W, Han S, Zhang D, Zhou X, Guo X, Chen H, Wang H, Jin L, Feng S, Wei Z. Multifunctional Conductive and Electrogenic Hydrogel Repaired Spinal Cord Injury via Immunoregulation and Enhancement of Neuronal Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313672. [PMID: 38308338 DOI: 10.1002/adma.202313672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Spinal cord injury (SCI) is a refractory neurological disorder. Due to the complex pathological processes, especially the secondary inflammatory cascade and the lack of intrinsic regenerative capacity, it is difficult to recover neurological function after SCI. Meanwhile, simulating the conductive microenvironment of the spinal cord reconstructs electrical neural signal transmission interrupted by SCI and facilitates neural repair. Therefore, a double-crosslinked conductive hydrogel (BP@Hydrogel) containing black phosphorus nanoplates (BP) is synthesized. When placed in a rotating magnetic field (RMF), the BP@Hydrogel can generate stable electrical signals and exhibit electrogenic characteristic. In vitro, the BP@Hydrogel shows satisfactory biocompatibility and can alleviate the activation of microglia. When placed in the RMF, it enhances the anti-inflammatory effects. Meanwhile, wireless electrical stimulation promotes the differentiation of neural stem cells (NSCs) into neurons, which is associated with the activation of the PI3K/AKT pathway. In vivo, the BP@Hydrogel is injectable and can elicit behavioral and electrophysiological recovery in complete transected SCI mice by alleviating the inflammation and facilitating endogenous NSCs to form functional neurons and synapses under the RMF. The present research develops a multifunctional conductive and electrogenic hydrogel for SCI repair by targeting multiple mechanisms including immunoregulation and enhancement of neuronal differentiation.
Collapse
Affiliation(s)
- Mingshan Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Wencan Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shuwei Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Dapeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaolong Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xianzheng Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haosheng Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haifeng Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Tianqiao District, Jinan, 250033, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, No. 6, Middle Section of Wenchang Avenue, Chuanhui District, Zhoukou, 466001, China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhijian Wei
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, 250012, China
| |
Collapse
|
3
|
Tang Z, Liu Y, Xiang H, Dai X, Huang X, Ju Y, Ni N, Huang R, Gao H, Zhang J, Fan X, Su Y, Chen Y, Gu P. Bifunctional MXene-Augmented Retinal Progenitor Cell Transplantation for Retinal Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302747. [PMID: 37379237 PMCID: PMC10477897 DOI: 10.1002/advs.202302747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/07/2023] [Indexed: 06/30/2023]
Abstract
Retinal degeneration, characterized by the progressive loss of retinal neurons, is the leading cause of incurable visual impairment. Retinal progenitor cells (RPCs)-based transplantation can facilitate sight restoration, but the clinical efficacy of this process is compromised by the imprecise neurogenic differentiation of RPCs and undermining function of transplanted cells surrounded by severely oxidative retinal lesions. Here, it is shown that ultrathin niobium carbide (Nb2 C) MXene enables performance enhancement of RPCs for retinal regeneration. Nb2 C MXene with moderate photothermal effect markedly improves retinal neuronal differentiation of RPCs by activating intracellular signaling, in addition to the highly effective RPC protection by scavenging free radicals concurrently, which has been solidly evidenced by the comprehensive biomedical assessments and theoretical calculations. A dramatically increased neuronal differentiation is observed upon subretinal transplantation of MXene-assisted RPCs into the typical retinal degeneration 10 (rd10) mice, thereby contributing to the efficient restoration of retinal architecture and visual function. The dual-intrinsic function of MXene synergistically aids RPC transplantation, which represents an intriguing paradigm in vision-restoration research filed, and will broaden the multifunctionality horizon of nanomedicine.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yan Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xinyue Dai
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiaolin Huang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yahan Ju
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Ni Ni
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Rui Huang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Huiqin Gao
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Jing Zhang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yun Su
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
4
|
Gao H, Sun C, Shang S, Sun B, Sun M, Hu S, Yang H, Hu Y, Feng Z, Zhou W, Liu C, Wang J, Liu H. Wireless Electrical Signals Induce Functional Neuronal Differentiation of BMSCs on 3D Graphene Framework Driven by Magnetic Field. ACS NANO 2023; 17:16204-16220. [PMID: 37531596 DOI: 10.1021/acsnano.3c05725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are suggested as candidates for neurodegeneration therapy by autologous stem cells to overcome the lack of neural stem cells in adults. However, the differentiation of BMSCs into functional neurons is a major challenge for neurotherapy. Herein, a methodology has been proposed to induce functional neuronal differentiation of BMSCs on a conductive three-dimensional graphene framework (GFs) combined with a rotating magnetic field. A wireless electrical signal of about 10 μA can be generated on the surface of GFs by cutting the magnetic field lines based on the well-known electromagnetic induction effect, which has been proven to be suitable for inducing neuronal differentiation of BMSCs. The enhanced expressions of the specific genes/proteins and apparent Ca2+ intracellular flow indicate that BMSCs cultured on GFs with 15 min/day rotating magnetic field stimulation for 15 days can differentiate functional neurons without any neural inducing factor. The animal experiments confirm the neural differentiation of BMSCs on GFs after transplantation in vivo, accompanied by stimulation of an external rotating magnetic field. This study overcomes the lack of autologous neural stem cells for adult neurodegeneration patients and provides a facile and safe strategy to induce the neural differentiation of BMSCs, which has potential for clinical applications of neural tissue engineering.
Collapse
Affiliation(s)
- Haoyang Gao
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Shuo Shang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Baojun Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Mingyuan Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Shuang Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, People's Republic of China
| | - Ying Hu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Zhichao Feng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Chao Liu
- Cryomedicine Laboratory, Qilu Hospital, Shandong University, Jinan 250012, People's Republic of China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
5
|
Álvarez Z, Ortega JA, Sato K, Sasselli IR, Kolberg-Edelbrock AN, Qiu R, Marshall KA, Nguyen TP, Smith CS, Quinlan KA, Papakis V, Syrgiannis Z, Sather NA, Musumeci C, Engel E, Stupp SI, Kiskinis E. Artificial extracellular matrix scaffolds of mobile molecules enhance maturation of human stem cell-derived neurons. Cell Stem Cell 2023; 30:219-238.e14. [PMID: 36638801 PMCID: PMC9898161 DOI: 10.1016/j.stem.2022.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced β1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.
Collapse
Affiliation(s)
- Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Medicine, Northwestern University, Chicago, IL 60611, USA; Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - J Alberto Ortega
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Kohei Sato
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ivan R Sasselli
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Alexandra N Kolberg-Edelbrock
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Kelly A Marshall
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thao Phuong Nguyen
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Katharina A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Vasileios Papakis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zois Syrgiannis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Nicholas A Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Chiara Musumeci
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Elisabeth Engel
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA; Department of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA; The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Shi B, Zhao J, Xu Z, Chen C, Xu L, Xu C, Sun M, Kuang H. Chiral Nanoparticles Force Neural Stem Cell Differentiation to Alleviate Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202475. [PMID: 36008133 PMCID: PMC9561871 DOI: 10.1002/advs.202202475] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/08/2022] [Indexed: 06/04/2023]
Abstract
The differentiation of neural stem cells via nanomaterials has attracted attention and has become a potential tool. However, the chirality effect in neural stem cell differentiation has not been investigated. Here, this study shows that chiral nanoparticles (NPs) with strong chirality can efficiently accelerate the differentiation of mouse neural stem cells (NSCs) into neurons under near-infrared (NIR) light illumination. L-type NPs are 1.95 times greater than D-type NPs in promoting NSCs differentiation due to their 1.47-fold endocytosis efficiency. Whole gene expression map analysis reveals that circularly polarized light illumination and chiral NPs irradiation significantly upregulate Map2, Yap1, and Taz genes, resulting in mechanical force, cytoskeleton protein action, and accelerated NSCs differentiation. In vivo experiments show that successful differentiation can further alleviate symptoms in Alzheimer's disease mice. Moreover, the clearance of L-type NPs on amyloid and hyperphosphorylated p-tau protein reachs 68.24% and 66.43%, respectively, under the synergy of NIR irradiation. The findings suggest that strong chiral nanomaterials may have advantages in guiding cell development and can be used in biomedicine.
Collapse
Affiliation(s)
- Baimei Shi
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Jing Zhao
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Zhuojia Xu
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and BiodetectionJiangnan UniversityWuxiJiangsu214122China
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
7
|
Yang L, Conley BM, Yoon J, Rathnam C, Pongkulapa T, Conklin B, Hou Y, Lee KB. High-Content Screening and Analysis of Stem Cell-Derived Neural Interfaces Using a Combinatorial Nanotechnology and Machine Learning Approach. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9784273. [PMID: 36204248 PMCID: PMC9513834 DOI: 10.34133/2022/9784273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue engineering applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian M. Conley
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
8
|
Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. IN VITRO MODELS 2022; 1:289-307. [PMID: 36567849 PMCID: PMC9766883 DOI: 10.1007/s44164-022-00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.
Collapse
Affiliation(s)
- Lucia Iafrate
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Cristina Benedetti
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| |
Collapse
|
9
|
Ng N, Newbery M, Maksour S, Dottori M, Sluyter R, Ooi L. Transgene and Chemical Transdifferentiation of Somatic Cells for Rapid and Efficient Neurological Disease Cell Models. Front Cell Neurosci 2022; 16:858432. [PMID: 35634469 PMCID: PMC9130549 DOI: 10.3389/fncel.2022.858432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
For neurological diseases, molecular and cellular research relies on the use of model systems to investigate disease processes and test potential therapeutics. The last decade has witnessed an increase in the number of studies using induced pluripotent stem cells to generate disease relevant cell types from patients. The reprogramming process permits the generation of a large number of cells but is potentially disadvantaged by introducing variability in clonal lines and the removal of phenotypes of aging, which are critical to understand neurodegenerative diseases. An under-utilized approach to disease modeling involves the transdifferentiation of aged cells from patients, such as fibroblasts or blood cells, into various neural cell types. In this review we discuss techniques used for rapid and efficient direct conversion to neural cell types. We examine the limitations and future perspectives of this rapidly advancing field that could improve neurological disease modeling and drug discovery.
Collapse
Affiliation(s)
- Neville Ng
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Neville Ng,
| | - Michelle Newbery
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
- Lezanne Ooi,
| |
Collapse
|
10
|
Yang L, Conley BM, Rathnam C, Cho HY, Pongkulapa T, Conklin B, Lee KB. Predictive Biophysical Cue Mapping for Direct Cell Reprogramming Using Combinatorial Nanoarrays. ACS NANO 2022; 16:5577-5586. [PMID: 35301847 DOI: 10.1021/acsnano.1c10344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biophysical cues, such as nanotopographies of extracellular matrix (ECM), are key cell regulators for direct cell reprogramming. Therefore, high-throughput methods capable of systematically screening a wide range of biophysical cue-regulated cell reprogramming are increasingly needed for tissue engineering and regenerative medicine. Here, we report the development of a dynamic laser interference lithography (DIL) to generate large-scale combinatorial biophysical cue (CBC) arrays with diverse micro/nanostructures at higher complexities than most current arrays. Using CBC arrays, a high-throughput cell mapping method is further demonstrated for the systematic investigation of biophysical cue-mediated direct cell reprogramming. This CBC array-based high-throughput cell screening approach facilitates the rapid identification of unconventional hierarchical nanopatterns that induce the direct reprogramming of human fibroblasts into neurons through epigenetic modulation mechanisms. In this way, we successfully demonstrate DIL for generating highly complex CBC arrays and establish CBC array-based cell screening as a valuable strategy for systematically investigating the role of biophysical cues in cell reprogramming.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
11
|
Zhang S, Zhao J, Quan Z, Li H, Qing H. Mitochondria and Other Organelles in Neural Development and Their Potential as Therapeutic Targets in Neurodegenerative Diseases. Front Neurosci 2022; 16:853911. [PMID: 35450015 PMCID: PMC9016280 DOI: 10.3389/fnins.2022.853911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The contribution of organelles to neural development has received increasing attention. Studies have shown that organelles such as mitochondria, endoplasmic reticulum (ER), lysosomes, and endosomes play important roles in neurogenesis. Specifically, metabolic switching, reactive oxygen species production, mitochondrial dynamics, mitophagy, mitochondria-mediated apoptosis, and the interaction between mitochondria and the ER all have roles in neurogenesis. Lysosomes and endosomes can regulate neurite growth and extension. Moreover, metabolic reprogramming represents a novel strategy for generating functional neurons. Accordingly, the exploration and application of mechanisms underlying metabolic reprogramming will be beneficial for neural conversion and regenerative medicine. There is adequate evidence implicating the dysfunction of cellular organelles—especially mitochondria—in neurodegenerative disorders, and that improvement of mitochondrial function may reverse the progression of these diseases through the reinforcement of adult neurogenesis. Therefore, these organelles have potential as therapeutic targets for the treatment of neurodegenerative diseases. In this review, we discuss the function of these organelles, especially mitochondria, in neural development, focusing on their potential as therapeutic targets in neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Hui Li,
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Hong Qing,
| |
Collapse
|
12
|
Huang B, Peng J, Huang X, Liang F, Wang L, Shi J, Yamada A, Chen Y. Generation of Interconnected Neural Clusters in Multiscale Scaffolds from Human-Induced Pluripotent Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55939-55952. [PMID: 34788005 DOI: 10.1021/acsami.1c18465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of in vitro neural networks depends to a large extent on the scaffold properties, including the scaffold stiffness, porosity, and dimensionality. Herein, we developed a method to generate interconnected neural clusters in a multiscale scaffold consisting of a honeycomb microframe covered on both sides with a monolayer of cross-linked gelatin nanofibers. Cortical neural precursor cells were first produced from human-induced pluripotent stem cells and then loaded into the scaffold for a long period of differentiation toward cortical neural cells. As a result, neurons and astrocytes self-organized in the scaffold to form clusters in each of the honeycomb compartments with remarkable inter-cluster connections. These cells highly expressed neuron- and astrocyte-specific proteins, including NF200, tau, synapsin I, and glial fibrillary acidic protein, and showed spatially correlated neural activities. Two types of neural clusters, that is, spheroid-like and hourglass-like clusters, were found, indicating the complexity of neural-scaffold interaction and the variability of three-dimensional neural organization. Furthermore, we incorporated a reconstituted basement membrane into the scaffold and performed co-culture of the neural network with brain microvascular endothelial cells. As a proof of concept, an improved neurovascular unit model was tested, showing large astrocytic end-feet on the back side of the endothelium.
Collapse
Affiliation(s)
- Boxin Huang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Juan Peng
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Xiaochen Huang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Feng Liang
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Li Wang
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Jian Shi
- MesoBioTech, 231 Rue Saint-Honoré, 75001 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
13
|
Hernández R, Jiménez-Luna C, Ortiz R, Setién F, López M, Perazzoli G, Esteller M, Berdasco M, Prados J, Melguizo C. Impact of the Epigenetically Regulated Hoxa-5 Gene in Neural Differentiation from Human Adipose-Derived Stem Cells. BIOLOGY 2021; 10:biology10080802. [PMID: 34440035 PMCID: PMC8389620 DOI: 10.3390/biology10080802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Human adipose-derived mesenchymal stem cells (hASCs) may be used in some nervous system pathologies, although obtaining an adequate degree of neuronal differentiation is an important barrier to their applicability. This requires a deep understanding of the expression and epigenetic changes of the most important genes involved in their differentiation. We used hASCs from human lipoaspirates to induce neuronal-like cells through three protocols (Neu1, 2, and 3), determined the degree of neuronal differentiation using specific biomarkers in culture cells and neurospheres, and analyzed epigenetic changes of genes involved in this differentiation. Furthermore, we selected the Hoxa-5 gene to determine its potential to improve neuronal differentiation. Our results showed that an excellent hASC neuronal differentiation process using Neu1 which efficiently modulated NES, CHAT, SNAP25, or SCN9A neuronal marker expression. In addition, epigenetic studies showed relevant changes in Hoxa-5, GRM4, FGFR1, RTEL1, METRN, and PAX9 genes. Functional studies of the Hoxa-5 gene using CRISPR/dCas9 and lentiviral systems showed that its overexpression induced hASCs neuronal differentiation that was accelerated with the exposure to Neu1. These results suggest that Hoxa-5 is an essential gene in hASCs neuronal differentiation and therefore, a potential candidate for the development of cell therapy strategies in neurological disorders.
Collapse
Affiliation(s)
- Rosa Hernández
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Cristina Jiménez-Luna
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Raúl Ortiz
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Fernando Setién
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - Miguel López
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Gloria Perazzoli
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Cancer Epigenetics Group, Cancer and Leukemia Epigenetics and Biology Program (PEBCL), Josep Carreras Leukemia Research Institute (IJC), 08916 Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (F.S.); (M.L.); (M.E.); (M.B.)
- Epigenetic Therapies Group, Experimental and Clinical Hematology Program (PHEC), Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain
| | - Jose Prados
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Consolación Melguizo
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain; (R.H.); (C.J.-L.); (R.O.); (G.P.); (C.M.)
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
14
|
Ko WK, Lee SJ, Kim SJ, Han GH, Han IB, Hong JB, Sheen SH, Sohn S. Direct Injection of Hydrogels Embedding Gold Nanoparticles for Local Therapy after Spinal Cord Injury. Biomacromolecules 2021; 22:2887-2901. [PMID: 34097404 DOI: 10.1021/acs.biomac.1c00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we created a hydrogel composed of glycol chitosan (gC) and oxidized hyaluronate (oHA). Gold nanoparticles (GNPs) were conjugated with ursodeoxycholic acid (UDCA). The GNP-UDCA complex was embedded into gC-oHA (CHA) hydrogels to form a CHA-GNP-UDCA gel. This CHA-GNP-UDCA gel was injected once into an epicenter of an injured region in SCI rats. Near-infrared (NIR) irradiation was then applied to the lesion as a means of local therapy. To optimize the viscosity for injection into a lesion, several volume ratios of gC and oHA were investigated using scanning electron microscopy and a rotating rheometer. The optimally synthesized CHA-GNP-UDCA gel under NIR irradiation suppressed the production of inflammatory cytokines in vitro. In addition, the optimized CHA-GNP-UDCA gel under NIR irradiation inhibited the cystic cavity of the lesion and significantly improved the hindlimb function. The production of inflammatory cytokines following SCI was significantly inhibited in the CHA-GNP-UDCA gel + NIR group. CHA-GNP-UDCA gels with NIR irradiation can therefore have therapeutic effects for those with spinal cord injuries.
Collapse
Affiliation(s)
- Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea.,Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong Jun Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea.,Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Gong Ho Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea.,Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| | - Je Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Seung Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| |
Collapse
|
15
|
Bai R, Chang Y, Saleem A, Wu F, Tian L, Zhang S, Li Y, Ma S, Dong T, Guo T, Jiang Y, You Y, Lu WJ, Jiang HF, Lan F. Ascorbic acid can promote the generation and expansion of neuroepithelial-like stem cells derived from hiPS/ES cells under chemically defined conditions through promoting collagen synthesis. Stem Cell Res Ther 2021; 12:48. [PMID: 33422132 PMCID: PMC7796386 DOI: 10.1186/s13287-020-02115-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a neurological, medically incurable disorder. Human pluripotent stem cells (hPSCs) have the potential to generate neural stem/progenitor cells (NS/PCs), which hold promise in the treatment of SCI by transplantation. In our study, we aimed to establish a chemically defined culture system using serum-free medium and ascorbic acid (AA) to generate and expand long-term self-renewing neuroepithelial-like stem cells (lt-NES cells) differentiated from hPSCs effectively and stably. METHODS We induced human embryonic stem cells (hESCs)/induced PSCs (iPSCs) to neurospheres using a newly established in vitro induction system. Moreover, lt-NES cells were derived from hESC/iPSC-neurospheres using two induction systems, i.e., conventional N2 medium with gelatin-coated plates (coated) and N2+AA medium without pre-coated plates (AA), and were characterized by reverse transcription polymerase chain reaction (RT-PCR) analysis and immunocytochemistry staining. Subsequently, lt-NES cells were induced to neurons. A microelectrode array (MEA) recording system was used to evaluate the functionality of the neurons differentiated from lt-NES cells. Finally, the mechanism underlying the induction of lt-NES cells by AA was explored through RNA-seq and the use of inhibitors. RESULTS HESCs/iPSCs were efficiently induced to neurospheres using a newly established induction system in vitro. lt-NES cells derived from hESC/iPSC-neurospheres using the two induction systems (coated vs. AA) both expressed the neural pluripotency-associated genes PAX6, NESTIN, SOX1, and SOX2. After long-term cultivation, we found that they both exhibited long-term expansion for more than a dozen generations while maintaining neuropluripotency. Moreover, the lt-NES cells retained the ability to differentiate into general functional neurons that express β-tubulin at high levels. We also demonstrated that AA promotes the generation and long-term expansion of lt-NES cells by promoting collagen synthesis via the MEK-ERK1/2 pathway. CONCLUSIONS This new chemically defined culture system was stable and effective regarding the generation and culture of lt-NES cells induced from hESCs/iPSCs using serum-free medium combined with AA. The lt-NES cells induced under this culture system maintained their long-term expansion and neural pluripotency, with the potential to differentiate into functional neurons.
Collapse
Affiliation(s)
- Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yun Chang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Amina Saleem
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Lei Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Siyao Zhang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Ya'nan Li
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Shuhong Ma
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tao Dong
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tianwei Guo
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Youxu Jiang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yi You
- Center for Clinical Translation and Innovation, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Hong Feng Jiang
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
- Beijing Anzhen Hospital, Research Institute Building, Room 323, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, MOE Key Laboratory of Medical Engineering for Cardiovascular Diseases, MOE Key Laboratory of Remodeling-Related Cardiovascular Disease, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Beijing Anzhen Hospital, Research Institute Building, Room 319, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
16
|
Cenini G, Hebisch M, Iefremova V, Flitsch LJ, Breitkreuz Y, Tanzi RE, Kim DY, Peitz M, Brüstle O. Dissecting Alzheimer's disease pathogenesis in human 2D and 3D models. Mol Cell Neurosci 2021; 110:103568. [DOI: 10.1016/j.mcn.2020.103568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
|
17
|
Liu HL, Wang YN, Feng SY. Brain tumors: Cancer stem-like cells interact with tumor microenvironment. World J Stem Cells 2020; 12:1439-1454. [PMID: 33505594 PMCID: PMC7789119 DOI: 10.4252/wjsc.v12.i12.1439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem-like cells (CSCs) with potential of self-renewal drive tumorigenesis. Brain tumor microenvironment (TME) has been identified as a critical regulator of malignancy progression. Many researchers are searching new ways to characterize tumors with the goal of predicting how they respond to treatment. Here, we describe the striking parallels between normal stem cells and CSCs. We review the microenvironmental aspects of brain tumors, in particular composition and vital roles of immune cells infiltrating glioma and medulloblastoma. By highlighting that CSCs cooperate with TME via various cellular communication approaches, we discuss the recent advances in therapeutic strategies targeting the components of TME. Identification of the complex and interconnected factors can facilitate the development of promising treatments for these deadly malignancies.
Collapse
Affiliation(s)
- Hai-Long Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ya-Nan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Shi-Yu Feng
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
18
|
Yang L, Conley BM, Cerqueira SR, Pongkulapa T, Wang S, Lee JK, Lee KB. Effective Modulation of CNS Inhibitory Microenvironment using Bioinspired Hybrid-Nanoscaffold-Based Therapeutic Interventions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002578. [PMID: 32893402 PMCID: PMC7606660 DOI: 10.1002/adma.202002578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Indexed: 05/11/2023]
Abstract
Central nervous system (CNS) injuries are often debilitating, and most currently have no cure. This is due to the formation of a neuroinhibitory microenvironment at injury sites, which includes neuroinflammatory signaling and non-permissive extracellular matrix (ECM) components. To address this challenge, a viscous interfacial self-assembly approach, to generate a bioinspired hybrid 3D porous nanoscaffold platform for delivering anti-inflammatory molecules and establish a favorable 3D-ECM environment for the effective suppression of the neuroinhibitory microenvironment, is developed. By tailoring the structural and biochemical properties of the 3D porous nanoscaffold, enhanced axonal growth from the dual-targeting therapeutic strategy in a human induced pluripotent stem cell (hiPSC)-based in vitro model of neuroinflammation is demonstrated. Moreover, nanoscaffold-based approaches promote significant axonal growth and functional recovery in vivo in a spinal cord injury model through a unique mechanism of anti-inflammation-based fibrotic scar reduction. Given the critical role of neuroinflammation and ECM microenvironments in neuroinhibitory signaling, the developed nanobiomaterial-based therapeutic intervention may pave a new road for treating CNS injuries.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Susana R Cerqueira
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, 1095 NW 14th Terrace, LPLC 4-19, Miami, FL, 33136, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Shenqiang Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, 1095 NW 14th Terrace, LPLC 4-19, Miami, FL, 33136, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
19
|
Yang L, Jurczak KM, Ge L, Rijn P. High-Throughput Screening and Hierarchical Topography-Mediated Neural Differentiation of Mesenchymal Stem Cells. Adv Healthc Mater 2020; 9:e2000117. [PMID: 32363812 DOI: 10.1002/adhm.202000117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Biophysical factors such as anisotropic topography composed of micro/nanosized structures are important for directing the fate of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and have been applied to neuronal differentiation. Via high-throughput screening (HTS) methods based on topography gradients, the optimum topography is determined and translated toward a hierarchical architecture designed to mimic the nerve nano/microstructure. The polydimethylsiloxane (PDMS)-based topography gradient with amplitudes (A) from 541 to 3073 nm and wavelengths (W) between 4 and 30 µm is developed and the fate commitment of MSC toward neuron lineage is investigated. The hierarchical structures, combining nano- and microtopography (W0.3/W26 parallel/perpendicular) are fabricated to explore the combined topography effects on neuron differentiation. From the immunofluorescent staining results (Tuj1 and MAP2), the substrate characterized by W: 26 µm; A: 2.9 µm shows highest potential for promoting neurogenesis. Furthermore, the hierarchical features (W0.3/W26 parallel) significantly enhance neural differentiation. The hBM-MSCs on the hierarchical substrates exhibit a significantly lower percentage of nuclear Yes-associated protein (YAP)/TAZ and weaker cell contractility indicating that the promoted neurogenesis is mediated by the cell tension and YAP/TAZ pathway. This research provides new insight into designing biomaterials for applications in neural tissue engineering and contributes to the understanding of topography-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Klaudia Malgorzata Jurczak
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Lu Ge
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Patrick Rijn
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| |
Collapse
|
20
|
Yu D, Ma M, Liu Z, Pi Z, Du X, Ren J, Qu X. MOF-encapsulated nanozyme enhanced siRNA combo: Control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer's disease model. Biomaterials 2020; 255:120160. [PMID: 32540758 DOI: 10.1016/j.biomaterials.2020.120160] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022]
Abstract
Neural stem cells (NSC) transplantation is garnering considerable attention in the treatment of neurodegenerative diseases that are associated with cognitive decline. Current methods are mainly based on neuron-directional differentiation and NSC niche components majorization to promote neurogenesis. Unfortunately, the pathologically high level of oxidative stress will damage the neurons derived from NSC during therapy, compromising the neurogenesis effect. Herein, a facile and effective strategy has been presented for modulation of neuron-directional differentiation and amelioration of oxidative stress by integrating antioxidative nanozymes (ceria) into metal-organic frameworks (MOF) for synergistically enhancing neurogenesis. Specially, small interfering RNA (siSOX9) and retinoic acid (RA) are loaded in the MOF. The H2O2-responsive MOF would release cargos in the lesion area to promote neuron-directional differentiation. Moreover, the integrated ceria can perform robust SOD and CAT mimetic activities, which are capable of eliminating ROS and circumventing its oxidative damage to newborn neurons, leading to the longer survival rate and more enhanced outgrowth of the newborn neurons. With the gratifying drug delivery efficiency of MOF and excellent antioxidative capacity of nanozymes, the rational-designed nanoparticles can considerably promote neurogenesis and improve the cognitive function of aged 3 × Tg-AD (triple transgenic AD mouse model) mice. Our work provides a new way to promote nerve regeneration with the help of nanozymes.
Collapse
Affiliation(s)
- Dongqin Yu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China; University of Science and Technology of China, Hefei, Anhui, 230029, PR China.
| |
Collapse
|
21
|
Yoon SB, Lee G, Park SB, Cho H, Lee JO, Koh B. Properties of differentiated SH-SY5Y grown on carbon-based materials. RSC Adv 2020; 10:19382-19389. [PMID: 35515479 PMCID: PMC9054104 DOI: 10.1039/d0ra03383a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
Neural cell differentiation has been extensively studied in two-dimensional (2D) cell culture plates. However, the cellular microenvironment and extracellular matrix (ECM) are much more complex and flat 2D surfaces are hard to mimic in ECM. Carbon nanotubes (CNTs) and graphenes are multidimensional carbon-based nanomaterials and may be able to provide extra dimensions on cell growth and differentiation. To determine the effect of CNTs and graphene surfaces on the growth, gene expression, differentiation and functionality of neuroblastoma to a neural cell, SH-SY5Y cells were grown on a 2D (control) surface, a CNT network and a graphene film. The data suggest that SH-SY5Y cells grown on CNT surfaces show an average 20.2% increase in cell viability; 5.7% decrease in the ratio of cells undergoing apoptosis; 78.3, 43.4 and 38.1% increases in SOX2, GFAP and NeuN expression, respectively; and a 29.7% increase in mean firing rate on a multi-electrode array. SH-SY5Y cells grown on graphene film show little or no changes in cell properties compared to cells grown in 2D. The data indicate that the three-dimensional (3D) surface of CNTs provides a favorable environment for SH-SY5Y cells to proliferate and differentiate to neurons.
Collapse
Affiliation(s)
- Sae-Bom Yoon
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Sung Bum Park
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Heeyeong Cho
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Byumseok Koh
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| |
Collapse
|
22
|
Yang S, Cao Z, Zhu J, Zhang Z, Zhao H, Zhao L, Sun X, Wang X. In Vitro Monolayer Culture of Dispersed Neural Stem Cells on the E-Cadherin-Based Substrate with Long-Term Stemness Maintenance. ACS OMEGA 2019; 4:18136-18146. [PMID: 31720516 PMCID: PMC6843705 DOI: 10.1021/acsomega.9b02053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/13/2019] [Indexed: 05/08/2023]
Abstract
Neural stem cells (NSCs) play an important role in neural tissue engineering because of their capacity of self-renewal and differentiation to multiple cell lineages. The in vitro conventional neurosphere culture protocol has some limitations such as limited nutrition and oxygen penetration and distribution causing the heterogeneity of cells inside, inaccessibility of internal cells, and inhomogeneous cellular morphology and properties. As a result, cultivation as a monolayer is a better way to study NSCs and obtain a homogeneous cell population. The cadherins are a classical family of homophilic cell adhesion molecules mediating cell-cell adhesion. Here, we used a recombinant human E-cadherin mouse IgG Fc chimera protein that self-assembles on a hydrophobic polystyrene surface via hydrophobic interaction to obtain an E-cadherin-coated culture plate (ECP). The rat fetal NSCs were cultured on the ECP and routine tissue culture plate (TCP) from passage 2 to passage 5. NSCs on TCP formed uniform floating neurospheres and grew up over time, while cells on the ECP adhered on the bottom of the plate and exhibited individual cells with scattering morphology, forming intercellular connections between cells. The cell proliferation and differentiation behaviors that were evaluated by Cell Counting Kit-8 assay (CCK-8), immunofluorescence staining, and real-time quantitative polymerase chain reaction showed NSCs could maintain the capacity for self-renewal and ability to differentiate into neurons, oligodendrocytes, and astrocytes after the long-term in vitro cell culture and passaging. Therefore, our study indicated that hE-cad-Fc could provide a homogeneous environment for individual cells in monolayer conditions to maintain the capacity of self-renewal and differentiation by mimicking the cell-cell interaction.
Collapse
Affiliation(s)
- Shuhui Yang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Cao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jinjin Zhu
- Department
of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College
of Zhejiang University, Sir Run Run Shaw
Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, China
| | - Zhe Zhang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - He Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodan Sun
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State
Key Laboratory of New Ceramics and Fine Processing, Key Laboratory
of Advanced Materials of Ministry of Education, School of Materials
Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
24
|
Tate KM, Munson JM. Assessing drug response in engineered brain microenvironments. Brain Res Bull 2019; 150:21-34. [PMID: 31054318 PMCID: PMC6754984 DOI: 10.1016/j.brainresbull.2019.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/26/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022]
Abstract
Tissue engineered systems are important models for the testing and discovery of therapeutics against a number of diseases. The use of these models in vitro can expand both our understanding of the mechanisms behind disease and allow for higher throughput and personalized modeling of therapeutic response. Over the past decade there has been an explosion of models of neurological disorders that can be used in vitro to study new therapies against devastating neurodegenerative, neurodevelopmental, and neuro-oncological disease. These models span several types of engineered microenvironments which are produced using microfluidic devices, microtissue technology and/or the incorporation of biomaterial scaffolds to model neurological conditions such as; Alzheimer's disease, idiopathic autism, Parkinson's disease, Zika-induced microcephaly and neoplasms. Using engineered brain microenvironments, therapeutics can be tested in more physiologically relevant ways leading to new knowledge of the underlying causes and interactions occurring at the tissue level. However, much is still left to learn and model within these systems to make them truly valuable in the discovery and testing of novel therapies. Here we review the current state of the art of engineered brain microenvironments being used specifically to screen and test new therapeutic strategies and discuss the current benefits and limitations that still exist.
Collapse
Affiliation(s)
- Kinsley M Tate
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jennifer M Munson
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
25
|
Hu Y, Zhang F, Zhong W, Liu Y, He Q, Yang M, Chen H, Xu X, Bian K, Xu J, Li J, Shen Y, Zhang H. Transplantation of neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promotes the repair of spinal cord injury. J Mater Chem B 2019; 7:7525-7539. [PMID: 31720683 DOI: 10.1039/c9tb01929d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neural scaffolds consisting of dermal fibroblast-reprogrammed neurons and 3D silk fibrous materials promote repair of spinal cord injury.
Collapse
|
26
|
Bejoy J, Wang Z, Bijonowski B, Yang M, Ma T, Sang QX, Li Y. Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomater Sci Eng 2018; 4:4354-4366. [PMID: 31572767 PMCID: PMC6768405 DOI: 10.1021/acsbiomaterials.8b01142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lack of well-established animal models that can efficiently represent human brain pathology has led to the development of human induced pluripotent stem cell (hiPSC)-derived brain tissues. Brain organoids have enhanced our ability to understand the developing human brain and brain disorders (e.g., Schizophrenia, microcephaly), but the organoids still do not accurately recapitulate the anatomical organization of the human brain. Therefore, it is important to evaluate and optimize induction and signaling factors in order to engineer the next generation of brain organoids. In this study, the impact of hyaluronic acid (HA), a major brain extracellular matrix (ECM) component that interacts with cells through ligand-binding receptors, on the patterning of brain organoids from hiPSCs was evaluated. To mediate HA- binding capacity of signaling molecules, heparin was added in addition to HA or conjugated to HA to form hydrogels (with two different moduli). The neural cortical spheroids derived from hiPSCs were treated with either HA or heparin plus HA (Hep- HA) and were analyzed for ECM impacts on neural patterning. The results indicate that Hep-HA has a caudalizing effect on hiPSC-derived neural spheroids, in particular for stiff Hep-HA hydrogels. Wnt and Hippo/Yes-associated protein (YAP) signaling was modulated (using Wnt inhibitor IWP4 or actin disruption agent Cytochalasin D respectively) to understand the underlying mechanism. IWP4 and cytochalasin D promote forebrain identity. The results from this study should enhance the understanding of influence of biomimetic ECM factors for brain organoid generation.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Brent Bijonowski
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
27
|
Maclean FL, Ims GM, Horne MK, Williams RJ, Nisbet DR. A Programmed Anti-Inflammatory Nanoscaffold (PAIN) as a 3D Tool to Understand the Brain Injury Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805209. [PMID: 30285286 DOI: 10.1002/adma.201805209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Immunology is the next frontier of nano/biomaterial science research, with the immune system determining the degree of tissue repair. However, the complexity of the inflammatory response represents a significant challenge that is essential to understand for the development of future therapies. Cell-instructive 3D culture environments are critical to improve our understanding of the link between the behavior and morphology of inflammatory cells and to remodel their response to injury. This study has taken two recent high-profile innovations-functional peptide-based hydrogels, and the inclusion of anti-inflammatory agents via coassembly-to make a programmed anti-inflammatory nanoscaffold (PAIN) with unusual and valuable properties that allows tissue-independent switching of the inflammatory cascade. Here, extraordinary durability of the anti-inflammatory agent allows, for the first time, the development of a 3D culture system that maintains the growth and cytoskeletal reorganization of brain tissue, while also facilitating the trophic behavior of brain cells for 22 d in vitro. Notably, this behavior was confirmed within an active scar site due to the unprecedented resilience to the presence of inflammatory cells and enzymes in the brain. Efficacy of the culture system is demonstrated via novel insights about inflammatory cell behavior, which would be impossible to obtain via in vivo experimentation.
Collapse
Affiliation(s)
- Francesca L Maclean
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Georgina M Ims
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
| | - Malcolm K Horne
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - Richard J Williams
- School of Engineering, RMIT University, Melbourne, 3000, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Engineering, The Australian National University, Canberra, 2601, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
- BioFab3D, St Vincent's Hospital, Fitzroy, 3065, Australia
| |
Collapse
|
28
|
Wang L, Neumann M, Fu T, Li W, Cheng X, Su BL. Porous and responsive hydrogels for cell therapy. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|