1
|
Li L, Zheng R, Sun R. Understanding multicomponent low molecular weight gels from gelators to networks. J Adv Res 2025; 69:91-106. [PMID: 38570015 PMCID: PMC11954807 DOI: 10.1016/j.jare.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The construction of gels from low molecular weight gelators (LMWG) has been extensively studied in the fields of bio-nanotechnology and other fields. However, the understanding gaps still prevent the prediction of LMWG from the full design of those gel systems. Gels with multicomponent become even more complicated because of the multiple interference effects coexist in the composite gel systems. AIM OF REVIEW This review emphasizes systems view on the understanding of multicomponent low molecular weight gels (MLMWGs), and summarizes recent progress on the construction of desired networks of MLMWGs, including self-sorting and co-assembly, as well as the challenges and approaches to understanding MLMWGs, with the hope that the opportunities from natural products and peptides can speed up the understanding process and close the gaps between the design and prediction of structures. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, understanding the complicated multicomponent gels systems requires a systems perspective on MLMWGs. Secondly, several protocols can be applied to control self-sorting and co-assembly behaviors in those multicomponent gels system, including the certain complementary structures, chirality inducing and dynamic control. Thirdly, the discussion is anchored in challenges and strategies of understanding MLMWGs, and some examples are provided for the understanding of multicomponent gels constructed from small natural products and subtle designed short peptides.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
2
|
Singh P, Yadav MS, Kuila S, Paul AK, Ray D, Misra S, Naskar J, Aswal VK, Nanda J. Supramolecular Gelation Based on Native Amino Acid Tyrosine and Its Charge-Transfer Complex Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1639-1650. [PMID: 39811922 DOI: 10.1021/acs.langmuir.4c03708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Self-assembly of amino acids and short-peptide derivatives attracted significant curiosity worldwide due to their unique self-assembly process and wide variety of applications. Amino acid is considered one of the important synthons in supramolecular chemistry. Self-assembly processes and applications of unfunctionalized native amino acids have been less reported in the literature. In this article, we are first-time reporting the self-assembly process of tyrosine (Tyr), an aromatic amino acid, in dimethyl sulfoxide (DMSO) solvent. Most of the studies related to Tyr self-assembly were reported in different aqueous solutions. In our work, we studied the self-assembly in several common organic solvents and found that Tyr could self-assemble into a supramolecular gel in dimethyl sulfoxide (DMSO) solvent. The self-assembly process was investigated by several techniques, such as UV-vis, fluorescence, FTIR, and NMR spectroscopy. Morphological features on the nanoscale were investigated through scanning electron microscopy (SEM). SEM images indicated the formation of nanofibrils with high aspect ratios. The supramolecular gel property was investigated by different rheological experiments. Computational study on the self-assembly process of Tyr in DMSO medium suggested that noncovalent interactions like hydrogen bonding and π-π stacking among the Tyr molecules played a prominent role. Finally, the charge-transfer complex formation ability of electron-rich Tyr with electron-deficient 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) was studied. In the presence of DDQ due to the charge-transfer complex formation, the supramolecular gel converted into a reddish color solution, and their fibrillar nanoscale morphologies collapsed.
Collapse
Affiliation(s)
- Pijush Singh
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Manju Siyaram Yadav
- Department of Chemical and Biological Science, NIT-Meghalaya, Shillong 793003, Meghalaya, India
| | - Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Amit Kumar Paul
- Department of Chemical Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Bidhan Nagar, Kolkata 700 091, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Institute of Biological Information Processing IBI-4, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Souvik Misra
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
3
|
Nie S, Zhao H, Sun J, Liu Q, Cui Y, Li W. Amino Acid-Derived Supramolecular Assembly and Soft Materials. Molecules 2024; 29:4705. [PMID: 39407633 PMCID: PMC11477530 DOI: 10.3390/molecules29194705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Amino acids (AAs), serving as the primary monomer of peptides and proteins, are widely present in nature. Benefiting from their inherent advantages, such as chemical diversity, low cost, ease of modification, chirality, biosafety, and bio-absorbability, AAs have been extensively exploited to create self-assembled nanostructures and supramolecular soft materials. In this review article, we systematically describe the recent progress regarding amino acid-derived assembly and functional soft materials. A brief background and several classified assemblies of AAs and their derivatives (chemically modified AAs) are summarized. The key non-covalent interactions to drive the assembly of AAs are emphasized based on the reported systems of self-assembled and co-assembled AAs. We discuss the molecular design of AAs and the general rules behind the hierarchical nanostructures. The resulting soft materials with interesting properties and potential applications are demonstrated. The conclusion and remarks on AA-based supramolecular assemblies are also presented from the viewpoint of chemistry, materials, and bio-applications.
Collapse
Affiliation(s)
- Shuaishuai Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - He Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - Jiayi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - Qingtao Liu
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China;
| | - Yongming Cui
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China;
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| |
Collapse
|
4
|
Hu TM, Liang JA, Chiang YH. A nano-platform harnessing synergistic amino acid browning for biomedical applications. J Mater Chem B 2024; 12:6410-6423. [PMID: 38855928 DOI: 10.1039/d4tb00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Amino acids show promise as versatile biomolecules for creating a variety of functional biomaterials. Previously, we discovered a novel amino acid reaction, in which a single amino acid can form browning species in a simple solvent mixture comprising DMSO and acetone at room temperature. In the present study, we initially conducted a comprehensive analysis of 190 pairs of binary amino acids (i.e., all the possible pairwise combinations out of 20 amino acids) and identified several surprising combinations that exhibited synergistic browning effects. Particularly, cysteine-lysine and cysteine-arginine pairs exhibited pronounced browning in DMSO/acetone cosolvent solutions. We hypothesize that the coloured species result from the formation of extended, hydrophobic molecules with highly conjugated systems, arising from extensive condensation reactions between amino acids. Subsequently, we aimed at developing a nano-platform based on this newly discovered amino acid reaction. We demonstrate that through a nanoprecipitation process (solvent-shifting), spherical nanoparticles with sizes ranging from 100 to 200 nm can be produced, in the presence of ferric ions added to the water phase. Through systematic optimization and comprehensive characterization, the final product is a zwitterionic, charge-reversible nanoparticle featuring three functional groups on its surface: carboxylates, amines, and thiols. Furthermore, it possesses mild antioxidant activity, making it a new type of nano-antioxidant. Finally, we present preliminary results highlighting the potential of using this new nanomaterial as a delivery system for polynucleotides. In conclusion, the paper introduces a novel class of amino acid-derived nanoparticles with significant promise for future biomedical applications.
Collapse
Affiliation(s)
- Teh-Min Hu
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan.
| | - Jia-An Liang
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan.
| | - Yi-Hua Chiang
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan.
| |
Collapse
|
5
|
Wang F, Lai L, Liu M, Zhou Q, Lin S. Achiral substituent- and stoichiometry-controlled inversion of supramolecular chirality and circularly polarized luminescence in ternary co-assemblies. NANOSCALE 2024; 16:8563-8572. [PMID: 38600859 DOI: 10.1039/d4nr00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Handedness inversion of supramolecular chirality and circularly polarized luminescence (CPL) in assembled systems containing more than two components with higher complexity is of prominent importance to simulate biological multicomponent species and design advanced chiral materials, but it remains a considerable challenge. Herein, we have successfully developed ternary co-assembly systems based on aromatic amino acids, vinylnaphthalene derivatives and 1,2,4,5-tetracyanobenzene with effective chirality transfer. Notably, the handedness of supramolecular chirality and CPL can be readily inverted by changing the residues of amino acids, the substituents of achiral vinylnaphthalene derivatives, or by adjusting the stoichiometric ratio. The hydrogen bonds, charge transfer interactions, and steric hindrance are proved to be the crucial factors for the chirality inversion. This flexible control over chirality not only offers insights into developing multicomponent chiral materials with desirable handedness from simple molecular building blocks, but also is of practical value for use in chiroptics, chiral sensing, and photoelectric devices.
Collapse
Affiliation(s)
- Fang Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liyun Lai
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Min Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Quan Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Wang T, Ménard-Moyon C, Bianco A. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10532-10544. [PMID: 38367060 DOI: 10.1021/acsami.3c18463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Materials made of assembled biomolecules such as amino acids have drawn much attention during the past decades. Nevertheless, research on the relationship between the chemical structure of building block molecules, supramolecular interactions, and self-assembled structures is still necessary. Herein, the self-assembly and the coassembly of fluorenylmethoxycarbonyl (Fmoc)-protected aromatic amino acids (tyrosine, tryptophan, and phenylalanine) were studied. The individual self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH in water formed nanofibers, while Fmoc-Trp-OH self-assembled into nanoparticles. Moreover, when Fmoc-Tyr-OH or Fmoc-Phe-OH was coassembled with Fmoc-Trp-OH, the nanofibers were transformed into nanoparticles. UV-vis spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy were used to investigate the supramolecular interactions leading to the self-assembled architectures. π-π stacking and hydrogen bonding were the main driving forces leading to the self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH forming nanofibers. Further, a mechanism involving a two-step coassembly process is proposed based on nucleation and elongation/growth to explain the structural transformation. Fmoc-Trp-OH acted as a fiber inhibitor to alter the molecular interactions in the Fmoc-Tyr-OH or Fmoc-Phe-OH self-assembled structures during the coassembly process, locking the coassembly in the nucleation step and preventing the formation of nanofibers. This structural transformation is useful for extending the application of amino acid self- or coassembled materials in different fields. For example, the amino acids forming nanofibers could be applied for tissue engineering, while they could be exploited as drug nanocarriers when they form nanoparticles.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| |
Collapse
|
7
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
8
|
Wang L, Cheng Q, Hao A, Xing P. Biogenetic Chiral Deep Eutectic Solvents that Produce Self-Assembled Chiroptical Materials. Angew Chem Int Ed Engl 2023; 62:e202313536. [PMID: 37750571 DOI: 10.1002/anie.202313536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
Deep eutectic solvents (DESs) show particular properties compared to ionic liquids and other traditional organic solvents. Controlled synthesis of chiral materials in DESs is unprecedented due to the complex interplays between DESs and solutes. In this work, all bio-derived chiral DESs were prepared using choline chloride or cyclodextrin as hydrogen bonding acceptors and natural chiral acids as donors, which performed as chiral matrices for the rational synthesis of chiroptical materials by taking advantage of the efficient chirality transfer between the DESs and solutes. In a very selective manner, building units with molecular pockets could facilitate strong binding affinity towards chiral acid components of DESs disregarding the presence of competitive hydrogen bonding acceptors. Chirality transfer from DESs to nanoassemblies leads to chirality amplification in the presence of minimal amounts of entrapped chiral acids, thanks to the spontaneous symmetry breaking of solutes during aggregation. This work utilizes chiral DESs to control supramolecular chirality, and illustrates the structural basis for the fabrication of DES-based chiral materials.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
9
|
Wang Y, Liu S, Li L, Li H, Yin Y, Rencus-Lazar S, Guerin S, Ouyang W, Thompson D, Yang R, Cai K, Gazit E, Ji W. Manipulating the Piezoelectric Response of Amino Acid-Based Assemblies by Supramolecular Engineering. J Am Chem Soc 2023. [PMID: 37392396 DOI: 10.1021/jacs.3c02993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Variation in the molecular architecture significantly affects the electronic and supramolecular structure of biomolecular assemblies, leading to dramatically altered piezoelectric response. However, relationship between molecular building block chemistry, crystal packing and quantitative electromechanical response is still not fully understood. Herein, we systematically explored the possibility to amplify the piezoelectricity of amino acid-based assemblies by supramolecular engineering. We show that a simple change of side-chain in acetylated amino acids leads to increased polarization of the supramolecular arrangements, resulting in significant enhancement of their piezoelectric response. Moreover, compared to most of the natural amino acid assemblies, chemical modification of acetylation increased the maximum piezoelectric tensors. The predicted maximal piezoelectric strain tensor and voltage constant of acetylated tryptophan (L-AcW) assemblies reach 47 pm V-1 and 1719 mV m/N, respectively, comparable to commonly used inorganic materials such as bismuth triborate crystals. We further fabricated an L-AcW crystal-based piezoelectric power nanogenerator that produces a high and stable open-circuit voltage of over 1.4 V under mechanical pressure. For the first time, the illumination of a light-emitting diode (LED) is demonstrated by the power output of an amino acid-based piezoelectric nanogenerator. This work presents the supramolecular engineering toward the systematic modulation of piezoelectric response in amino acid-based assemblies, facilitating the development of high-performance functional biomaterials from simple, readily available, and easily tailored building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lingling Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sarah Guerin
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Zhang Q, Hao A, Xing P. Thermal Annealing Triggered Chirality Inversion through Solvent Migration. ACS NANO 2023; 17:9468-9477. [PMID: 37140567 DOI: 10.1021/acsnano.3c01647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Solvent strategy is a powerful tool to manipulate chirality and self-assembly over hierarchical levels, yet the solvent dynamics during thermal annealing in controlling chirality and chiroptical features remain a mystery. Here, we show how solvent migration affects molecular folding and chirality through thermal annealing. Pyrene segments were conjugated to a 2,6-diamide pyridine skeleton, where intramolecular hydrogen bonds anchor the chiral geometry. The orientation of pyrene blades adopted π···π and CH···π stacking, respectively, in organic solvents (dimethyl sulfoxide, DMSO) and aqueous media, leading to the chiroptical inversion. Thermal annealing treatment of the DMSO/H2O mixture homogenized distribution of solvents that further altered the molecular folding from CH···π to π···π modality. Solvent migration from aggregates to bulky phases was evidenced by the nuclear magnetic resonance and molecular dynamic simulations, leading to the rearrangement of molecular packing with luminescent changes. It realized a consecutive chiroptical inversion using solvent strategy and thermal annealing.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
11
|
Zhu C, Wang K, Luo J, Tian B, Sun J, Liu X, Zhu W, Zou Z. Solid superacid SO42−-S2O82−/SnO2-Nd2O3-catalyzed esterification of α-aromatic amino acids. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Hou S, Zhang J, Huang B, Wang X, Xing P. Organic solvent vapor/thermal responsive binary gels with tunable transparency and mechanical strength. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Wang J, Li J, Li M, Ma K, Wang D, Su L, Zhang X, Tang BZ. Nanolab in a Cell: Crystallization-Induced In Situ Self-Assembly for Cancer Theranostic Amplification. J Am Chem Soc 2022; 144:14388-14395. [PMID: 35900284 DOI: 10.1021/jacs.2c06111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Conducting crystallization-assisted self-assembly in living biosystems to obtain large-size nanoparticles and achieve a specific physiological purpose remains an appealing yet significantly challenging task. In this study, we designed Au(I)-disulfide nanosheets containing an aggregation-induced emission photosensitizer, namely, NSs@TTVP, which exhibited pH-responsive crystallization-driven self-assembly capability in lysosomes of cancer cells and tumor tissues of mice. The crystallization process endowed NSs@TTVP with a microscale morphology, stronger fluorescence output, and highly enhanced reactive oxygen species production efficiency. The in vivo results demonstrated that NSs@TTVP shows both long-term retention in tumors and extensive destruction to cancer cells, making it supremely powerful for fluorescence imaging-guided tumor tracking and inhibition.
Collapse
Affiliation(s)
- Jianxing Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jie Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Meng Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Ma
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
14
|
Wang C, Li N, Bian P, Li G, Yang J, Li Q, Jiao T. UV-response behavior and chiral structure determination of Langmuir-Blodgett films consisting of polypeptide and dye molecules. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Wang Z, Hao A, Xing P. Transpositional Circularly Polarized Luminescence from Transient Charge-Transfer Coassembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104499. [PMID: 34608747 DOI: 10.1002/smll.202104499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Charge-transfer (CT) complexation between electron-rich and deficient aromatics has been widely applied in functional optical and photovoltaic materials. The selective complexation and spontaneous disassociation behavior of a dynamic charge-transfer coassembly possess potential in designing smart and dynamic luminescent materials, which however have not been addressed so far. In this work, the transient charge-transfer driven coassembly between π-conjugated amino acids and tetracyanobenzene, showing dynamic luminescent transition and circularly polarized luminescence (CPL) evolution property, is illustrated. Transient coassembly behaviors are independent to the diverse binding sites covering fluorene, naphthalene, and anthracene, attributed to the intramolecular CH…π interaction. Incorporation of fluorescent dyes enables a transient light harvesting process with hyperchromic CPL properties. Spontaneous green-to-red CPL transition hydrogels are also fabricated by embedding a competitive CT donor. Using a polymeric matrix treated by organic solvents, charge-transfer coassembly is immobilized with diverse circularly polarized luminescence. Such sensitive complexation shows applications in moisture-responsive luminescent materials and multiple luminescent color evolutions are realized.
Collapse
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
16
|
Sonallya T, Sruthi L, Deshpande AP, Shanmugam G. Tweaking of supramolecular hydrogel property of single and two-component gel systems by a bifunctional molecule. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ryzhkov NV, Nikolaev KG, Ivanov AS, Skorb EV. Infochemistry and the Future of Chemical Information Processing. Annu Rev Chem Biomol Eng 2021; 12:63-95. [PMID: 33909470 DOI: 10.1146/annurev-chembioeng-122120-023514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays, information processing is based on semiconductor (e.g., silicon) devices. Unfortunately, the performance of such devices has natural limitations owing to the physics of semiconductors. Therefore, the problem of finding new strategies for storing and processing an ever-increasing amount of diverse data is very urgent. To solve this problem, scientists have found inspiration in nature, because living organisms have developed uniquely productive and efficient mechanisms for processing and storing information. We address several biological aspects of information and artificial models mimicking corresponding bioprocesses. For instance, we review the formation of synchronization patterns and the emergence of order out of chaos in model chemical systems. We also consider molecular logic and ion fluxes as information carriers. Finally, we consider recent progress in infochemistry, a new direction at the interface of chemistry, biology, and computer science, considering unconventional methods of information processing.
Collapse
Affiliation(s)
- Nikolay V Ryzhkov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Konstantin G Nikolaev
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Artemii S Ivanov
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| | - Ekaterina V Skorb
- Infochemistry Scientific Center of ITMO University, 191002 Saint Petersburg, Russia; , , ,
| |
Collapse
|
18
|
Abbas M, Atiq A, Xing R, Yan X. Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. J Mater Chem B 2021; 9:4444-4458. [PMID: 33978051 DOI: 10.1039/d1tb00025j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The natural biomolecules of peptides and proteins are able to form elegant metal incorporating supramolecular nanomaterials through multiple weak non-covalent interactions. The use of toxic chemical reagents to fabricate silver nanoparticles poses a danger to apply them in various biomedical applications. Peptide and protein biomolecules have the potential to overcome this barrier by the supramolecular chemistry approach. In this review, we focus on the self-assembly of peptides and proteins to synthesize silver incorporating supramolecular nanoarchitectures, which in turn enhance the biological properties of these silver nanomaterials being used in nanomedicine. This review aims to illustrate the recent developments in amphiphilic peptides, oligopeptides, collagen, bovine serum albumin (BSA), and human serum albumin (HSA) as capping, stabilizing, and reducing agents to form silver incorporating supramolecular nanostructures. Finally, we provide some biomedical applications of silver-incorporating supramolecular nanomaterials along with future perspectives.
Collapse
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Atia Atiq
- Department of Physics, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Yang L, He X, Zeng Z, Tang J, Qi D, Ma H, Chen H, Ning X, Feng X. Clickable amino acid tuned self-assembly of a nucleus-selective multi-component nanoplatform for synergistic cancer therapy. Chem Sci 2021; 12:8394-8400. [PMID: 34221320 PMCID: PMC8221198 DOI: 10.1039/d1sc01073e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/13/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleus-targeted therapy holds great promise in cancer treatment; however, a lack of effective nucleus-specific delivery significantly limits its application potential. Here, we report a nucleus-targeted synergistic chemo-photodynamic therapy based on the self-assembly of chlorin e6 (Ce6) and doxorubicin (DOX) tuned by clickable dibenzocyclooctyne (DIBO) functionalized lysine (D-K) and subsequent reaction with crosslinkers. The assembled nanodrugs with high loading efficiency and long-term stability show enhanced cellular uptake and accumulation in the nucleus, resulting in greatly improved in vitro and in vivo chemo-photodynamic efficacy. Notably, D-K can promote the rapid self-assembly of Ce6 and DOX in aqueous solution, avoiding the introduction of organic solvents or tedious preparations. In addition, the introduction of the DIBO group can effectively expand the types of self-assembly material and enhance the self-assembly behaviour through a copper-free click reaction. Therefore, we present an effective nucleus-targeted combination drug delivery strategy, which has great potential in the treatment of many diseases.
Collapse
Affiliation(s)
- Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Xiao He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Zhiying Zeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Jiakun Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Dongmei Qi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Huijie Ma
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| |
Collapse
|
20
|
An S, Hao A, Xing P. Polyhedral Oligosilsesquioxanes in Functional Chiral Nanoassemblies. Angew Chem Int Ed Engl 2021; 60:9902-9912. [PMID: 33529451 DOI: 10.1002/anie.202100044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Incorporation of giant molecular nanoparticles with atomic precision into chiral nanoassemblies facilitates the fabrication of functional ordered phases with supramolecular chirality, which remains mysterious. Reported here is the first example of polyhedral oligosilsesquioxane (POSS) derivatives that self-assemble into well-defined chiral nanoassemblies. POSSs were covalently conjugated to N-terminal aromatic amino acids, which self-assembled into nanohelices and twists with explicit handedness tuned by solvent polarity. Chiral nanoassemblies showed active chiroptical responses including Cotton effects and circularly polarized luminescence. The chiral systems can bind guest molecules by charge-transfer interactions, whereby self-assembled structures, chiroptical activities, and luminescent colors were further modulated. The unique coassembly systems were applied for instant information encryption and storage with multiple luminescent displays. This work offers a new protocol for the design of functional chiral materials of POSS by molecular self-assembly.
Collapse
Affiliation(s)
- Shuguo An
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
21
|
An S, Hao A, Xing P. Polyhedral Oligosilsesquioxanes in Functional Chiral Nanoassemblies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shuguo An
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
22
|
Zhao J, Hao A, Xing P. Enhancing Optical Activities of Benzimidazole Derivatives through Coassembly for High-Efficiency Synthesis of Chiroptical Nanomaterials and Accurate ee % Detection of Natural Acids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6830-6843. [PMID: 33502861 DOI: 10.1021/acsami.0c20735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing efficient protocols to enhance the optical activities of chiral self-assemblies is a key to realizing their chiroptical functions such as chiral sensing and displays. Here, we have reported a coassembly protocol to efficiently boost the chiroptical responses, whereby the synthesis of chiroptical nanomaterials and highly accurate detection of enantiomeric excess (ee %) were achieved. A series of benzimidazole derivatives with different topologies underwent spontaneous aggregation and symmetry breaking in solution, generating silent Cotton effects, yet exclusive weak left-handed circularly polarized luminescence (CPL). The coassembly with natural hydroxyl acids via complementary H bonds afforded chiral nanostructures with emerged Cotton effects and enhanced CPL. Dissymmetry g-factors were dramatically boosted (glum from 1 × 10-3 to 5.5 × 10-2, gabs from 0 to 6.7 × 10-3). In addition, proof of concept of recognition and detection of natural chiral molecules was realized with high accuracy.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
23
|
Qin M, Li Y, Zhang Y, Xing C, Zhao C, Dou X, Zhang Z, Feng C. Solvent-Controlled Topological Evolution from Nanospheres to Superhelices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004756. [PMID: 33136317 DOI: 10.1002/smll.202004756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Supramolecular assemblies with diverse morphologies are crucial in determining their biochemical or physical properties. However, the topological evolution and self-assembly intermediates as well as the mechanism remain elusive. Herein, a dynamic morphological evolution from solid nanospheres to superhelical nanofibers is revealed via self-assembly of a minimal l-tryptophan-based derivative (LPWM) with various mixed solvent combinations, including the formation of solid nanospheres, the fusion of nanospheres into pearling necklace, the disintegration of necklace into short nanofibers, the distortion of nanofibers into nanotwists, and the entanglement of nanotwists into superhelices. It is found that the breakage of intramolecular H-bonds and reconstruction of intermolecular H-bonds, as well as the variation of aromatic interactions and hydrophobic effects, are the key driving forces for topological transformation, especially the dimensional evolution. The nanospheres and nanofibers demonstrate discrepant behaviors towards mouse neural stem cell (NSC) differentiation that compared with negligible impact of nanospheres scaffold, the nanofibers scaffold is favorable for NSC differentiation into neurons. The remarkable dynamic regulation of assembly process, together with the NSC differentiation on twisted nanofibers are making this system an ideal model to interpret complex proteins fibrillation processes and investigate the structure-function relationship.
Collapse
Affiliation(s)
- Minggao Qin
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yongfang Li
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yaqian Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhijun Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
24
|
Zhao J, Xing P. Helical Nanostructures with Circularly Polarized Luminescence from the Multicomponent Assembly of π-Conjugated N-terminal Amino Acids. Chempluschem 2020; 85:1511-1522. [PMID: 32644303 DOI: 10.1002/cplu.202000397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Self-assembled structures with circularly polarized luminescence (CPL) have attracted great attention in recent years. π-conjugated N-terminal amino acids with chiral amino acid residues and luminophores are capable of forming self-assembled structures at hierarchical levels, whereby chirality can be transferred to the macroscopic scale with easily modulated CPL properties. Due to the presence of multiple noncovalent binding sites, including hydrogen bonding and aromatic interactions, π-conjugated N-terminal amino acids are emerging core candidates for incorporation into multicomponent self-assembled architectures, accomplishing rational control over supramolecular chirality as well as showing rich chiroptical properties. In this Minireview, we provide a brief summary of multiple-component coassembled systems comprising π-conjugated N-terminal amino acids, small organic species and metal ions. The synthesis of helical structures and manipulation of supramolecular chirality by controlling the self-assembled species is introduced, and the CPL properties of multiple-component π-conjugated N-terminal amino acids are also briefly summarized.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
25
|
Zong Z, Li P, Hao A, Xing P. Self-Assembly of N-Terminal Aryl Amino Acids into Adaptive Single- and Double-Strand Helices. J Phys Chem Lett 2020; 11:4147-4155. [PMID: 32368918 DOI: 10.1021/acs.jpclett.0c00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Helical structures are important features of many important biomacromolecules such as double helices and single α-helices in DNA and protein, respectively, yet the self-organization of short oligopeptides (<3) or independent amino acids into artificial helical structures on the atomic level remains mysterious. Here we present the direct construction of artificial double and single helices from N-terminated aryl amino acids (ferrocene phenylalanine (Phe) conjugates) despite both Phe and Phe-Phe dipeptide self-aggregations adopting supramolecular β-sheet structures, which also demonstrated chirality evolution exposed to small molecular binders. In the solid state, the box-shaped building unit stacks into a double helix with enantiomer-resolved handedness driven orthogonally by H-bonds and the CH-π interaction. The entire double helix is noncovalently linked except for the hybridization regions. Asymmetric H-bonds between carboxylic acids and amides facilitates the one-dimensional helical packing of amino acid residues. The ditopic building unit adopts intramolecular H-bonds, facilitating single-strand helix formation. In aqueous self-assemblies, the superhelical structures were retained, which underwent chirality transfer and handedness inversion upon complexation orthogonally by H-bonds and charge-transfer interaction, showing adaptivity to environmental factors.
Collapse
Affiliation(s)
- Zhaohui Zong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Peizhou Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
26
|
Chiroptical Helices of N‐Terminal Aryl Amino Acids through Orthogonal Noncovalent Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003351] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Wang Z, Hao A, Xing P. Chiroptical Helices of N‐Terminal Aryl Amino Acids through Orthogonal Noncovalent Interactions. Angew Chem Int Ed Engl 2020; 59:11556-11565. [DOI: 10.1002/anie.202003351] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Zhuoer Wang
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
28
|
Shankar S, Singh G, Rahim JU, Qayum A, Sharma PR, Katoch M, Rai R. Investigation of α/γ hybrid peptide self-assembled structures with antimicrobial and antibiofilm properties. J Pept Sci 2020; 26:e3243. [PMID: 32153090 DOI: 10.1002/psc.3243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
The present work describes the synthesis and characterization of α/γ hybrid peptides, Boc-Phe-γ4 -Phe-Val-OMe, P1; Boc-Ala-γ4 -Phe-Val-OMe, P2; and Boc-Leu-γ4 -Phe-Val-OMe, P3 together with the formation of self-assembled structures formed by these hybrid peptides in dimethyl sulfoxide (DMSO)/water (1:1). The self-assembled structures were characterized by infrared (IR) spectroscopy, circular dichroism (CD), and scanning electron microscopy (SEM). Further, α/γ hybrid peptide self-assembled structures were evaluated for antibacterial properties. Among all, the self-assembled peptide P1 exhibited the antimicrobial activity against Escherichia coli and Klebsiella pneumoniae, while self-assembled peptide P3 inhibited the biofilms of Salmonella typhimurium and Pseudomonas aeruginosa. In this study, we have shown the significance of self-assembled structures formed from completely hydrophobic α/γ hybrid peptides in exploring the antibacterial properties together with biofilm inhibition.
Collapse
Affiliation(s)
- Sudha Shankar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Singh
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Junaid Ur Rahim
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arem Qayum
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Parduman R Sharma
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Meenu Katoch
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajkishor Rai
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
29
|
Cheng Q, Wu H, Zhang H, Yuan S, Hao A, Xing P, Zhao Y. Ultrathin Supramolecular Architectures Self-Assembled from a C3-Symmetric Synthon for Selective Metal Binding. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9673-9681. [PMID: 32013383 DOI: 10.1021/acsami.9b22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrathin supramolecular nanoarchitectures are an emerging class of two-dimensional (2D) materials with dynamic features that facilitate their on-demand functions. However, facile and efficient synthesis for multiple 2D topologies by taking advantage of spontaneous self-assembly is limited. In this work, we report the synthesis of ultrathin supramolecular nanoarchitectures from the self-assembly of a π-conjugated C3-symmetric synthon (tribenzyloxybenzoic acid, TBBA), with the benzene-1,3,5-tricarboxamide core terminated by three carboxylic acids. Supported by the carboxylic acid-amide hydrogen-bonding and π-π/CH-π interactions, TBBA self-assembles into freestanding microsheets with the thickness of around 2 nm, demonstrating considerable integrity in different solvent systems or in the presence of carboxylic acid binders such as bipyridines. The deprotonation of the carboxylic acids endows TBBA with amphiphilicity, allowing for the formation of mixed micelles that are sensitive to transition-metal ions. Selectively, TBBA3- shows relatively strong coordination to Cu(II), giving rise to long and thin organometallic ribbons (about 3 nm thickness) with a pronounced aging process. Kinetically insufficient coordination was probed by various characterization techniques and molecular dynamics simulation, which played a vital role in directing the formation of thin ribbons. This work provides a proof-of-concept study for a feasible and versatile construction of both flexible and rigid 2D supramolecular nanostructures with promising applications.
Collapse
Affiliation(s)
- Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
| | - Heng Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371 , Singapore
- School of Materials Science and Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
30
|
Zhao J, Liu Y, Hao A, Xing P. High-Throughput Synthesis of Chiroptical Nanostructures from Synergistic Hydrogen-Bonded Coassemblies. ACS NANO 2020; 14:2522-2532. [PMID: 32040311 DOI: 10.1021/acsnano.0c00352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The emergence, amplification, and manipulation of chiroptical activity in self-assembled nanostructures, including circularly polarized absorbance and luminescence (CPL), remain considerable challenges. Here, we report the high-throughput synthesis of nanostructures with finely tailored chiroptical activities. Two fully π-conjugated benzimidazoles formed H-bonded complexes with natural hydroxyl acids (tartaric acid and mandelic acid), which self-assembled into diversified macroscopically chiral nanostructures. Synergistic coassembly allows for the emergence of Cotton effects and CPL with high dissymmetry g-factors (gabs up to 8 × 10-3, glum up to 3 × 10-3). The tartaric acid coassembled system exhibits enantiomer-independent left-handed CPL, which transforms into a cooperative ternary coassembly appended with enantiomer-resolved CPL with extended emission wavelength upon selective transition metal ion chelation. This H-boned coassembly system provides a vast number of chiral nanostructures with flexibly tuned Cotton effects and CPL, which also behaves as a selective chiroptical sensor to metal ions.
Collapse
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Yaqing Liu
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , People's Republic of China
| |
Collapse
|
31
|
Xue S, Zhang N, Hu X, Zeng Y, Zhang J, Xing P, Zhao Y. Self-Assembly Evolution of N-Terminal Aromatic Amino Acids with Transient Supramolecular Chirality. J Phys Chem Lett 2020; 11:1490-1496. [PMID: 32023059 DOI: 10.1021/acs.jpclett.0c00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep understanding and fine tailoring of spontaneous structural evolution of self-assembled arrays are pivotal in the rational design of advanced soft materials. However, an indistinct structure-property relationship and pathway complexity in self-assembly lead to a considerable challenge. Herein, we reveal the self-assembly pathway complexity in spontaneous aggregation of several N-terminated aromatic amino acids. By primarily tuning the incubation time, building blocks appended with alanine and serine selectively form 1:1 hydrated clathrates, enabling the microfiber to transition to crystals. The dynamic water intercalation process was studied by incubation time-dependent morphological changes, powder X-ray diffraction, and single-crystal structure analysis. A pronounced amino acid residue effect on the self-assembly evolution was reflected by supramolecular chirality inversion of the building block having the phenylalanine residue, accomplishing dynamic M- to P-helicity transition within a confined time scale.
Collapse
Affiliation(s)
- Shixin Xue
- College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P.R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Nan Zhang
- School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , P.R. China
| | - Xiaoling Hu
- School of Natural and Applied Science , Northwestern Polytechnical University , Xi'an 710072 , P.R. China
| | - Yongfei Zeng
- College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P.R. China
| | - Jingbo Zhang
- College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P.R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P.R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
32
|
Dang D, Zhang H, Xu Y, Xu R, Wang Z, Kwok RTK, Lam JWY, Zhang L, Meng L, Tang BZ. Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS NANO 2019; 13:11863-11873. [PMID: 31584798 DOI: 10.1021/acsnano.9b05914] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic fluorophores for stimulated emission depletion (STED) nanoscopy usually suffer from quenched emission in the aggregate state and inferior photostability, which largely limit their application in real-time, in situ, and long-term imaging at an ultrahigh resolution. Herein, an aggregation-induced emission (AIE) luminogen of DP-TBT with bright emission in solid state (photoluminescence quantum yields = 25%) and excellent photostability was designed to meet the requirements in STED nanoscopy. In addition to its excellent fluorescence properties, DP-TBT could also easily form self-assembling helixes and finally be well-visualized by super-resolution STED nanoscopy. The observations showed that helical fibers of DP-TBT as dashed lines had a much decreased fiber width with also a full width at half-maximum value of only 178 nm, which is ∼6 times higher than solid lines obtained by confocal microscopy (1154 nm). The STED nanoscopic data were also used to reconstruct 3D images of assembled helixes. Finally, by long-term tracking and dynamic monitoring, the formation and growth of helical fibers by DP-TBT in self-assembly processes were successfully obtained. These findings imply that highly emissive AIEgens with good photostability are highly suitable for real-time, in situ, and dynamic imaging at super-resolution using STED nanoscopy.
Collapse
Affiliation(s)
- Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Haoke Zhang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ryan T K Kwok
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Jacky W Y Lam
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Lei Zhang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ben Zhong Tang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| |
Collapse
|
33
|
Wang Z, Cheng Q, Xing P, Cao Z, Hao A. Hydrogen bonded co-assembly of aromatic amino acids and bipyridines that serves as a sacrificial template in superstructure formation. SOFT MATTER 2019; 15:6596-6603. [PMID: 31378793 DOI: 10.1039/c9sm01271k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Design and fabrication of superstructures are intriguing yet challenging tasks, which require delicate operations at micro/nanoscale such as template-directed seeding or etching processes. In this study, we prepared integrated one dimensional (1D) microrods from co-assembled N-terminated aromatic amino acids and bipyridines that could serve as sacrificial templates for micro-superstructure formation. Organic polar solvents were utilized for generating a co-assembly that showed selectivity to both molecular topology of building blocks and solvent environments via thermodynamic and kinetic manners. The addition of specific transition metal ions would extract bipyridines from crystalline microrods, leading to well-aligned engraved motifs along the 1D direction as well as the emergence of ordered packed nanostructures on microrod surfaces. Responsive to types of metal ions, diverse superstructures such as etched sculptures and surface-encapsulated heterojunctions of metal-bipyridine coordination polymers were constructed. This study offers a proof-of-concept exploration in the rational design of 1D crystalline micro-superstructures via non-covalent complexation towards potential applications in electrical and optical applications.
Collapse
Affiliation(s)
- Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Zhaozhen Cao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| | - Aiyou Hao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
34
|
Dynamic Adaptive Two-Dimensional Supramolecular Assemblies for On-Demand Filtration. iScience 2019; 19:14-24. [PMID: 31349188 PMCID: PMC6660589 DOI: 10.1016/j.isci.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/12/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
The construction of synthetic two-dimensional (2D) materials designates a pathway to the versatile chemical functionality by spatial control. However, current 2D materials with intelligence of stimuli-responsibility and adaptiveness have been unfledged. The approach reported here uses a supramolecular strategy to achieve the dynamic non-covalent self-assembly of a rationally designed small molecule monomer, producing large-area, ultra-thin, porous 2D supramolecular assemblies, which are solution-processable in aqueous solution. Importantly, the 2D supramolecular assemblies exhibit distinct adaptive capability to automatically regulate their network density and pore diameters in response to environmental temperature change, which could be developed into an "on-demand" filtration application for nanoparticles. Meanwhile, the 2D supramolecular assemblies can also perform reversible degradation/reformation by photo-irradiation. Our results not only show the simplicity, reliability, and effectiveness of supramolecular strategies in the construction of 2D materials with practical sizes, but also push the dynamic alterability and adaptation features from supramolecular assemblies toward 2D materials. 2D supramolecular assemblies combine large area, nano-thickness and water solubility The 2D assemblies can perform reversible expansion/contraction to tune pore sizes The 2D material can be used for on-demand nanoparticles filtration
Collapse
|
35
|
Nuthanakanti A, Walunj MB, Torris A, Badiger MV, Srivatsan SG. Self-assemblies of nucleolipid supramolecular synthons show unique self-sorting and cooperative assembling process. NANOSCALE 2019; 11:11956-11966. [PMID: 31188377 DOI: 10.1039/c9nr01863h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The inherent control of the self-sorting and co-assembling process that has evolved in multi-component biological systems is not easy to emulate in vitro using synthetic supramolecular synthons. Here, using the basic component of nucleic acids and lipids, we describe a simple platform to build hierarchical assemblies of two component systems, which show an interesting self-sorting and co-assembling behavior. The assembling systems are made of a combination of amphiphilic purine and pyrimidine ribonucleoside-fatty acid conjugates (nucleolipids), which were prepared by coupling fatty acid acyl chains of different lengths at the 2'-O- and 3'-O-positions of the ribose sugar. Individually, the purine and pyrimidine nucleolipids adopt a distinct morphology, which either supports or does not support the gelation process. Interestingly, due to the subtle difference in the order of formation and stability of individual assemblies, different mixtures of supramolecular synthons and complementary ribonucleosides exhibit a cooperative and disruptive self-sorting and co-assembling behavior. A systematic morphological analysis combined with single crystal X-ray crystallography, powder X-ray diffraction (PXRD), NMR, CD, rheological and 3D X-ray microtomography studies provided insights into the mechanism of the self-sorting and co-assembling process. Taken together, this approach has enabled the construction of assemblies with unique higher ordered architectures and gels with remarkably enhanced mechanical strength that cannot be derived from the respective single component systems.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | | | | | | | | |
Collapse
|
36
|
Xing P, Li Y, Xue S, Fiona Phua SZ, Ding C, Chen H, Zhao Y. Occurrence of Chiral Nanostructures Induced by Multiple Hydrogen Bonds. J Am Chem Soc 2019; 141:9946-9954. [DOI: 10.1021/jacs.9b03502] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shixin Xue
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Chendi Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
37
|
Xue S, Xing P, Zhang J, Zeng Y, Zhao Y. Diverse Role of Solvents in Controlling Supramolecular Chirality. Chemistry 2019; 25:7426-7437. [PMID: 30791175 DOI: 10.1002/chem.201900714] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shixin Xue
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Pengyao Xing
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jingbo Zhang
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yongfei Zeng
- College of ChemistryTianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|