1
|
Zhao S, Quan S, He W, Xu L, Hu H, Ma Z, Ma R, Huang F, Shi L. Natural Spy Chaperone Mimic: Tailored Nanochaperone with Electrostatic-Hydrophobic Synergy To Enhance Protein Folding Regulation. J Am Chem Soc 2025; 147:15357-15368. [PMID: 40279490 DOI: 10.1021/jacs.5c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Protein folding regulation is of great significance for maintaining protein structures and biological functions. This fundamental process is assisted by molecular chaperones, which act in inhibiting undesired protein aggregation and facilitating misfolded protein refolding. Inspired by the unique structure and ingenious mechanisms of natural Spy chaperones, we innovate a nanochaperone-guided protein folding strategy by rationally designed nanochaperones (nChaps) with customizable surface structures and properties. In this strategy, the nChaps with tunable charged surfaces can first rapidly capture different client proteins through long-range electrostatic attraction, similar to Spy. Subsequently, the captured proteins can be dynamically bound into the Spy-mimetic hydrophobic microdomains via short-range hydrophobic interactions. As a result, the client proteins are sequestered and stabilized in the chaperone-mimicking confined spaces on the surface of nChaps, thereby facilitating dynamic regulation of protein folding through an electrostatic-hydrophobic synergy mechanism. Moreover, benefiting from the adjustable charge and multiple hydrophobic microdomains, this biomimetic nChap potentiates protein stability at harsh temperatures and long-term storage, which is hardly achieved by natural Spy. Additionally, this strategy is applicable to 9 different proteins with varying isoelectric points and molecular weights, showing superior generality than Spy. Therefore, this work provides new perspectives in developing an advanced strategy for enhanced protein folding regulation.
Collapse
Affiliation(s)
- Shuyue Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu Quan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Linlin Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Haodong Hu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zixuan Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192P. R. China
| |
Collapse
|
2
|
Zhang W, Uei Y, Matsuura T, Maruyama A. Characterization and regulation of 2D-3D convertible lipid membrane transformation. Biomater Sci 2024; 12:3423-3430. [PMID: 38809312 DOI: 10.1039/d4bm00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Micro-nanomaterials that can adopt different structures are powerful tools in the fields of biological and medical sciences. We previously developed a lipid membrane that can convert between 2D nanosheet and 3D vesicle forms using cationic copolymer polyallylamine-graft-polyethylene glycol and the anionic peptide E5. The properties of the membrane during conversion have been characterized only by confocal laser scan microscopy. Furthermore, due to the 2D symmetry of the lipid nanosheet, the random folding of the lipid bilayer into either the original or the reverse orientation occurs during sheet-to-vesicle conversion, compromising the structural consistency of the membrane. In this study, flow cytometry was applied to track the conversion of more than 5000 lipid membranes from 3D vesicles to 2D nanosheets and back to 3D vesicles, difficult with microscopies. The lipid nanosheets exhibited more side scattering intensity than 3D vesicles, presumably due to free fluctuation and spin of the sheets in the suspension. Furthermore, by immobilizing bovine serum albumin as one of the representative proteins on the outer leaflet of giant unilamellar vesicles at a relatively low coverage, complete restoration of lipid membranes to the original 3D orientation was obtained after sheet-to-vesicle conversion. This convertible membrane system should be applicable in a wide range of fields. Our findings also provide experimental evidence for future theoretical studies on membrane behavior.
Collapse
Affiliation(s)
- Wancheng Zhang
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Yuta Uei
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | - Tomoaki Matsuura
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-Ku, Tokyo 152-8550, Japan.
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
3
|
Lu H, Yang X, Wang H. Tuning Phase Transition of Molecular Self-Assembly by Artificial Chaperones through Aromatic-Aromatic Interactions. Biomacromolecules 2024; 25:466-473. [PMID: 38147794 DOI: 10.1021/acs.biomac.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The molecular chaperones are essential and play significant roles in controlling the protein phase transition and maintaining physiological homeostasis. However, manipulating phase transformation in biomimetic peptide self-assembly is still challenging. This work shows that an artificial chaperone modulates the energy landscape of supramolecular polymerization, thus controlling the phase transition of amyloid-like assemblies from crystals to hydrogels to solution. The absence of a chaperone allows the NapP to form crystals, while the presence of the chaperone biases the pathway to form nanofibrous hydrogels to soluble oligomers by adjusting the chaperone ratios. Mechanistic studies reveal that the aromatic-aromatic interaction is the key to trapping the molecules in a higher energy fold. Adding the chaperone relieves this restriction, lowers the energy barrier, and transforms the crystal into a hydrogel. This phase transformation can also be achieved in the macromolecular crowding environment, thus providing new insights into understanding molecular self-assembly in multiple component systems.
Collapse
Affiliation(s)
- Honglei Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
4
|
Takemura S, Shimada N, Maruyama A. Malachite green-derivatized cationic comb-type copolymer acts as a photoresponsive artificial chaperone. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2463-2482. [PMID: 37787160 DOI: 10.1080/09205063.2023.2265127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Molecular chaperones play vital roles in various physiological reactions by regulating the folding and assembly of biomacromolecules. We have demonstrated that cationic comb-type copolymers exhibit chaperone activity for anionic biomolecules including DNA and ionic peptide via the formation of soluble interpolyelectrolyte complexes. The development of smart artificial chaperones that can be spatiotemporally controlled by a remotely guided signal would expand the functions of artificial chaperones. Herein, to enable photocontrol of chaperone activity, a cationic comb-type copolymer bearing malachite green as a photoresponsive unit was designed. We first prepared a series of carboxylic acid derivatives of malachite green identified a derivative that could be quickly and quantitatively converted to the cationic form from the nonionic form by photoirradiation. This derivative was conjugated to the cationic comb-type copolymer, poly(allylamine)-graft-poly(ethylene glycol) through a condensation reaction. Upon photoirradiation, the copolymer bearing 9 mol% malachite green enhanced the membrane disruptive activity of acidic peptide E5 and induced morphological changes in liposomes. This demonstration of photoresponsive activation of chaperoning activity of a copolymer suggests that the installation of carboxyl derivatives of malachite green will impart photoresponsiveness to various materials including biopolymers.
Collapse
Affiliation(s)
- Seiya Takemura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
5
|
Zhang W, Takahashi S, Shimada N, Maruyama A. 2D-3D-Convertible, pH-Responsive Lipid Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301219. [PMID: 37376845 DOI: 10.1002/smll.202301219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/10/2023] [Indexed: 06/29/2023]
Abstract
2D nanosheets self-assembled with amphiphilic molecules are promising tools for biomedical applications; yet, there are challenges to form and stabilize these nanosheets under complex physiological conditions. Here, the development of lipid nanosheets with high structural stability that can be reversibly converted to cell-sized vesicles by changes in pH within the physiological range robustly, are described. The system is controlled by the membrane disruptive peptide E5 and a cationic copolymer anchored on lipid membranes. It is envisioned that nanosheets formed using the dual anchoring peptide/cationic copolymer system can be employed in dynamic lipidic nanodevices, such as the vesosomes described here, drug delivery systems, and artificial cells.
Collapse
Affiliation(s)
- Wancheng Zhang
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Shutaro Takahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
6
|
Koner K, Sadhukhan A, Karak S, Sasmal HS, Ogaeri Y, Nishiyama Y, Zhao S, Položij M, Kuc A, Heine T, Banerjee R. Bottom-Up Synthesis of Crystalline Covalent Organic Framework Nanosheets, Nanotubes, and Kippah Vesicles: An Odd-Even Effect Induction. J Am Chem Soc 2023. [PMID: 37339245 DOI: 10.1021/jacs.3c03831] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Few-layer organic nanosheets are becoming increasingly attractive as two-dimensional (2D) materials due to their precise atomic connectivity and tailor-made pores. However, most strategies for synthesizing nanosheets rely on surface-assisted methods or top-down exfoliation of stacked materials. A bottom-up approach with well-designed building blocks would be the convenient pathway to achieve the bulk-scale synthesis of 2D nanosheets with uniform size and crystallinity. Herein, we have synthesized crystalline covalent organic framework nanosheets (CONs) by reacting tetratopic thianthrene tetraaldehyde (THT) and aliphatic diamines. The bent geometry of thianthrene in THT retards the out-of-plane stacking, while the flexible diamines introduce dynamic characteristics into the framework, facilitating nanosheet formation. Successful isoreticulation with five diamines with two to six carbon chain lengths generalizes the design strategy. Microscopic imaging reveals that the odd and even diamine-based CONs transmute to different nanostructures, such as nanotubes and hollow spheres. The single-crystal X-ray diffraction structure of repeating units indicates that the odd-even linker units of diamines introduce irregular-regular curvature in the backbone, aiding such dimensionality conversion. Theoretical calculations shed more light on nanosheet stacking and rolling behavior with respect to the odd-even effects.
Collapse
Affiliation(s)
- Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Arnab Sadhukhan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Suvendu Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Himadri Sekhar Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Yutaro Ogaeri
- JEOL Ltd., Musashino, Akishima, Tokyo 196-8558, Japan
| | | | - Shuangjie Zhao
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Miroslav Položij
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, 04318 Leipzig, Germany
| | - Agnieszka Kuc
- Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, 04318 Leipzig, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Abteilung Ressourcenökologie, 04318 Leipzig, Germany
- Department of Chemistry, Yonsei University and IBS Center for Nanomedicine, Seoul 03722, Republic of Korea
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
7
|
Ahmad A, Maruyama T, Nii T, Mori T, Katayama Y, Kishimura A. Facile preparation of hexagonal nanosheets via polyion complex formation from α-helical polypeptides and polyphosphate-based molecules. Chem Commun (Camb) 2023; 59:1657-1660. [PMID: 36688812 DOI: 10.1039/d2cc05137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The polyion complex-based supramolecular self-assembly of hexagonal nanosheets was achieved via the complexation of a PEGylated block catiomer with ATP and other polyphosphate-containing small molecules. The formation of hexagonal nanosheets required the presence of a polyethylene glycol block and α-helix formation in the catiomer block, which was induced by complexation with the polyphosphate moiety.
Collapse
Affiliation(s)
- Asmariah Ahmad
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tomoki Maruyama
- Graduate school of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Teruki Nii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Advanced Medical Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, Taiwan, 32023, Republic of China
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. .,Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Masuda T, Takahashi S, Ochiai T, Yamada T, Shimada N, Maruyama A. Autonomous Vesicle/Sheet Transformation of Cell-Sized Lipid Bilayers by Hetero-Grafted Copolymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53558-53566. [PMID: 36442490 DOI: 10.1021/acsami.2c17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid bilayer transformations are involved in biological phenomena including cell division, autophagy, virus infection, and vesicle transport. Artificial materials to manipulate membrane dynamics play a vital role in cellular engineering and drug delivery technology that accesses the membranes of cells or liposomes. Transformation from 3D lipid vesicles to 2D nanosheets is thermodynamically prohibited because the apolar/polar interfaces between the hydrophobic bilayer edges and water are energetically unfavorable. We recently reported that cell-sized lipid vesicles (or giant vesicles) can be thoroughly transformed to 2D nanosheets by the addition of the amphiphilic E5 peptide and a cationic graft copolymer. Here, to understand the mechanisms underlying the lipid nanosheet formation, we systematically investigated the structural effects of the cationic copolymers on nanosheet formation. We found that lipid nanosheet formation is controlled in an all-or-nothing manner when the graft content of the copolymer is increased from 5.7 mol % to 7.7 mol %. This finding prompted us to obtain autonomous 2D/3D transformation system. A newly designed hetero-grafted cationic copolymers with thermoresponsive poly(N-isopropylacrylamide) grafts enables spontaneous 3D vesicle/2D nanosheet transformation in response to temperature. These findings would enable us to obtain smart nanointerfaces that trigger cell-sized lipid membrane dynamics in response to diverse stimuli and to create 2D-3D convertible lipid-based biomaterials.
Collapse
Affiliation(s)
- Tsukuru Masuda
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Shutaro Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Takuro Ochiai
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Takayoshi Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, B-57 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa226-8501, Japan
| |
Collapse
|
9
|
Takenaka T, Sakamoto W, Takahashi S, Shimada N, Maruyama A. Spatially regulated activation of membrane fusogenic peptides with chaperone-like ionic copolymers. J Control Release 2021; 330:463-469. [PMID: 33359738 DOI: 10.1016/j.jconrel.2020.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022]
Abstract
Controlled or targeted membrane lysis induced by cascades of assembly and activation of biomolecules on membrane surfaces is important in programmed cell death and host defense systems. In a previous study, we reported that an ionic graft copolymer with a polycation backbone and water-soluble graft chains, poly(allylamine)-graft-dextran (PAA-g-Dex) chaperoned folding and assembly of E5, a membrane-destructive peptide derived from influenza hemagglutinin, to its increase membrane-disruptive activity. In this study, we modified the copolymer with long acyl chains, which resulted in delivery of the copolymer to membrane surfaces of liposomes and living cells. The liposomes with PAA-g-Dex functionalized with stearic acid (PAA-g-Dex-SA) on their surfaces underwent vesicle-to-sheet conversion upon addition of E5, whereas control liposomes did not. E5 also induced selective lysis of cells incubated with PAA-g-Dex-SA. The spatially specific activation of E5 on target membrane surfaces driven by self-assembly of copolymer and activation of E5 should find application in lipid-based delivery devices and cell-based therapeutics.
Collapse
Affiliation(s)
- Tomoka Takenaka
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Wakako Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Shutaro Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan.
| |
Collapse
|
10
|
|
11
|
Artificial chaperones: From materials designs to applications. Biomaterials 2020; 254:120150. [DOI: 10.1016/j.biomaterials.2020.120150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
12
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|