1
|
van Son M, van den Bersselaar BW, de Waal BF, Vantomme G, Meijer E. Targeting 2D Nanostructures in Phase-Separated Materials through Molecular Design. Macromolecules 2025; 58:2917-2924. [PMID: 40160996 PMCID: PMC11948466 DOI: 10.1021/acs.macromol.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Oligomeric materials that spontaneously order into 2D morphologies are of interest for a broad range of applications. In the absence of molar mass dispersity, these materials are perfectly defined at the molecular level and have been shown to form sub-10 nm nanostructures. Consequently, such nanostructured oligomers exhibit intriguing properties for e.g., photophysical applications depending on their constituents. However, ab initio prediction of the obtained morphologies remains challenging. Therefore, we herein report a systematic approach to investigate the influence of molecular architecture as well as the influence of the pendant chain attached to the core on spontaneously phase-separated nanostructures. We synthesized 20 molecules containing discrete oligodimethylsiloxane (oDMS) and four different crystalline units, varying their molecular architecture and pendant chains. Lamellar morphologies were obtained most reliably using telechelic and head-tail architectures with symmetric peripheral crystalline blocks. Contrarily, these architectures in conjunction with asymmetric cores as well as core-centered architectures resulted primarily in columnar morphologies. This systematic investigation of the design parameters for 2D nanostructures aids the development of next-generation materials, e.g., nanoscale optoelectronics.
Collapse
Affiliation(s)
| | | | - Bas F.M. de Waal
- Laboratory of Macromolecular
and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular
and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - E.W. Meijer
- Laboratory of Macromolecular
and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Cadeddu S, van den Bersselaar BWL, de Waal B, Cordier M, Vanthuyne N, Meskers SCJ, Vantomme G, Crassous J. Engineering circularly polarized light emission in nanostructured oligodimethylsiloxane-helicene chiral materials. NANOSCALE 2024; 16:21351-21359. [PMID: 39474743 DOI: 10.1039/d4nr03389b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chiroptical properties in the bulk state can be tuned by controlling the formation of chiral ordered nanostructures. Here, we present a series of discrete oligodimethylsiloxane-helicene-pyrene block molecules with varying oDMS lengths and study the nanostructures formed in both bulk and solution, including their chiroptical properties. In bulk, ordered 2D nanostructures self-assemble, driven by phase segregation induced by the siloxane oligomers, with clear differences in the properties of the racemic and enantiopure versions. Moreover, intermolecular pyrene interactions lead to excimer emission. As a result, up to a 5-fold increase in circularly polarized luminescence is observed in the solid state as compared to the solution, accompanied by a clear influence of the pyrene excimer emission on the overall emission process. Interestingly, in the ordered lamellar packing achieved from long oDMS units, the excimer emission shows very little net circular polarization, while in the disordered state achieved from shorter oDMS units, this excimer emission displays a significant degree of circular polarization. These results demonstrate that functionalizing chiroptical building blocks with discrete oligodimethylsiloxane chains is a versatile strategy to control photophysical properties and modulate chiroptical emission in bulk. This approach advances the integration of chiroptical materials into devices, enabling diverse applications ranging from optoelectronics to communication technologies.
Collapse
Affiliation(s)
- Stefano Cadeddu
- Institut des Sciences Chimiques de Rennes, Univ Rennes, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Bas de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Marie Cordier
- Institut des Sciences Chimiques de Rennes, Univ Rennes, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, Univ Rennes, UMR CNRS 6226, Campus de Beaulieu, 35042 Rennes Cedex, France.
| |
Collapse
|
3
|
Li L, Cheng B, Chen S, Ding Y, Zhao X, Wan S, Shi Y, Ye C. Programmable multimode optical encryption of advanced printable security inks by integrating structural color with Down/Up- conversion photoluminescence. J Colloid Interface Sci 2024; 672:152-160. [PMID: 38833735 DOI: 10.1016/j.jcis.2024.05.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Optical information encryption with high encoding capacities can significantly boost the security level of anti-counterfeiting in the scenario of guaranteeing the authenticity of a wide scope of common and luxury goods. In this work, a novel counterfeiting material with high-degree complexity is fabricated by microencapsulating cholesteric liquid crystals and triplet-triplet annihilation upconversion fluorophores to integrate structural coloration with fluorescence and upconversion photoluminescence. Moreover, the multimode security ink presents tailorable optical behaviors and programmable abilities on flexible substrates by various printing techniques, which offers distinct information encryption under different optical modes. The advanced strategy provides a practical versatile platform for high-secure-level multimode optical inks with largely enhanced encoding capacities, programmability, printability, and cost-effectiveness, which manifests enormous potentials for information encryption and anti-counterfeiting technology.
Collapse
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Bin Cheng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Yilei Ding
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xin Zhao
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
4
|
Bera S, Umesh, Bhattacharya S. Enhanced circularly polarized luminescence attained via self-assembly of heterochiral as opposed to homochiral dipeptides in water. Chem Sci 2024:d4sc01631a. [PMID: 39144467 PMCID: PMC11320125 DOI: 10.1039/d4sc01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Circularly polarized luminescence (CPL) is gaining interest across various disciplines, including materials science, pharmaceuticals, and sensing technologies. Organic molecules, due to their ease of synthesis and reduced toxicity, are a focus for achieving high dissymmetry values (g lum) in CPL. Here, we present a low molecular weight molecule (1), a dipeptide (Ala-Phe) covalently linked with tetraphenyl-ethylene (TPE), an Aggregation-Induced Emission luminophore (AIE-gen). Varying the stereochemistry of amino acid chiral centers, we synthesized homochiral 1-(l, l) & 1-(d, d) and heterochiral 1-(l, d) and 1-(d, l). In aqueous media, these molecules exhibit aggregation-induced chirality at the TPE chromophore. Heterochiral systems form sheet-like structures, displaying a bisignate induced circular dichroism signal and a good g lum value for CPL [7.5 (±0.04) × 10-3]. Conversely, homochiral systems adopt fibrillar morphology, exhibiting a monosignate induced circular dichroism signal with a lower dissymmetry value for CPL [1.3 (±0.05) × 10-3]. This study introduces the concept of chiroptical amplification, emphasizing enhanced CPL through heterochiral peptide-induced CPL compared to its homochiral counterpart, with an ON and OFF CPL signal at low and high temperature respectively.
Collapse
Affiliation(s)
- Sayan Bera
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Umesh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Santanu Bhattacharya
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata 700032 India
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India
- Technical Research Centre, Indian Association for the Cultivation of Science Kolkata 700032 India
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati 517619 India
| |
Collapse
|
5
|
Collins AR, Zhang B, Bennison MJ, Evans RC. Ambient solid-state triplet-triplet annihilation upconversion in ureasil organic-inorganic hybrid hosts. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:6310-6318. [PMID: 38707254 PMCID: PMC11064974 DOI: 10.1039/d4tc00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Triplet-triplet-annihilation upconversion (TTA-UC) has attracted significant attention as an approach to harvest low energy solar photons that cannot be captured by conventional photovoltaic devices. However, device integration requires the design of solid-state TTA-UC materials that combine high upconversion efficiency with long term stability. Herein, we report an efficient solid-state TTA-UC system based on organic-inorganic hybrid polymers known as ureasils as hosts for the archetypal sensitiser/emitter pair of palladium(ii) octaethylporphyrin and diphenylanthracene. The role of the ureasil structure on the TTA-UC performance was probed by varying the branching and molecular weight of the organic precursor to tune the structural, mechanical, and thermal properties. Solid-state green-to-blue UC quantum yields of up to 1.86% were observed under ambient conditions. Notably, depending on the ureasil structure, UC emission could be retained for >70 days without any special treatment, including deoxygenation. Detailed analysis of the structure-function trends revealed that while a low glass transition temperature is required to promote TTA-UC molecular collisions, a higher inorganic content is the primary factor that determines the UC efficiency and stability, due to the inherent oxygen barrier provided by the silica nanodomains.
Collapse
Affiliation(s)
- Abigail R Collins
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Bolong Zhang
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Michael J Bennison
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Rachel C Evans
- Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
6
|
van den Bersselaar BWL, van de Ven APA, de Waal BFM, Meskers SCJ, Eisenreich F, Vantomme G. Stimuli-Responsive Nanostructured Viologen-Siloxane Materials for Controllable Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312791. [PMID: 38413048 DOI: 10.1002/adma.202312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Spontaneous phase separation is a promising strategy for the development of novel electronic materials, as the resulting well-defined morphologies generally exhibit enhanced conductivity. Making these structures adaptive to external stimuli is challenging, yet crucial as multistate reconfigurable switching is essential for neuromorphic materials. Here, a modular and scalable approach is presented to obtain switchable phase-separated viologen-siloxane nanostructures with sub-5 nm features. The domain spacing, morphology, and conductivity of these materials can be tuned by ion exchange, repeated pulsed photoirradiation and electric stimulation. Counterion exchange triggers a postsynthetic modification in domain spacing of up to 10%. Additionally, in some cases, 2D to 1D order-order transitions are observed with the latter exhibiting a sevenfold decrease in conductivity with respect to their 2D lamellar counterparts. Moreover, the combination of the viologen core with tetraphenylborate counterions enables reversible and in situ reduction upon light irradiation. This light-driven reduction provides access to a continuum of conducting states, reminiscent of long-term potentiation. The repeated voltage sweeps improve the nanostructures alignment, leading to increased conductivity in a learning effect. Overall, these results highlight the adaptivity of phase-separated nanostructures for the next generation of organic electronics, with exciting applications in smart sensors and neuromorphic devices.
Collapse
Affiliation(s)
- Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alex P A van de Ven
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - F Eisenreich
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Polymer Performance Materials Group, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - G Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
7
|
Goudarzi H, Koutsokeras L, Balawi AH, Sun C, Manolis GK, Gasparini N, Peisen Y, Antoniou G, Athanasopoulos S, Tselios CC, Falaras P, Varotsis C, Laquai F, Cabanillas-González J, Keivanidis PE. Microstructure-driven annihilation effects and dispersive excited state dynamics in solid-state films of a model sensitizer for photon energy up-conversion applications. Chem Sci 2023; 14:2009-2023. [PMID: 36845913 PMCID: PMC9945257 DOI: 10.1039/d2sc06426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Bimolecular processes involving exciton spin-state interactions gain attention for their deployment as wavelength-shifting tools. Particularly triplet-triplet annihilation induced photon energy up-conversion (TTA-UC) holds promise to enhance the performance of solar cell and photodetection technologies. Despite the progress noted, a correlation between the solid-state microstructure of photoactuating TTA-UC organic composites and their photophysical properties is missing. This lack of knowledge impedes the effective integration of functional TTA-UC interlayers as ancillary components in operating devices. We here investigate a solution-processed model green-to-blue TTA-UC binary composite. Solid-state films of a 9,10 diphenyl anthracene (DPA) blue-emitting activator blended with a (2,3,7,8,12,13,17,18-octaethyl-porphyrinato) PtII (PtOEP) green-absorbing sensitizer are prepared with a range of compositions and examined by a set of complementary characterization techniques. Grazing incidence X-ray diffractometry (GIXRD) measurements identify three PtOEP composition regions wherein the DPA:PtOEP composite microstructure varies due to changes in the packing motifs of the DPA and PtOEP phases. In Region 1 (≤2 wt%) DPA is semicrystalline and PtOEP is amorphous, in Region 2 (between 2 and 10 wt%) both DPA and PtOEP phases are amorphous, and in Region 3 (≥10 wt%) DPA remains amorphous and PtOEP is semicrystalline. GIXRD further reveals the metastable DPA-β polymorph species as the dominant DPA phase in Region 1. Composition dependent UV-vis and FT-IR measurements identify physical PtOEP dimers, irrespective of the structural order in the PtOEP phase. Time-gated photoluminescence (PL) spectroscopy and scanning electron microscopy imaging confirm the presence of PtOEP aggregates, even after dispersing DPA:PtOEP in amorphous poly(styrene). When arrested in Regions 1 and 2, DPA:PtOEP exhibits delayed PtOEP fluorescence at 580 nm that follows a power-law decay on the ns time scale. The origin of PtOEP delayed fluorescence is unraveled by temperature- and fluence-dependent PL experiments. Triplet PtOEP excitations undergo dispersive diffusion and enable TTA reactions that activate the first singlet-excited (S1) PtOEP state. The effect is reproduced when PtOEP is mixed with a poly(fluorene-2-octyl) (PFO) derivative. Transient absorption measurements on PFO:PtOEP films find that selective PtOEP photoexcitation activates the S1 of PFO within ∼100 fs through an up-converted 3(d, d*) PtII-centered state.
Collapse
Affiliation(s)
- Hossein Goudarzi
- Centre for Nano Science and Technology @PoliMi, Fondazione Istituto Italiano di Tecnologia 20133 Milano Italy
| | - Loukas Koutsokeras
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Ahmed H Balawi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | - Chen Sun
- IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco Calle Faraday 9 ES 28049 Madrid Spain
| | - Giorgos K Manolis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Nicola Gasparini
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
- Department of Chemistry, Centre for Processable Electronics, Imperial College London W120BZ UK
| | - Yuan Peisen
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | - Giannis Antoniou
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| | | | - Charalampos C Tselios
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" 15341 Agia Paraskevi Athens Greece
| | - Constantinos Varotsis
- Environmental Biocatalysis and Biotechnology Laboratory, Department of Chemical Engineering, Cyprus University of Technology 3603 Limassol Cyprus
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE) 23955-6900 Thuwal Kingdom of Saudi Arabia
| | | | - Panagiotis E Keivanidis
- Device Technology and Chemical Physics Laboratory, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology 3041 Limassol Cyprus
| |
Collapse
|
8
|
Hamaguchi K, Lu H, Okamura S, Kajiyama S, Uchida J, Sato S, Watanabe G, Ishii Y, Washizu H, Ungar G, Kato T. Reentrant 2D Nanostructured Liquid Crystals by Competition between Molecular Packing and Conformation: Potential Design for Multistep Switching of Ionic Conductivity. Chemphyschem 2023; 24:e202200927. [PMID: 36594677 DOI: 10.1002/cphc.202200927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Reentrant phenomena in soft matter and biosystems have attracted considerable attention because their properties are closely related to high functionality. Here, we report a combined experimental and computational study on the self-assembly and reentrant behavior of a single-component thermotropic smectic liquid crystal toward the realization of dynamically functional materials. We have designed and synthesized a mesogenic molecule consisting of an alicyclic trans,trans-bicyclohexyl mesogen and a polar cyclic carbonate group connected by a flexible tetra(oxyethylene) spacer. The molecule exhibits an unprecedented sequence of layered smectic phases, in the order: smectic A-smectic B-reentrant smectic A. Electron density profiles and large-scale molecular dynamics simulations indicate that competition between the stacking of bicyclohexyl mesogens and the conformational flexibility of tetra(oxyethylene) chains induces this unusual reentrant behavior. Ion-conductive reentrant liquid-crystalline materials have been developed, which undergo the multistep conductivity changes in response to temperature. The reentrant liquid crystals have potential as new mesogenic materials exhibiting switching functions.
Collapse
Affiliation(s)
- Kazuma Hamaguchi
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shota Okamura
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Junya Uchida
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Goran Ungar
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Takashi Kato
- Department of Chemistry and Biotechnology School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Research Initiative for Supra-Materials, Shinshu University Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
9
|
Lamers BAG, Fors BP, Meijer EW. Mixing discrete block co‐oligomers: When does it behave like a disperse sample? JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Brigitte A. G. Lamers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
10
|
Li M, Hu H, Liu B, Liu X, Zheng ZG, Tian H, Zhu WH. Light-Reconfiguring Inhomogeneous Soft Helical Pitch with Fatigue Resistance and Reversibility. J Am Chem Soc 2022; 144:20773-20784. [DOI: 10.1021/jacs.2c08505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Binghui Liu
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Liu
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Gang Zheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Suda N, Arima H, Saito T, Aizawa T, Yagai S. Fluorescent Nanofibers Self-Assembled from a Diphenylanthracene Scissor-Shaped Dyad. CHEM LETT 2022. [DOI: 10.1246/cl.220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Natsuki Suda
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hironari Arima
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
12
|
Rajak A, Das A. Crystallization-Driven Controlled Two-Dimensional (2D) Assemblies from Chromophore-Appended Poly(L-lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022; 61:e202116572. [PMID: 35137517 DOI: 10.1002/anie.202116572] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/12/2022]
Abstract
A rational approach towards precision two-dimensional (2D) assemblies by crystallization-driven self-assembly (CDSA) of poly(L-lactides) (PLLAs), end-capped with dipolar dyes like merocyanine (MC) or naphthalene monoimide (NMI) and hydrophobic pyrene (PY) or benzene (Bn) is described. PLLA chains crystallize into diamond-shaped platelets in isopropanol, which forces the terminal dyes to assemble into a 2D array on the platelet surface by either dipolar interactions or π-stacking and exhibit tunable emission. Dipolar dyes play a critical role in imparting colloidal stability and structural uniformity to the 2D crystals, which is partly compromised for hydrophobic ones. Co-crystallization between NMI- and PY-labeled PLLAs yields similar diamond-shaped co-platelets with highly efficient (≈80 %) Förster Resonance Energy Transfer on the 2D surface. Further, the "living" CDSA method confers enlarged, segmented block co-platelets using one of the homopolymers as "seed" and the other as "unimer".
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
13
|
Rajak A, Das A. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science (IACS) 2A & 2B Raja S. C. Mullick Road Jadavpur Kolkata-700032 India
| |
Collapse
|
14
|
Lamers BAG, van Son MHC, de Graaf FV, van den Bersselaar BWL, de Waal BFM, Komatsu K, Sato H, Aida T, Berrocal JA, Palmans ARA, Vantomme G, Meskers SCJ, Meijer EW. Tuning the donor-acceptor interactions in phase-segregated block molecules. MATERIALS HORIZONS 2022; 9:294-302. [PMID: 34611679 PMCID: PMC8725796 DOI: 10.1039/d1mh01141c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The assembly of donor-acceptor molecules via charge transfer (CT) interactions gives rise to highly ordered nanomaterials with appealing electronic properties. Here, we present the synthesis and bulk co-assembly of pyrene (Pyr) and naphthalenediimide (NDI) functionalized oligodimethylsiloxanes (oDMS) of discrete length. We tune the donor-acceptor interactions by connecting the pyrene and NDI to the same oligomer, forming a heterotelechelic block molecule (NDI-oDMSPyr), and to two separate oligomers, giving Pyr and NDI homotelechelic block molecules (Pyr-oDMS and NDI-oDMS). Liquid crystalline materials are obtained for binary mixtures of Pyr-oDMS and NDI-oDMS, while crystallization of the CT dimers occurred for the heterotelechelic NDI-oDMS-Pyr block molecule. The synergy between crystallization and phase-segregation coupled with the discrete length of the oDMS units allows for perfect order and sharp interfaces between the insulating siloxane and CT layers composed of crystalline CT dimers. We were able to tune the lamellar domain spacing and donor-acceptor CT interactions by applying pressures up to 6 GPa on the material, making the system promising for soft-material nanotechnologies. These results demonstrate the importance of the molecular design to tune the CT interactions and stability of a CT material.
Collapse
Affiliation(s)
- Brigitte A G Lamers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Martin H C van Son
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Freek V de Graaf
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Kazuki Komatsu
- Geochemistry Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Sato
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuzo Aida
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - José Augusto Berrocal
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Anja R A Palmans
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
15
|
Yang W, Liu D, Luo L, Li P, Liu Y, Shen Z, Lei T, Yang H, Fan XH, Zhou QF. Sub-5 nm homeotropically aligned columnar structures of hybrids constructed by porphyrin and oligo(dimethylsiloxane). Chem Commun (Camb) 2021; 58:108-111. [PMID: 34875677 DOI: 10.1039/d1cc05886j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of tetraphenylporphyrin-based thermotropic liquid crystals containing oligo(dimethylsiloxane) were synthesized. These disc-coil hybrids form ordered nanostructures with periodic sizes on the sub-5 nm scale, including oblique columnar, lamellar, and hexagonal columnar phases. Films with sub-5 nm line patterns and homeotropically aligned columnar structures can be obtained by substrate-induced self-assembly.
Collapse
Affiliation(s)
- Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Huai Yang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Qi-Feng Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Zhou D, Xu M, Ma Z, Gan Z, Tan R, Wang S, Zhang Z, Dong XH. Precisely Encoding Geometric Features into Discrete Linear Polymer Chains for Robust Structural Engineering. J Am Chem Soc 2021; 143:18744-18754. [PMID: 34714634 DOI: 10.1021/jacs.1c09575] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular shape is an essential parameter that regulates the self-organization and recognition process, which has not yet been well appreciated and exploited in block polymers due to the lack of precise and efficient modulation methods. This work (i) develops a robust approach to break the intrinsic symmetry of linear polymers by introducing geometric features into otherwise homogeneous chains and (ii) quantitatively highlights the critical contribution of molecular geometry/architecture to the self-assembly behaviors. Iteratively connecting homologous monomers of different side chains according to pre-designed sequences generates discrete polymers with exact chemical structure, uniform chain length, and programmable side-chain gradient along the backbone, which transcribes into diverse shapes. The precise chemistry eliminates all the defects and heterogeneities, providing a delicate platform for fundamental inquiries into the role of molecular geometry. A rich collection of unconventional complex phases, including Frank-Kasper A15 and σ phases, as well as a dodecagonal quasicrystal phase, were captured in these rigorous single-component systems. The self-assembly behaviors are strikingly sensitive to subtle variations of geometry, such that simply migrating a few methylene units among the side chains would generate substantial differences in lattice size or phase stability, or even trigger a phase transition toward distinct structures. The phenomena can be rationalized with a geometric argument that nonuniform side chain distribution leads to conformational mismatch between two immiscible blocks, resulting in varied interfacial curvatures and distinct lattice symmetries. The profound contribution demonstrates that molecular geometry is an effective and robust parameter for structural engineering.
Collapse
Affiliation(s)
- Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Bennison M, Collins AR, Zhang B, Evans RC. Organic Polymer Hosts for Triplet-Triplet Annihilation Upconversion Systems. Macromolecules 2021; 54:5287-5303. [PMID: 34176961 PMCID: PMC8223484 DOI: 10.1021/acs.macromol.1c00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/29/2021] [Indexed: 11/29/2022]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) is a process by which a lower energy photon can be upconverted to a higher energy state. The incorporation of TTA-UC materials into solid-state hosts has enabled advances in solar energy and many other applications. The choice of host system is, however, far from trivial and often calls for a careful compromise between characteristics such as high molecular mobility, low oxygen diffusion, and high material stability, factors that often contradict one another. Here, we evaluate these challenges in the context of the state-of-the-art of primarily polymer hosts and the advantages they hold in terms of material selection and tunability of their diffusion or mechanical or thermal properties. We encourage more collaborative research between polymer scientists and photophysicists in order to further optimize the current systems and outline our thoughts for the future direction of the field.
Collapse
Affiliation(s)
| | | | | | - Rachel C. Evans
- Department of Materials Science and
Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|