1
|
Lee JH, Kim MS, Lee SH, Park SH, Nam KY, An J, Song M, Kim KS, Oh SH, Kim TS, Lee KJ. Flexible, surface-lighting MicroLED skin patch for multiple human skincare. Biomaterials 2025; 318:123139. [PMID: 39904187 DOI: 10.1016/j.biomaterials.2025.123139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
As the global population ages, concerns regarding aesthetic appearance have increased. Wearable light-emitting diode (LED) devices have received significant attention in the cosmetic fields due to their non-invasive, non-thermal, home-use characteristics. However, conventional bulk LED chips have limitations in flexibility and uniform irradiation, hindering efficient light penetration into the skin. Here, we introduce a flexible, surface-lighting microLED (FSLED) patch with uniform light-emission for various skincare applications. The FSLED was fabricated using a pick-and-place transfer technique, which allows for high-density irradiation over the large area, while maintaining outstanding mechanical flexibility. In addition, the FSLED was designed to deliver light efficiently and emit light evenly by conforming to the skin. Finally, we prove the effect of the FSLED for pore tightening and skin rejuvenation through clinical trials.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min Seo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Hyung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ki Yun Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaehun An
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ki Soo Kim
- Fronics Co., Ltd., Seoul, 06062, Republic of Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Križan AE, Bardet L, Zimny K, Romanus M, Berthe M, Labrugère-Sarroste C, Bellet D, Tréguer-Delapierre M. Oxidation-Resistant Cu-Based Nanowire Transparent Electrodes Activated by an Exothermic Reduction Reaction. ACS NANO 2024; 18:34902-34911. [PMID: 39655653 DOI: 10.1021/acsnano.4c12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
This article describes an approach to making highly stable copper nanowire networks on any type of substrates. These nanostructured materials are highly sought after for, among other applications, the development of next-generation flexible electronics. Their high susceptibility to oxidation in air currently limits their use in the real world. Here, we develop a multistep chemical method to fabricate transparent electrodes (TEs) using Cu-based bimetallic NW networks on various substrates at room temperature. First, we synthesized homogeneous core@shell copper@nickel (Cu@Ni) NWs using a one-pot colloidal approach. After their deposition on a substrate, we exploited the exothermic nature of the reaction between the Ni oxide and hydrazine to eliminate the naturally formed metal oxide moieties and interlock the NW junctions of the network. Electrical measurements, at the single junction level, indicate that the exothermic reaction induces a reduction of resistance by up to 4 orders of magnitude. On a macroscopic scale, the resulting Cu-based NW networks feature an optical transmittance of 80% in the visible region and a sheet resistance of 10 Ω/sq with a record stability of over 2 years. This process offers a simple and efficient strategy for fabricating cost-effective, long-life electronic devices, as illustrated by a proof-of-concept integrating an optimized Cu@Ni-based TE as a flexible transparent heater.
Collapse
Affiliation(s)
- And Ela Križan
- University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Laetitia Bardet
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, 38000 Grenoble, France
| | - Kevin Zimny
- University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Martin Romanus
- University Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Maxime Berthe
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520─IEMN, F-59000 Lille, France
| | | | - Daniel Bellet
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, 38000 Grenoble, France
| | | |
Collapse
|
3
|
Zhang H, Xie X, Qi X, Liu C, Wang C, Fang X, Wang Y, Cui H, Dong J. Regeneration of Antifog Performance of Laser-Induced Copper-Based Micro-Nano Structured Surfaces by Rapid Thermal Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1415. [PMID: 39269077 PMCID: PMC11397427 DOI: 10.3390/nano14171415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
In this investigation, the laser marker ablation technique was employed on Cu-coated glass to fabricate micro-nanostructured antifog glass. The resulting surfaces exhibited a quasi-periodic micron hillock-hollow structure with dispersed nanoparticles distributed throughout, which played a role in the antifog property and superhydrophilicity. However, airborne organic pollutant deposition degraded the superhydrophilicity of ablated glass surfaces and, therefore, their antifog performance, which cannot be circumvented. Conventionally, furnace annealing for at least 1 h was used to decompose the organic pollutants and restore the superhydrophilicity, limiting the throughput and application scenario. Remarkably, the rapid regeneration of this property was achieved through either a 5 min rapid thermal treatment at 400 °C or a 1 s flame treatment. These are interventions that are hitherto unreported. Such short and simple treatment methods underscore the potential of laser-ablated glass for diverse practical applications.
Collapse
Affiliation(s)
- Huixing Zhang
- School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| | - Xinyi Xie
- Department of Materials Science, School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaowen Qi
- Department of Materials Science, School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chengling Liu
- Department of Materials Science, School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chenrui Wang
- Department of Materials Science, School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaolong Fang
- Department of Materials Science, School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Youfu Wang
- Department of Materials Science, School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Hongtao Cui
- Department of Materials Science, School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Ji Dong
- School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| |
Collapse
|
4
|
Park JH, Pattipaka S, Hwang GT, Park M, Woo YM, Kim YB, Lee HE, Jeong CK, Zhang T, Min Y, Park KI, Lee KJ, Ryu J. Light-Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications. NANO-MICRO LETTERS 2024; 16:276. [PMID: 39186184 PMCID: PMC11347555 DOI: 10.1007/s40820-024-01483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/13/2024] [Indexed: 08/27/2024]
Abstract
This review provides a comprehensive overview of the progress in light-material interactions (LMIs), focusing on lasers and flash lights for energy conversion and storage applications. We discuss intricate LMI parameters such as light sources, interaction time, and fluence to elucidate their importance in material processing. In addition, this study covers various light-induced photothermal and photochemical processes ranging from melting, crystallization, and ablation to doping and synthesis, which are essential for developing energy materials and devices. Finally, we present extensive energy conversion and storage applications demonstrated by LMI technologies, including energy harvesters, sensors, capacitors, and batteries. Despite the several challenges associated with LMIs, such as complex mechanisms, and high-degrees of freedom, we believe that substantial contributions and potential for the commercialization of future energy systems can be achieved by advancing optical technologies through comprehensive academic research and multidisciplinary collaborations.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Srinivas Pattipaka
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Geon-Tae Hwang
- Department of Materials Science and Engineering, Pukyong National University, 45, Yongso-Ro, Nam-Gu, Busan, 48513, Republic of Korea
| | - Minok Park
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yu Mi Woo
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61, Daehak-Ro, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Jeonbuk, Republic of Korea
| | - Tiandong Zhang
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, People's Republic of China
| | - Yuho Min
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | - Kwi-Il Park
- Department of Materials Science and Metallurgical Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| | - Jungho Ryu
- School of Materials Science and Engineering, Yeungnam University, Daehak-Ro, Gyeongsan-Si, 38541, Gyeongsangbuk-do, Republic of Korea.
| |
Collapse
|
5
|
Song L, Cardoletti J, Martínez AB, Benčan A, Kmet B, Girod S, Defay E, Glinšek S. Crystallization of piezoceramic films on glass via flash lamp annealing. Nat Commun 2024; 15:1890. [PMID: 38424073 PMCID: PMC10904753 DOI: 10.1038/s41467-024-46257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Integration of thin-film oxide piezoelectrics on glass is imperative for the next generation of transparent electronics to attain sensing and actuating functions. However, their crystallization temperature (above 650 °C) is incompatible with most glasses. We developed a flash lamp process for the growth of piezoelectric lead zirconate titanate films. The process enables crystallization on various types of glasses in a few seconds only. The functional properties of these films are comparable to the films processed with standard rapid thermal annealing at 700 °C. A surface haptic device was fabricated with a 1 μm-thick film (piezoelectric e33,f of -5 C m-2). Its ultrasonic surface deflection reached 1.5 μm at 60 V, sufficient for its use in surface rendering applications. This flash lamp annealing process is compatible with large glass sheets and roll-to-roll processing and has the potential to significantly expand the applications of piezoelectric devices on glass.
Collapse
Affiliation(s)
- Longfei Song
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
- University of Luxembourg, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Juliette Cardoletti
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Alfredo Blázquez Martínez
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
- University of Luxembourg, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Andreja Benčan
- Electronic Ceramics Department, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Brigita Kmet
- Electronic Ceramics Department, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Stéphanie Girod
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Emmanuel Defay
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg
| | - Sebastjan Glinšek
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Belvaux, Luxembourg.
| |
Collapse
|
6
|
Park SH, Kim TJ, Lee HE, Ma BS, Song M, Kim MS, Shin JH, Lee SH, Lee JH, Kim YB, Nam KY, Park HJ, Kim TS, Lee KJ. Universal selective transfer printing via micro-vacuum force. Nat Commun 2023; 14:7744. [PMID: 38008810 PMCID: PMC10679119 DOI: 10.1038/s41467-023-43342-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/07/2023] [Indexed: 11/28/2023] Open
Abstract
Transfer printing of inorganic thin-film semiconductors has attracted considerable attention to realize high-performance soft electronics on unusual substrates. However, conventional transfer technologies including elastomeric transfer printing, laser-assisted transfer, and electrostatic transfer still have challenging issues such as stamp reusability, additional adhesives, and device damage. Here, a micro-vacuum assisted selective transfer is reported to assemble micro-sized inorganic semiconductors onto unconventional substrates. 20 μm-sized micro-hole arrays are formed via laser-induced etching technology on a glass substrate. The vacuum controllable module, consisting of a laser-drilled glass and hard-polydimethylsiloxane micro-channels, enables selective modulation of micro-vacuum suction force on microchip arrays. Ultrahigh adhesion switchability of 3.364 × 106, accomplished by pressure control during the micro-vacuum transfer procedure, facilitates the pick-up and release of thin-film semiconductors without additional adhesives and chip damage. Heterogeneous integration of III-V materials and silicon is demonstrated by assembling microchips with diverse shapes and sizes from different mother wafers on the same plane. Multiple selective transfers are implemented by independent pressure control of two separate vacuum channels with a high transfer yield of 98.06%. Finally, flexible micro light-emitting diodes and transistors with uniform electrical/optical properties are fabricated via micro-vacuum assisted selective transfer.
Collapse
Affiliation(s)
- Sang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae Jin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Boo Soo Ma
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min Seo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Ho Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung Hyung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Yun Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hong-Jin Park
- BSP Co., Ltd., 41-4, 170 Burim-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 14055, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Bischoff K, Esen C, Hellmann R. Preparation of Dispersed Copper(II) Oxide Nanosuspensions as Precursor for Femtosecond Reductive Laser Sintering by High-Energy Ball Milling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2693. [PMID: 37836334 PMCID: PMC10574695 DOI: 10.3390/nano13192693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a measurement methodology. Aside from the established method of scanning electron microscopy for imaging individual dried particles, this work applies the holistic and statistically more significant laser diffraction in combination with dynamic image analysis in wet dispersion. In addition to direct ultrasonic homogenization, high-energy ball milling is introduced for RLS, to produce stable nanosuspensions with a high fine fraction, and, above all, the absence of oversize particles. Whereas ultrasonic dispersion stagnates at particle sizes between 500 nm and 20 μm, even after 8 h, milled suspension contains a high proportion of finest particles with diameters below 100 nm, no agglomerates larger than 1 μm and a trimodal particle size distribution with the median at 50 nm already, after 100 min of milling. The precursor layers produced by doctor blade coating are examined for their quality by laser scanning microscopy. The surface roughness of such a dry film can be reduced from 1.26 μm to 88 nm by milling. Finally, the novel precursor is used for femtosecond RLS, to produce homogeneous, high-quality copper layers with a sheet resistance of 0.28Ω/sq and a copper mass concentration of 94.2%.
Collapse
Affiliation(s)
- Kay Bischoff
- Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, 63743 Aschaffenburg, Germany
| | - Cemal Esen
- Applied Laser Technologies, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany;
| | - Ralf Hellmann
- Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, 63743 Aschaffenburg, Germany
| |
Collapse
|
8
|
Lee JS, Kim JW, Lee JH, Son YK, Kim YB, Woo K, Lee C, Kim ID, Seok JY, Yu JW, Park JH, Lee KJ. Flash-Induced High-Throughput Porous Graphene via Synergistic Photo-Effects for Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2023; 15:191. [PMID: 37532956 PMCID: PMC10397175 DOI: 10.1007/s40820-023-01157-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Porous 2D materials with high conductivity and large surface area have been proposed for potential electromagnetic interference (EMI) shielding materials in future mobility and wearable applications to prevent signal noise, transmission inaccuracy, system malfunction, and health hazards. Here, we report on the synthesis of lightweight and flexible flash-induced porous graphene (FPG) with excellent EMI shielding performance. The broad spectrum of pulsed flashlight induces photo-chemical and photo-thermal reactions in polyimide films, forming 5 × 10 cm2-size porous graphene with a hollow pillar structure in a few milliseconds. The resulting material demonstrated low density (0.0354 g cm-3) and outstanding absolute EMI shielding effectiveness of 1.12 × 105 dB cm2 g-1. The FPG was characterized via thorough material analyses, and its mechanical durability and flexibility were confirmed by a bending cycle test. Finally, the FPG was utilized in drone and wearable applications, showing effective EMI shielding performance for internal/external EMI in a drone radar system and reducing the specific absorption rate in the human body.
Collapse
Affiliation(s)
- Jin Soo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong-Wook Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Koo Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoohee Woo
- Department of Printed Electronics, Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea
| | - Chanhee Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Young Seok
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Jong Won Yu
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jung Hwan Park
- Department of Mechanical Engineering (Department of Aeronautics, Mechanical and Electronic Convergence Engineering), Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39177, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Lee HE, Lee D, Lee TI, Jang J, Jang J, Lim YW, Shin JH, Kang SM, Choi GM, Joe DJ, Kim JH, Lee SH, Park SH, Park CB, Kim TS, Lee KJ, Bae BS. Siloxane Hybrid Material-Encapsulated Highly Robust Flexible μLEDs for Biocompatible Lighting Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28258-28269. [PMID: 35674729 DOI: 10.1021/acsami.2c03922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible micro-light-emitting diodes (f-μLEDs) have been regarded as an attractive light source for the next-generation human-machine interfaces, thanks to their noticeable optoelectronic performances. However, when it comes to their practical utilizations fulfilling industrial standards, there have been unsolved reliability and durability issues of the f-μLEDs, despite previous developments in the high-performance f-μLEDs for various applications. Herein, highly robust flexible μLEDs (f-HμLEDs) with 20 × 20 arrays, which are realized by a siloxane-based organic-inorganic hybrid material (SHM), are reported. The f-HμLEDs are created by combining the f-μLED fabrication process with SHM synthesis procedures (i.e., sol-gel reaction and successive photocuring). The outstanding mechanical, thermal, and environmental stabilities of our f-HμLEDs are confirmed by a host of experimental and theoretical examinations, including a bending fatigue test (105 bending/unbending cycles), a lifetime accelerated stress test (85 °C and 85% relative humidity), and finite element method simulations. Eventually, to demonstrate the potential of our f-HμLEDs for practical applications of flexible displays and/or biomedical devices, their white light emission due to quantum dot-based color conversion of blue light emitted by GaN-based f-HμLEDs is demonstrated, and the biocompatibility of our f-HμLEDs is confirmed via cytotoxicity and cell proliferation tests with muscle, bone, and neuron cell lines. As far as we can tell, this work is the first demonstration of the flexible μLED encapsulation platform based on the SHM, which proved its mechanical, thermal, and environmental stabilities and biocompatibility, enabling us to envisage biomedical and/or flexible display applications using our f-HμLEDs.
Collapse
Affiliation(s)
- Han Eol Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Division of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Daewon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Ik Lee
- Joining R&D Group, Root Industry Technology Center, Korea Institute of Industrial Technology (KITECH), 156 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junho Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Woo Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung Ho Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung-Mo Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gwang-Mun Choi
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34141, Republic of Korea
| | - Daniel J Joe
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jeong Hyeon Kim
- Division of Advanced Materials Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Seung Hyung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeong-Soo Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Wearable Platform Materials Technology Center (WMC), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Hee Lee J, Lee S, Kim D, Jae Lee K. Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Adv Drug Deliv Rev 2022; 187:114399. [PMID: 35716898 DOI: 10.1016/j.addr.2022.114399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
Optogenetics has received wide attention in biomedical fields because of itsadvantages in temporal precision and spatial resolution. Beyond contributions to important advances in fundamental research, optogenetics is inspiring a shift towards new methods of improving human well-being and treating diseases. Soft, flexible and biocompatible systems using µLEDs as a light source have been introduced to realize brain-compatible optogenetic implants, but there are still many technical challenges to overcome before their human applications. In this review, we address progress in the development of implantable µLED probes and recent achievements in (i) device engineering design, (ii) driving power, (iii) multifunctionality and (iv) closed-loop systems. (v) Expanded optogenetic applications based on remarkable advances in µLED implants will also be discussed.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinjeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
11
|
Zhao H, Cheng X, Wu C, Liu TL, Zhao Q, Li S, Ni X, Yao S, Han M, Huang Y, Zhang Y, Rogers JA. Mechanically Guided Hierarchical Assembly of 3D Mesostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109416. [PMID: 35067974 DOI: 10.1002/adma.202109416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/01/2022] [Indexed: 06/14/2023]
Abstract
3D, hierarchical micro/nanostructures formed with advanced functional materials are of growing interest due to their broad potential utility in electronics, robotics, battery technology, and biomedical engineering. Among various strategies in 3D micro/nanofabrication, a set of methods based on compressive buckling offers wide-ranging material compatibility, fabrication scalability, and precise process control. Previously reports on this type of approach rely on a single, planar prestretched elastomeric platform to transform thin-film precursors with 2D layouts into 3D architectures. The simple planar configuration of bonding sites between these precursors and their assembly substrates prevents the realization of certain types of complex 3D geometries. In this paper, a set of hierarchical assembly concepts is reported that leverage multiple layers of prestretched elastomeric substrates to induce not only compressive buckling of 2D precursors bonded to them but also of themselves, thereby creating 3D mesostructures mounted at multiple levels of 3D frameworks with complex, elaborate configurations. Control over strains used in these processes provides reversible access to multiple different 3D layouts in a given structure. Examples to demonstrate these ideas through both experimental and computational results span vertically aligned helices to closed 3D cages, selected for their relevance to 3D conformal bio-interfaces and multifunctional microsystems.
Collapse
Affiliation(s)
- Hangbo Zhao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Qinai Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Shenglian Yao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
12
|
Bang J, Jung Y, Kim H, Kim D, Cho M, Ko SH. Multi-Bandgap Monolithic Metal Nanowire Percolation Network Sensor Integration by Reversible Selective Laser-Induced Redox. NANO-MICRO LETTERS 2022; 14:49. [PMID: 35076794 PMCID: PMC8789997 DOI: 10.1007/s40820-021-00786-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/07/2021] [Indexed: 05/05/2023]
Abstract
Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning. However, the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure. The ideal electronics should not have defective interfaces of dissimilar materials. In this study, we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor-metal interface by reversible selective laser-induced redox (rSLIR) method. Furthermore, rSLIR can control the oxidation state of transition metal (Cu) to yield semiconductors with two different bandgap states (Cu2O and CuO with bandgaps of 2.1 and 1.2 eV, respectively), which may allow multifunctional sensors with multiple bandgaps from the same materials. This novel method enables the seamless integration of single-phase Cu, Cu2O, and CuO, simultaneously while allowing reversible, selective conversion between oxidation states by simply shining laser light. Moreover, we fabricated a flexible monolithic metal-semiconductor-metal multispectral photodetector that can detect multiple wavelengths. The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.
Collapse
Affiliation(s)
- Junhyuk Bang
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Hyungjun Kim
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dongkwan Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Maenghyo Cho
- Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea.
- Institute of Advanced Machines and Design, Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Fabrication Process for On-Board Geometries Using a Polymer Composite-Based Selective Metallization for Next-Generation Electronics Packaging. Processes (Basel) 2021. [DOI: 10.3390/pr9091634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advancements in production techniques in PCB manufacturing industries are still required as compared to silicon-ICs fabrications. One of the concerned areas in PCBs fabrication is the use of conventional methodologies for metallization. Most of the manufacturers are still using the traditional Copper (Cu) laminates on the base substrate and patterning the structures using lithography processes. As a result, significant amounts of metallic parts are etched away during any mass production process, causing unnecessary disposables leading to pollution. In this work, a new approach for Cu metallization is demonstrated with considerable step-reducing pattern-transfer mechanism. In the fabrication steps, a seed layer of covalent bonded metallization (CBM) chemistry on top of a dielectric epoxy resin is polymerized using actinic radiation intensity of a 375 nm UV laser source. The proposed method is capable of patterning any desirable geometries using the above-mentioned surface modification followed by metallization. To metallize the patterns, a proprietary electroless bath has been used. The metallic layer grows only on the selective polymer-activated locations and thus is called selective metallization. The highlight of this production technique is its occurrence at a low temperature (20–45 °C). In this paper, FR-4 as a base substrate and polyurethane (PU) as epoxy resin were used to achieve various geometries, useful in electronics packaging. In addition, analysis of the process parameters and some challenges witnessed during the process development are also outlined. As a use case, a planar inductor is fabricated to demonstrate the application of the proposed technique.
Collapse
|