1
|
Pradhan JR, Priyadarsini SS, Nibgoor SR, Singh M, Dasgupta S. Oxide semiconductor based deep-subthreshold operated read-out electronics for all-printed smart sensor patches. EXPLORATION (BEIJING, CHINA) 2025; 5:20230167. [PMID: 40040823 PMCID: PMC11875446 DOI: 10.1002/exp.20230167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/02/2024] [Indexed: 03/06/2025]
Abstract
The ability to fabricate an entire smart sensor patch with read-out electronics using commercial printing techniques may have a wide range of potential applications. Although solution-processed oxide thin film transistors (TFTs) are capable of providing high mobility electron transport, resulting in large ON-state current and power output, there is hardly any literature report that uses the printed oxide TFTs at the sensor interfaces. Here, printed amorphous indium-gallium-zinc oxide (a-IGZO)-based deep-subthreshold operated TFTs that comprise signal amplifiers and analog-to-digital converters (ADCs) that can successfully digitalize the analog sensor signals up to a frequency range of 1 kHz are reported. In addition, exploiting the high current oxide TFTs, a current drive circuit placed after the ADC unit has been found useful in producing easy-to-detect visual recognition of the sensor signal at a predefined threshold crossover. Notably, the entire smart sensor patch is demonstrated to operate at a low supply voltage of ≤2 V, thereby ensuring that it can be an on-chip energy source compatible and standalone detection unit.
Collapse
Affiliation(s)
- Jyoti Ranjan Pradhan
- Department of Materials EngineeringIndian Institute of Science (IISc)BangaloreKarnatakaIndia
| | | | - Sanjana R. Nibgoor
- Department of Materials EngineeringIndian Institute of Science (IISc)BangaloreKarnatakaIndia
| | - Manvendra Singh
- Department of Materials EngineeringIndian Institute of Science (IISc)BangaloreKarnatakaIndia
| | - Subho Dasgupta
- Department of Materials EngineeringIndian Institute of Science (IISc)BangaloreKarnatakaIndia
| |
Collapse
|
2
|
Kim S, Yoo H. Recent Progress in Thin-Film Transistors toward Digital, Analog, and Functional Circuits. MICROMACHINES 2022; 13:2258. [PMID: 36557558 PMCID: PMC9783209 DOI: 10.3390/mi13122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Thin-film transistors have been extensively developed due to their process merit: high compatibility with various substrates, large-area processes, and low-cost processes. Despite these advantages, most efforts for thin-film transistors still remain at the level of unit devices, so the circuit level for practical use needs to be further developed. In this regard, this review revisits digital and analog thin-film circuits using carbon nanotubes (CNTs), organic electrochemical transistors (OECTs), organic semiconductors, metal oxides, and two-dimensional materials. This review also discusses how to integrate thin-film circuits at the unit device level and some key issues such as metal routing and interconnection. Challenges and opportunities are also discussed to pave the way for developing thin-film circuits and their practical applications.
Collapse
|
3
|
Xiang L, Wang Y, Xia F, Liu F, He D, Long G, Zeng X, Liang X, Jin C, Wang Y, Pan A, Peng LM, Hu Y. An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. SCIENCE ADVANCES 2022; 8:eabp8075. [PMID: 35977018 PMCID: PMC9385141 DOI: 10.1126/sciadv.abp8075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Epidermal electronic systems that simultaneously provide physiological information acquisition, processing, and storage are in high demand for health care/clinical applications. However, these system-level demonstrations using flexible devices are still challenging because of obstacles in device performance, functional module construction, or integration scale. Here, on the basis of carbon nanotubes, we present an epidermal system that incorporates flexible sensors, sensor interface circuits, and an integrated flash memory array to collect physiological information from the human body surface; amplify weak biosignals by high-performance differential amplifiers (voltage gain of 27 decibels, common-mode rejection ratio of >43 decibels, and gain bandwidth product of >22 kilohertz); and store the processed information in the memory array with performance on par with industrial standards (retention time of 108 seconds, program/erase voltages of ±2 volts, and endurance of 106 cycles). The results shed light on the great application potential of epidermal electronic systems in personalized diagnostic and physiological monitoring.
Collapse
Affiliation(s)
- Li Xiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuru Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Fan Xia
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fang Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Daliang He
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanhua Long
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Xiangwen Zeng
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Xuelei Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Yuwei Wang
- College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
| | - Anlian Pan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Lian-Mao Peng
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Corresponding author.
| |
Collapse
|
4
|
Wearable Near-Field Communication Sensors for Healthcare: Materials, Fabrication and Application. MICROMACHINES 2022; 13:mi13050784. [PMID: 35630251 PMCID: PMC9146494 DOI: 10.3390/mi13050784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023]
Abstract
The wearable device industry is on the rise, with technology applications ranging from wireless communication technologies to the Internet of Things. However, most of the wearable sensors currently on the market are expensive, rigid and bulky, leading to poor data accuracy and uncomfortable wearing experiences. Near-field communication sensors are low-cost, easy-to-manufacture wireless communication technologies that are widely used in many fields, especially in the field of wearable electronic devices. The integration of wireless communication devices and sensors exhibits tremendous potential for these wearable applications by endowing sensors with new features of wireless signal transferring and conferring radio frequency identification or near-field communication devices with a sensing function. Likewise, the development of new materials and intensive research promotes the next generation of ultra-light and soft wearable devices for healthcare. This review begins with an introduction to the different components of near-field communication, with particular emphasis on the antenna design part of near-field communication. We summarize recent advances in different wearable areas of near-field communication sensors, including structural design, material selection, and the state of the art of scenario-based development. The challenges and opportunities relating to wearable near-field communication sensors for healthcare are also discussed.
Collapse
|
5
|
Pang J, Bachmatiuk A, Yang F, Liu H, Zhou W, Rümmeli MH, Cuniberti G. Applications of Carbon Nanotubes in the Internet of Things Era. NANO-MICRO LETTERS 2021; 13:191. [PMID: 34510300 PMCID: PMC8435483 DOI: 10.1007/s40820-021-00721-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 05/07/2023]
Abstract
The post-Moore's era has boosted the progress in carbon nanotube-based transistors. Indeed, the 5G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices. In this perspective, we deliver the readers with the latest trends in carbon nanotube research, including high-frequency transistors, biomedical sensors and actuators, brain-machine interfaces, and flexible logic devices and energy storages. Future opportunities are given for calling on scientists and engineers into the emerging topics.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), Universities of Shandong, University of Jinan, Shandong, Jinan, 250022, People's Republic of China.
| | - Alicja Bachmatiuk
- PORT Polish Center for Technology Development, Łukasiewicz Research Network, Ul. Stabłowicka 147, 54-066, Wrocław, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819, Zabrze, Poland
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), Universities of Shandong, University of Jinan, Shandong, Jinan, 250022, People's Republic of China
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, People's Republic of China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Institute for Advanced Interdisciplinary Research (iAIR), Universities of Shandong, University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Mark H Rümmeli
- College of Energy, Institute for Energy and Materials Innovations, Soochow University, Suzhou, Soochow, 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, 41-819, Zabrze, Poland
- Institute for Complex Materials, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 20 Helmholtz Strasse, 01069, Dresden, Germany
- Institute of Environmental Technology, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava, 708 33, Czech Republic
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany.
- Dresden Center for Computational Materials Science, Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|