1
|
Shan S, Zhao W, Zou D, Xu Y, Gao F, Liu Y, Yang C. High-Performance and Low-Power Applications of n- and p-Type Symmetrically Ultrascaled Pentagonal CX 2 Transistors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23094-23103. [PMID: 40179271 DOI: 10.1021/acsami.5c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The disparity in transport properties between n-type and p-type transistors has hindered the advancement of complementary metal-oxide-semiconductor (CMOS) integrated circuits. We designed Penta-CX2 (X = N, P, As, Sb) field-effect transistors (FETs) and utilized first-principles methods to evaluate their quantum transport characteristics. Our results demonstrate that CP2 and CAs2 exhibit superior transport properties and low subthreshold swing (SS) in both n-type and p-type configurations at sub-5 nm channel lengths. For high-performance (HP) applications, the on-state current (Ion) for both n-type and p-type devices exceeds 3000 μA/μm, peaking at 4574 μA/μm. In low-power (LP) applications, Ion for both types of devices surpasses 1000 μA/μm, reaching a maximum of 1735 μA/μm, significantly exceeding the International Roadmap for Devices and Systems (IRDS) standards for HP and LP applications. Furthermore, even when the channel length is reduced to 4 or 3 nm, the devices maintain exceptional performance. Additionally, we established a correlation between carrier effective mass and the saturation current, elucidating how the anisotropy of carrier effective mass influences transport properties and explaining the physical mechanisms by which the device overcomes Boltzmann's tyranny. This study provides valuable insights and references for designing advanced CMOSFETs in the post-Si era using channel materials with unique effective mass.
Collapse
Affiliation(s)
- Shunran Shan
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 250021, People's Republic of China
| | - Wenkai Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 250021, People's Republic of China
| | - Dongqing Zou
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 250021, People's Republic of China
| | - Yuqing Xu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 250021, People's Republic of China
| | - Feng Gao
- Department of Physics, Southern University and A&M College, Baton Rouge 70813, Los Angeles, United States
| | - Yuliang Liu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 250021, People's Republic of China
| | - Chuanlu Yang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 250021, People's Republic of China
| |
Collapse
|
2
|
Lu D, Chen Y, Lu Z, Ma L, Tao Q, Li Z, Kong L, Liu L, Yang X, Ding S, Liu X, Li Y, Wu R, Wang Y, Hu Y, Duan X, Liao L, Liu Y. Monolithic three-dimensional tier-by-tier integration via van der Waals lamination. Nature 2024; 630:340-345. [PMID: 38778106 DOI: 10.1038/s41586-024-07406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Two-dimensional (2D) semiconductors have shown great potential for monolithic three-dimensional (M3D) integration due to their dangling-bonds-free surface and the ability to integrate to various substrates without the conventional constraint of lattice matching1-10. However, with atomically thin body thickness, 2D semiconductors are not compatible with various high-energy processes in microelectronics11-13, where the M3D integration of multiple 2D circuit tiers is challenging. Here we report an alternative low-temperature M3D integration approach by van der Waals (vdW) lamination of entire prefabricated circuit tiers, where the processing temperature is controlled to 120 °C. By further repeating the vdW lamination process tier by tier, an M3D integrated system is achieved with 10 circuit tiers in the vertical direction, overcoming previous thermal budget limitations. Detailed electrical characterization demonstrates the bottom 2D transistor is not impacted after repetitively laminating vdW circuit tiers on top. Furthermore, by vertically connecting devices within different tiers through vdW inter-tier vias, various logic and heterogeneous structures are realized with desired system functions. Our demonstration provides a low-temperature route towards fabricating M3D circuits with increased numbers of tiers.
Collapse
Affiliation(s)
- Donglin Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Likuan Ma
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Quanyang Tao
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zhiwei Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Lingan Kong
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xiaokun Yang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Shuimei Ding
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xiao Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yunxin Li
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yiliu Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lei Liao
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Pang X, Wang Y, Zhu Y, Zhang Z, Xiang D, Ge X, Wu H, Jiang Y, Liu Z, Liu X, Liu C, Hu W, Zhou P. Non-volatile rippled-assisted optoelectronic array for all-day motion detection and recognition. Nat Commun 2024; 15:1613. [PMID: 38383735 PMCID: PMC10881999 DOI: 10.1038/s41467-024-46050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
In-sensor processing has the potential to reduce the energy consumption and hardware complexity of motion detection and recognition. However, the state-of-the-art all-in-one array integration technologies with simultaneous broadband spectrum image capture (sensory), image memory (storage) and image processing (computation) functions are still insufficient. Here, macroscale (2 × 2 mm2) integration of a rippled-assisted optoelectronic array (18 × 18 pixels) for all-day motion detection and recognition. The rippled-assisted optoelectronic array exhibits remarkable uniformity in the memory window, optically stimulated non-volatile positive and negative photoconductance. Importantly, the array achieves an extensive optical storage dynamic range exceeding 106, and exceptionally high room-temperature mobility up to 406.7 cm2 V-1 s-1, four times higher than the International Roadmap for Device and Systems 2028 target. Additionally, the spectral range of each rippled-assisted optoelectronic processor covers visible to near-infrared (405 nm-940 nm), achieving function of motion detection and recognition.
Collapse
Affiliation(s)
- Xingchen Pang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yang Wang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
| | - Yuyan Zhu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Zhenhan Zhang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Du Xiang
- State Key Laboratory of Integrated Chip and System, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, Shanghai, 200232, China.
| | - Xun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Haoqi Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yongbo Jiang
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Zizheng Liu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Xiaoxian Liu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Chunsen Liu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- State Key Laboratory of Integrated Chip and System, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
| | - Peng Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
- State Key Laboratory of Integrated Chip and System, Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
5
|
Kang T, Lu Z, Liu L, Huang M, Hu Y, Liu H, Wu R, Liu Z, You J, Chen Y, Zhang K, Duan X, Wang N, Liu Y, Luo Z. In Situ Defect Engineering of Controllable Carrier Types in WSe 2 for Homomaterial Inverters and Self-Powered Photodetectors. NANO LETTERS 2023. [PMID: 38038404 DOI: 10.1021/acs.nanolett.3c03328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
WSe2 has a high mobility of electrons and holes, which is an ideal choice as active channels of electronics in extensive fields. However, carrier-type tunability of WSe2 still has enormous challenges, which are essential to overcome for practical applications. In this work, the direct growth of n-doped few-layer WSe2 is realized via in situ defect engineering. The n-doping of WSe2 is attributed to Se vacancies induced by the H2 flow purged in the cooling process. The electrical measurements based on field effect transistors demonstrate that the carrier type of WSe2 synthesized is successfully transferred from the conventional p-type to the rarely reported n-type. The electron carrier concentration is efficiently modulated by the concentration of H2 during the cooling process. Furthermore, homomaterial inverters and self-powered photodetectors are fabricated based on the doping-type-tunable WSe2. This work reveals a significant way to realize the controllable carrier type of two-dimensional (2D) materials, exhibiting great potential in future 2D electronics engineering.
Collapse
Affiliation(s)
- Ting Kang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Zheyi Lu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Liting Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Meizhen Huang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yunxia Hu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Hongwei Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Jiawen You
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yang Chen
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Kenan Zhang
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Yuan Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
- Hong Kong University of Science and Technology-Shenzhen Research Institute, No. 9 Yuexing first RD, Hi-Tech Park, Nanshan, Shenzhen 518057, People's Republic of China
| |
Collapse
|
6
|
Lee JA, Yoon J, Hwang S, Hwang H, Kwon JD, Lee SK, Kim Y. Integrated Logic Circuits Based on Wafer-Scale 2D-MoS 2 FETs Using Buried-Gate Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2870. [PMID: 37947714 PMCID: PMC10649149 DOI: 10.3390/nano13212870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) materials, such as molybdenum disulfide (MoS2), stand out due to their atomically thin layered structure and exceptional electrical properties. Consequently, they could potentially become one of the main materials for future integrated high-performance logic circuits. However, the local back-gate-based MoS2 transistors on a silicon substrate can lead to the degradation of electrical characteristics. This degradation is caused by the abnormal effect of gate sidewalls, leading to non-uniform field controllability. Therefore, the buried-gate-based MoS2 transistors where the gate electrodes are embedded into the silicon substrate are fabricated. The several device parameters such as field-effect mobility, on/off current ratio, and breakdown voltage of gate dielectric are dramatically enhanced by field-effect mobility (from 0.166 to 1.08 cm2/V·s), on/off current ratio (from 4.90 × 105 to 1.52 × 107), and breakdown voltage (from 15.73 to 27.48 V) compared with a local back-gate-based MoS2 transistor, respectively. Integrated logic circuits, including inverters, NAND, NOR, AND, and OR gates, were successfully fabricated by 2-inch wafer-scale through the integration of a buried-gate MoS2 transistor array.
Collapse
Affiliation(s)
- Ju-Ah Lee
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; (J.-A.L.); (J.Y.); (S.H.); (J.-D.K.)
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jongwon Yoon
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; (J.-A.L.); (J.Y.); (S.H.); (J.-D.K.)
| | - Seungkwon Hwang
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; (J.-A.L.); (J.Y.); (S.H.); (J.-D.K.)
| | - Hyunsang Hwang
- Center for Single Atom-Based Semiconductor Device, Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea;
| | - Jung-Dae Kwon
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; (J.-A.L.); (J.Y.); (S.H.); (J.-D.K.)
| | - Seung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yonghun Kim
- Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; (J.-A.L.); (J.Y.); (S.H.); (J.-D.K.)
| |
Collapse
|
7
|
Batool S, Idrees M, Han ST, Roy VAL, Zhou Y. Electrical Contacts With 2D Materials: Current Developments and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206550. [PMID: 36587964 DOI: 10.1002/smll.202206550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Current electrical contact models are occasionally insufficient at the nanoscale owing to the wide variations in outcomes between 2D mono and multi-layered and bulk materials that result from their distinctive electrostatics and geometries. Contrarily, devices based on 2D semiconductors present a significant challenge due to the requirement for electrical contact with resistances close to the quantum limit. The next generation of low-power devices is already hindered by the lack of high-quality and low-contact-resistance contacts on 2D materials. The physics and materials science of electrical contact resistance in 2D materials-based nanoelectronics, interface configurations, charge injection mechanisms, and numerical modeling of electrical contacts, as well as the most pressing issues that need to be resolved in the field of research and development, will all be covered in this review.
Collapse
Affiliation(s)
- Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Idrees
- Additive Manufacturing Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- College of Electronics Science & Technology, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|