1
|
Zhi G, Hu Z, Zhou G, Zhang Z, Wang H, Kong D, Xu T, Li X, Wang Y. Sodiophilic Au-diamane polypropylene separator enabled dendrite-free sodium metal batteries. NANOSCALE 2025; 17:11752-11761. [PMID: 40261246 DOI: 10.1039/d5nr00743g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Sodium metal is considered a promising anode material for sodium metal batteries (SMBs) owing to its high theoretical specific capacity and low electrochemical potential. Nevertheless, its practical application is hindered by the challenge of dendrite formation. To address this issue, a separator modification strategy was adapted to enhance the performance of sodium metal anodes (SMAs) using Au nanoparticle-decorated two-dimensional diamane on a commercial polypropylene substrate (Au-diamane/PP) separator. The sodiophilic Au-diamane/PP separator facilitates improved Na+ ion diffusion kinetics and induces a dendrite-free deposition morphology, effectively suppressing dendrite growth. The dendrite-free deposition behavior was systematically characterized using in situ optical microscopy and ex situ scanning electron microscopy. The symmetric Na||Na cell incorporating the Au-diamane/PP separator exhibits exceptional cycling stability, maintaining operation for more than 2100 h at 2 mA cm-2 with 1 mA h cm-2. The sodiophilicity originates from the in situ formed AuNa2 alloy formed on the surface of diamane during the discharging process. Additionally, a full cell with a Na3V2(PO4)3@C cathode, Au-diamane/PP separator, and Na metal anode delivers a high reversible capacity of 88.4 mA h g-1 even after more than 300 cycles. Our work underscores the potential of the Au-diamane/PP separator in advancing the development of SMBs with extended cycle life and enhanced performance.
Collapse
Affiliation(s)
- Gang Zhi
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhanwei Hu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Gaojie Zhou
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhuangfei Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Hui Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Dezhi Kong
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Tingting Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| | - Ye Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Jia H, Liu J, Liu B, Kuphal R, Mottini V, Monday P, Ball M, Li J, Nejad M, Fang C. Lignin-Based Separators for Lithium-Ion Batteries via a Dry Fibrillation Method. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419694. [PMID: 40134365 DOI: 10.1002/adma.202419694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Separators are critical components in lithium-ion batteries (LIBs), preventing internal short circuits, mitigating thermal runaway, and influencing rate capability and cycling performance. However, current polyolefin separators suffer from limitations, such as high thermal shrinkage, relatively poor wettability, and inadequate long-term stability, impacting safety and cycle life in critical applications like electric vehicles. Here, a single-layer lignin-based ultrathin separator (as thin as 15 µm) with exceptional intrinsic thermal stability and cycling performance is demonstrated. The separator is fabricated using lignosulfonate, a natural polymer derived as a byproduct of chemical pulping and biorefinery processes. By employing a dry fibrillation method, the process achieves low energy consumption and a 100% raw material conversion rate, highlighting its scalability and sustainability. Interfacial studies reveal the improved cycling performance in both graphite||NMC811 and Si-Gr||NMC811 cells is attributed to the abundant sulfonate functional groups in lignosulfonates, which promote the formation of a sulfur-rich cathode/solid electrolyte interphases (CEI/SEI) with low resistance in both the cathode and anode. The high thermal stability, manufacturing feasibility, battery performance, and low cost of such lignin-based separators offer new inspiration for developing next-generation, single-layer functional separators tailored for high-performance LIBs.
Collapse
Affiliation(s)
- Huanhuan Jia
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jingjing Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Boling Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert Kuphal
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Vittorio Mottini
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Paul Monday
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Madelyn Ball
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Jinxing Li
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Mojgan Nejad
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI, 48824, USA
| | - Chengcheng Fang
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Lv J, Tang Z, Zhang Q, Sun H, OuYang M, Cao Y. Synergistic Dual-Polar-Functionalized Metal-Organic Framework-Modified Separator for Stable and High-Performance Sodium Metal Batteries. ACS NANO 2025; 19:16133-16146. [PMID: 40232175 DOI: 10.1021/acsnano.5c04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Sodium metal, regarded as an ideal anode material for high-energy-density rechargeable sodium metal batteries (SMBs), faces critical challenges, such as sluggish Na+ transport kinetics and uncontrolled dendritic growth, which severely hinder its cycling stability and practical applications. Herein, the well-designed, multifunctional separator, UFS2@GF, constructed using metal-organic frameworks functionalized with fluorinated (-F) and sulfonic acid (-SO3H) groups, synergistically provides more nucleation sites for Na+ deposition, thereby reducing the nucleation overpotential and achieving uniform deposition. The inorganic-rich solid electrolyte interphase induced by UFS2 facilitates a uniform Na+ flux and enhances charge transfer efficiency. Structural characterization and density functional theory calculations further demonstrate that the introduction of abundant sodiophilic sites provided by -F and -SO3H significantly enhances Na+ transport kinetics by reducing the energy barriers for Na+ migration within the UFS2 framework, leading to a higher Na+ transference number, superior ionic conductivity, and accelerated ion transport. Because of these synergistic effects, the symmetric cell with UFS2@GF achieves stable performance, enabling stable cycling for over 2500 h at 0.25 mA cm-2 while delivering an excellent specific capacity of 87.3 mA h g-1 at 10C in Na∥Na3V2(PO4)3 cells. These results highlight the critical role of synergistic functional group strategies in addressing the limitations of SMBs.
Collapse
Affiliation(s)
- Jiaze Lv
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhen Tang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Qiman Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Han Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Mingwei OuYang
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Chinese Academy of Sciences Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
4
|
Luo J, Yang K, Gai J, Zhang X, Peng C, Qin C, Ding Y, Yuan Y, Xie Z, Yan P, Cao Y, Lu J, Chen W. Anion-Tailored EDL Induced Triple-Layer SEI on High-Capacity Anodes Enabling Fast-Charging and Durable Sodium-Storage. Angew Chem Int Ed Engl 2025; 64:e202419490. [PMID: 39527240 DOI: 10.1002/anie.202419490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
High-capacity electrodes face a great challenge of cycling stability due to particle fragmentation induced conductive network failure and accompanied by sustained electrolyte decomposition for repeatedly build solid electrolyte interphase (SEI). Herein, Se-solubility induced Sex 2- as self-adjustment electrolyte additive to regulate electric double layer (EDL) for constructing novel triple-layer SEI (inner layer: Se; mediate layer: inorganic; outer layer: organic) on high-capacity FeS2 anode as an example for achieving stable and fast sodium storage. In detail, Sex 2- in situ generated at 1.30 V (vs. Na+/Na) and was preferentially adsorbed onto EDL of anode, then converted to Se0 as inner layer of SEI. In addition, the Sex 2- causes anion-enhanced Na+ solvation structure could produce more inorganic (Se0, NaF) and less organic SEI components. The unique triple-layer SEI with layer-by-layer dense structure alleviate the excessive electrolyte consumption with less gas evolution. As a result, the anode delivered long-lifespan at 10 A g-1 (383.7 mAh g-1, 6000 cycles, 93.1 %, 5 min/cycle). The Se-induced triple-layer SEI could be also be formed on high-capacity SnS2 anode. This work provides a novel SEI model by anion-tailored EDL towards stable sodium-storage of high-capacity anode for fast-charging.
Collapse
Affiliation(s)
- Jun Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kaiwei Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jingjing Gai
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xixue Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chengbin Peng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Changdong Qin
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Chaoyang District, Beijing, P. R. China
| | - Yang Ding
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Chaoyang District, Beijing, P. R. China
| | - Yifei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengfei Yan
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Chaoyang District, Beijing, P. R. China
| | - Yuliang Cao
- Engineering Research Center of Organosilicon Compounds & Materials of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Weihua Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
Wang Y, Xu L, Chen X, Chen Z, Li X, Guo W, Cheng T, Yi Y, Sun J. A Thermally Robust Biopolymeric Separator Conveys K + Transport and Interfacial Chemistry for Longevous Potassium Metal Batteries. ACS NANO 2025; 19:3920-3930. [PMID: 39813795 DOI: 10.1021/acsnano.4c16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs. Through experimental investigation and theoretical computation, we reveal that the optimized porosity and surface functionalization could manage ion transport and interfacial chemistry, thereby enabling efficient K+ diffusion and a favorable solid electrolyte interphase to achieve prolonged cycling stability (over 3000 h). The thus-assembled full cell retains 80% of its initial capacity after 400 cycles at 0.5 A g-1. The heat-proof property of the designed separator is further demonstrated. Our biopolymeric separator, affording multifunctional features, provides an appealing solution to circumvent instability and safety issues associated with potassium metal batteries.
Collapse
Affiliation(s)
- Yuyuan Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Liang Xu
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xiaopeng Chen
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Ziang Chen
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Xinhua Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Wenyi Guo
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Yuyang Yi
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
6
|
Xue Z, Zhang T, Li X, Wang F, Xu G, Zhu M. Simultaneous Regulation of Organic and Inorganic Components in Interphase by Fiber Separator for High-Stable Sodium Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202415283. [PMID: 39344792 DOI: 10.1002/anie.202415283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/01/2024]
Abstract
Uncontrollable side reactions at the metal interface have been identified as the root cause of the formation of a fragile solid electrolyte interphase, leading to irreversible sodium loss in sodium metal batteries. Here, we proposed an interface engineering strategy that employed a carboxyl functionalized cellulose separator to provide strong dipole moments and induce the cleavage of P-F bond to construct a solid electrolyte interphase (SEI) rich in NaF. In addition, we employed nuclear magnetic resonance technology confirmed that the separator with strong dipole moments prevented the reduction of organic solvents by attracting electrons, thereby inhibiting the formation of organic oligomers. SEI with high NaF content and few oligomers is smooth and robust, obviously decreasing the interface impedance of the Na anode. The symmetric Na||Na cells, equipped with the functionalized separator, efficiently operated for 1400 hours with a stable 72 mV overpotential at 0.25 mA cm-2, exhibiting low energy barrier and fast ion transport kinetics. The Na||Na3V2(PO4)3 cell also showed stable cycling performance, with the capacity remaining at 94.83 % of the initial capacity after 1000 cycles at 1C. The proposed separator could control the formation and composition of SEI, paving the way for the development of long-life sodium metal batteries.
Collapse
Affiliation(s)
- Zhixin Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guiyin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Zhang Q, Chen L, Li X, Hou B, Wu X, Gui X, Cao D, Liu J, Li J, Duan J, Mo D, Liu J, Yao H. Robust, High-Temperature-Resistant Polyimide Separators with Vertically Aligned Uniform Nanochannels for High-Performance Lithium-Ion Batteries. ACS NANO 2024; 18:32162-32174. [PMID: 39499626 DOI: 10.1021/acsnano.4c11217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Separator is an essential component of lithium-ion batteries (LIBs), playing a pivotal role in battery safety and electrochemical performance. However, conventional polyolefin separators suffer from poor thermal stability and nonuniform pore structures, hindering their effectiveness in preventing thermal shrinkage and inhibiting lithium (Li) dendrites. Herein, we present a robust, high-temperature-resistant polyimide (PI) separator with vertically aligned uniform nanochannels, fabricated via ion track-etching technology. The resultant PI track-etched membranes (PITEMs) effectively homogenize Li-ion distribution, demonstrating enhanced ionic conductivity (0.57 mS cm-1) and a high Li+ transfer number (0.61). PITEMs significantly prolong the cycle life of Li/Li cells to 1200 h at 3 mA cm-2. For Li/LiFePO4 cells, this approach enables a specific capacity of 143 mAh g-1 and retains 83.88% capacity after 300 cycles at room temperature. At 80 °C, the capacity retention remains at 85.92% after 200 cycles. Additionally, graphite/LiFePO4 pouch cells with PITEMs display enhanced cycling stability, retaining 73.25% capacity after 1000 cycles at room temperature and 78.41% after 100 cycles at 80 °C. Finally, PITEMs-based pouch cells can operate at 150 °C. This separator not only addresses the limitations of traditional separators, but also holds promise for mass production via roll-to-roll methods. We expect this work to offer insights into designing and manufacturing of functional separators for high-safety LIBs.
Collapse
Affiliation(s)
- Qizhong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjing Chen
- LONGi Institute of Future Technology, and School of Materials & Energy, Lanzhou University, Lanzhou 730000, China
| | - Xuanlin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Borui Hou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanxuan Wu
- College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaoyu Gui
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Dianliang Cao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jiande Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junshuai Li
- LONGi Institute of Future Technology, and School of Materials & Energy, Lanzhou University, Lanzhou 730000, China
| | - Jinglai Duan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Dan Mo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Jie Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huijun Yao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Guo X, Xie Z, Wang R, Luo J, Chen J, Guo S, Tang G, Shi Y, Chen W. Interface-Compatible Gel-Polymer Electrolyte Enabled by NaF-Solubility-Regulation toward All-Climate Solid-State Sodium Batteries. Angew Chem Int Ed Engl 2024; 63:e202402245. [PMID: 38462504 DOI: 10.1002/anie.202402245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Gel-polymer electrolyte (GPE) is a pragmatic choice for high-safety sodium batteries but still plagued by interfacial compatibility with both cathode and anode simultaneously. Here, salt-in-polymer fibers with NaF salt inlaid in polylactide (PLA) fiber network was fabricated via electrospinning and subsequent in situ forming gel-polymer electrolyte in liquid electrolytes. The obtained PLA-NaF GPE achieves a high ion conductivity (2.50×10-3 S cm-1) and large Na+ transference number (0.75) at ambient temperature. Notably, the dissolution of NaF salt occupies solvents leading to concentrated-electrolyte environment, which facilitates aggregates with increased anionic coordination (anion/Na+ >1). Aggregates with higher HOMO realize the preferential oxidation on the cathode so that inorganic-rich and stable CEI covers cathode' surface, preventing particles' breakage and showing good compatibility with different cathodes (Na3V2(PO4)3, Na2+2xFe2-x(SO4)3, Na0.72Ni0.32Mn0.68O2, NaTi2(PO4)3). While, passivated Na anode induced by the lower LUMO of aggregates, and the lower surface tension between Na anode and PLA-NaF GPE interface, leading to the dendrites-free Na anode. As a result, the assembled Na || Na3V2(PO4)3 cells display excellent electrochemical performance at all-climate conditions.
Collapse
Affiliation(s)
- Xiaoniu Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Ruixue Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Jun Luo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Jiacheng Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Shuai Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Guochuan Tang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Yu Shi
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of, Leeds, LS29JT, UK
| | - Weihua Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou, 450002, Henan, P. R. China
- Yaoshan laboratory, Pingdingshan University, Pingdingshan Henan, 467000, P. R. China
| |
Collapse
|
9
|
Zhang T, Zhang L, Wang F, Wang Y, Zhang T, Ran F. Woven fabric-based separators with low tortuosity for sodium-ion batteries. NANOSCALE 2024; 16:5323-5333. [PMID: 38372642 DOI: 10.1039/d3nr06536g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In order to achieve high-performance and stable sodium-ion batteries, numerous attempts have been made to construct continuous ion transport pathways, in which a separator is one of the key components that affects the battery performance. In this study, a novel low-tortuosity woven fabric separator is fabricated by combining a weaving technique with a cellulose-solution method, followed by an infusion of a TEMPO-oxidized bacterial cellulose slurry into woven fabric substrates. The macropores in the fabric combine with the micropores in the oxidized bacterial cellulose to form a separator with a suitable pore structure and low tortuosity, forming a continuous sodium ion transport channel within the sodium-ion battery and effectively enhancing ion transport dynamics. The results show that, compared with a commercial polypropylene separator, the TEMPO-oxidized bacterial cellulose-woven fabric separator has a special weaving structure and lower tortuosity (0.77), as well as significant advantages in tensile strength (3.07 MPa), ionic conductivity (1.15 mS c), ionic transfer number (0.75), thermal stability, and electrochemical stability. This novel and simple preparation method provides new possibilities for achieving high-performance separators of sodium-ion batteries through rational structural design by textile technology.
Collapse
Affiliation(s)
- Tianyun Zhang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou 730500, China.
| | - Lirong Zhang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Fujuan Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou 730500, China.
| | - Yanci Wang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Tian Zhang
- School of Mechanical and Electronical Engineering, Department of Textile Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Department of Polymeric Materials Engineering, Lanzhou University of Technology, Lanzhou 730500, China.
| |
Collapse
|
10
|
Liu H, Zheng X, Du Y, Borrás MC, Wu K, Konstantinov K, Pang WK, Chou S, Liu H, Dou S, Wu C. Multifunctional Separator Enables High-Performance Sodium Metal Batteries in Carbonate-Based Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307645. [PMID: 37989269 DOI: 10.1002/adma.202307645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Indexed: 11/23/2023]
Abstract
Sodium metal has become one of the most promising anodes for next-generation cheap and high-energy-density metal batteries; however, challenges caused by the uncontrollable sodium dendrite growth and fragile solid electrolyte interphase (SEI) restrict their large-scale practical applications in low-cost and wide-voltage-window carbonate electrolytes. Herein, a novel multifunctional separator with lightweight and high thinness is proposed, assembled by the cobalt-based metal-organic framework nanowires (Co-NWS), to replace the widely applied thick and heavy glass fiber separator. Benefitting from its abundant sodiophilic functional groups and densely stacked nanowires, Co-NWS not only exhibits outstanding electrolyte wettability and effectively induces uniform Na+ ion flux as a strong ion redistributor but also favors constructing the robust N,F-rich SEI layer. Satisfactorily, with 10 µL carbonate electrolyte, a Na|Co-NWS|Cu half-cell delivers stable cycling (over 260 cycles) with a high average Coulombic efficiency of 98%, and the symmetric cell shows a long cycle life of more than 500 h. Remarkably, the full cell shows a long-term life span (over 1500 cycles with 92% capacity retention) at high current density in the carbonate electrolyte. This work opens up a strategy for developing dendrite-free, low-cost, and long-life-span sodium metal batteries in carbonate-based electrolytes.
Collapse
Affiliation(s)
- Haoxuan Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Xiaoyang Zheng
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8573, Japan
| | - Yumeng Du
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Marcela Chaki Borrás
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Kuan Wu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Wei Kong Pang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huakun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Wu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, 2525, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
11
|
Luo J, Yang M, Wang D, Zhang J, Song K, Tang G, Xie Z, Guo X, Shi Y, Chen W. A Fast Na-Ion Conduction Polymer Electrolyte via Triangular Synergy Strategy for Quasi-Solid-State Batteries. Angew Chem Int Ed Engl 2023; 62:e202315076. [PMID: 37960950 DOI: 10.1002/anie.202315076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Polymer electrolytes provide a visible pathway for the construction of high-safety quasi-solid-state batteries due to their high interface compatibility and processability. Nevertheless, sluggish ion transfer at room temperature seriously limits their applications. Herein, a triangular synergy strategy is proposed to accelerate Na-ion conduction via the cooperation of polymer-salt, ionic liquid, and electron-rich additive. Especially, PVDF-HFP and NaTFSI salt acted as the framework to stably accommodate all the ingredients. An ionic liquid (Emim+ -FSI- ) softened the polymer chains through a weakening molecule force and offered additional liquid pathways for ion transport. Physicochemical characterizations and theoretical calculations demonstrated that electron-rich Nerolin with π-cation interaction facilitated the dissociation of NaTFSI and effectively restrained the competitive migration of large cations from EmimFSI, thus lowering the energy barrier for ion transport. The strategy resulted in a thin F-rich interphase dominated by NaTFSI salt's decomposition, enabling rapid Na+ transmission across the interface. These combined effects resulted in a polymer electrolyte with high ionic conductivity (1.37×10-3 S cm-1 ) and tNa+ (0.79) at 25 °C. The assembled cells delivered reliable rate capability and stability (200 cycles, 99.2 %, 0.5 C) with a good safety performance.
Collapse
Affiliation(s)
- Jun Luo
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Mingrui Yang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Denghui Wang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Jiyu Zhang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Keming Song
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Guochuan Tang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Zhengkun Xie
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Xiaoniu Guo
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
| | - Yu Shi
- Leeds Institute of Textiles and Colour (LITAC), School of Design, Woodhouse Lane, University of Leeds, Leeds, LS2 9JT, UK
| | - Weihua Chen
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Zhengzhou University, Zhengzhou, 450002, Henan, P. R. China
| |
Collapse
|
12
|
Li X, Xu P, Ni H, Lin X, Wang Y, Fan J, Zheng M, Yuan R, Dong Q. Regulating SEI Components of Sodium Anode via Capturing Organic-Molecule Intermediates in Ester-Based Electrolyte. SMALL METHODS 2023; 7:e2300388. [PMID: 37316995 DOI: 10.1002/smtd.202300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Highly reversible sodium metal anodes are still regarded as a stubborn hurdle in ester-based electrolytes due to the issue of uncontrollable dendrites and incredibly unstable interphase. Evidently, a strong protective film on sodium is decisive, while the quality of the protective film is mainly determined by its components. However, it is challenging to actively adjust the expected components. This work can regulate the solid electrolyte interphase (SEI) components by introducing a functional electrolyte additive (2-chloro-1,3-dimethylimidazoline hexafluorophosphate (CDIH, namely CDI+ +PF6 - )) into FEC/PC ester-based electrolyte. Specifically, the chloride element in the CDI+ can easily react to form a NaF/NaCl-rich SEI together with the decomposition products of FEC; then the CDI+ without chlorine as a gripper to capture the organic-molecule intermediates generated during FEC decomposition to greatly reduce the content of unstable organic components in SEI, which can be confirmed by molecular dynamic simulation and experiment. Eventually, a highly reversible Na deposition behavior can be delivered. As expected, under the action of CDIH additives, the Na||Na symmetrical cell performs an excellent long-term cycling (>800 h, 0.5 mA cm-2 -0.5 mAh cm-2 ) and rate performance (0.5-4 mA cm-2 ). Furthermore, the Na||PB full cell exhibits the outstanding electrochemical performance with small polarization.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Pan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hongbin Ni
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiaodong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yajing Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jingmin Fan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Mingsen Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Ruming Yuan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Quanfeng Dong
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Xiamen University, Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|