1
|
Jiang J, Zhang L, Wu G, Zhang J, Yang Y, He W, Zhu J, Zhang J, Qin Q. Efficient Electrochemical-Enzymatic Conversion of PET to Formate Coupled with Nitrate Reduction Over Ru-Doped Co 3O 4 Catalysts. Angew Chem Int Ed Engl 2025; 64:e202421240. [PMID: 40103537 DOI: 10.1002/anie.202421240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Electrochemical reforming presents a sustainable route for the conversion of nitrate (NO3 -) and polyethylene terephthalate (PET) into value-added chemicals, such as ammonia (NH3) and formic acid (HCOOH). However, its widespread application has been constrained by low selectivity due to the complexity of reduction processes and thus energy scaling limitations. In this study, the atomically dispersed Ru sites in Co3O4 synergistically interact with Co centers, facilitating the adsorption and activation of hydroxyl radicals (OH*) and ethylene glycol (EG), resulting in a remarkable HCOOH selectivity of 99% and a yield rate of 11.2 mmol h-1 cm-2 surpassing that of pristine Co3O4 (55% and 3.8 mmol h-1 cm-2). Furthermore, when applied as a bifunctional cathode catalyst, Ru-Co3O4 achieves a remarkable Faradaic efficiency (FE) of 98.5% for NH3 production (3.54 mmol h-1 cm-2) at -0.3 V versus RHE. Additionally, we developed a prototype device powered by a commercial silicon photovoltaic cell, enabling on-site solar-driven production of formate and NH3 through enzyme-catalyzed PET and NO3 - conversion. This study offers a viable approach for waste valorization and green chemical production, paving the way for sustainable energy applications.
Collapse
Affiliation(s)
- Jiadi Jiang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Leting Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guanzheng Wu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Jianrui Zhang
- Shenzhen X-institute, Lanjing Middle Road, Shenzhen, 518000, China
| | - Yidong Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Wenhui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Jian Zhang
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Qing Qin
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
2
|
Gao W, Wang C, Wen W, Wang S, Zhang X, Yan D, Wang S. Electrochemical Hydrogen Production Coupling with the Upgrading of Organic and Inorganic Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2503198. [PMID: 40395197 DOI: 10.1002/adma.202503198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/04/2025] [Indexed: 05/22/2025]
Abstract
Electrocatalytic water splitting powered by renewable energy is a green and sustainable method for producing high-purity H2. However, in conventional water electrolysis, the anodic oxygen evolution reaction (OER) involves a four-electron transfer process with inherently sluggish kinetics, which severely limits the overall efficiency of water splitting. Recently, replacing OER with thermodynamically favorable oxidation reactions, coupled with the hydrogen evolution reaction, has garnered significant attention and achieved remarkable progress. This strategy not only offers a promising route for energy-saving H₂ production but also enables the simultaneous synthesis of high-value-added products or the removal of pollutants at the anode. Researchers successfully demonstrate the upgrading of numerous organic and inorganic alternatives through this approach. In this review, the latest advances in the coupling of electrocatalytic H2 production and the upgrading of organic and inorganic alternative chemicals are summarized. What's more, the optimization strategy of catalysts, structure-performance relationship, and catalytic mechanism of various reactions are well discussed in each part. Finally, the current challenges and future prospects in this field are outlined, aiming to inspire further innovative breakthroughs in this exciting area of research.
Collapse
Affiliation(s)
- Wenqi Gao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Chen Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Dafeng Yan
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, 368 Youyi Road, Wuhan, 430062, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Biosensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410081, China
| |
Collapse
|
3
|
Zhang X, Wang C, Cao W, Zhu Q, Cheng C, Zheng J, Zhang H, Guo Y, Huang S, Yu Y, Ge B, Song D, Fan Y, Cheng Z. Ru Single Atoms Anchored on Oxygen-Vacancy-Rich ZrO 2-x/C for Synergistically Enhanced Hydrogen Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413569. [PMID: 40103278 PMCID: PMC12079528 DOI: 10.1002/advs.202413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Indexed: 03/20/2025]
Abstract
The hydrogen oxidation reaction (HOR) in alkaline media is pivotal for the advancement of anion exchange membrane fuel cells (AEMFCs), and the development of single-atom catalysts offers a promising solution for creating cost-effective, highly efficient HOR catalysts. Although the transition from nanoparticle to single-atom catalysts enhances catalytic activity, the stability of these single-atom sites remains a significant challenge. In this study, a highly active and stable alkaline HOR catalyst is successfully designed by incorporating Ru atoms into ZrO2-x/C nanoparticles, forming the single atoms catalyst Ru-SA-ZrO2-x/C. The catalyst exhibits an outstanding mass activity of 6789.4 mA mgRu -1 at 50 mV, surpassing the Ru/C catalyst by 67 fold and the commercial Pt/C catalyst by 42.5 fold. Density functional theory (DFT) simulations reveal that the integration of Ru atoms into ZrO2-x/C optimizes both the hydrogen bonding energy (HBE) and hydroxyl binding energy (OHBE), reducing the toxicity of Ru sites. This research opens a new pathway for the precise design of single-atom and metal nanoparticle hybrids, offering a promising direction for developing highly active electrocatalysts for alkaline HOR applications.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Chunchang Wang
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Wenjun Cao
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Qingqing Zhu
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Chao Cheng
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Jun Zheng
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Haijuan Zhang
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Youming Guo
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Shouguo Huang
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Yi Yu
- Laboratory of Dielectric Functional MaterialsSchool of Materials Science & EngineeringAnhui UniversityHefei230601China
| | - Binghui Ge
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Dongsheng Song
- Institute of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Yameng Fan
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongSquires WayNorth WollongongNSW2500Australia
| |
Collapse
|
4
|
Qin Y, Du K, Wang Y, Jiang S, Miao L, Lu M, Wang P. Support Regulation Strategy Synergistic with Ru Single-Atom Catalyst for Energy-Saving Hydrogen Production Assisted by Green Electrosynthesis of Azotetrazolate. Inorg Chem 2025; 64:4544-4554. [PMID: 39996503 DOI: 10.1021/acs.inorgchem.4c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The slow kinetics of the oxygen evolution reaction limits electrochemical overall water splitting (OWS). To address this, integrating thermodynamically favorable organic electro-oxidation with the hydrogen evolution reaction (HER) can enhance the hydrogen production performance. Notably, 5-amino-1H-tetrazole oxidation-assisted OWS not only achieves energy-saving hydrogen production but also produces energetic compound 5,5'-azotetrazolate salts in a mild manner. This necessitates in-depth research into catalysts with straightforward synthesis methods and excellent performance for energy-saving hydrogen production. Supported single-atom catalysts (SACs) have high dispersibility and can reduce the overall use of precious metals. Here, we report a highly efficient HER catalyst consisting of a Ru single atom anchored on low-crystallinity Zn-doped Ni2P nanosheets (Ru-LC-ZNP). The catalyst achieves a low overpotential of 28.9 mV at -10 mA cm-2, demonstrating excellent stability for at least 100 h with no noticeable activity loss. The experimental results indicate that the outstanding alkaline HER performance can be attributed to the synergistic optimization between the Ru single atom and the low-crystallinity support. By coupling water splitting with 5-AT electro-oxidation, the cell voltage of water electrolysis can be enormously reduced to only 1.26 V at 10 mA cm-2. This work provides insights into the mechanism of supported SACs as active HER catalysts.
Collapse
Affiliation(s)
- Yaqi Qin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kechen Du
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuqiu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuaijie Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lingzhen Miao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pengcheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
5
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
6
|
Zheng N, Hu X, Yan L, Ding LY, Feng J, Li D, Ji T, Ai F, Yu K, Hu J. Bimetallic Cu@Ru Core-Shell Structures with Ligand Effects for Endo-Exogenous Stimulation-Mediated Dynamic Oncotherapy. NANO LETTERS 2024; 24:6165-6173. [PMID: 38717317 DOI: 10.1021/acs.nanolett.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.
Collapse
Affiliation(s)
- Nannan Zheng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Ling-Yun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Dan Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| |
Collapse
|
7
|
Sun L, Pan X, Xie YN, Zheng J, Xu S, Li L, Zhao G. Accelerated Dynamic Reconstruction in Metal-Organic Frameworks with Ligand Defects for Selective Electrooxidation of Amines to Azos Coupling with Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202402176. [PMID: 38470010 DOI: 10.1002/anie.202402176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal-organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr-NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr-NH to *Pyr-N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.
Collapse
Affiliation(s)
- Lingzhi Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Xun Pan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Ya-Nan Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Jingui Zheng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Shaohan Xu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
8
|
Huang A, Huang H, Wang F, Ke N, Tan C, Hao L, Xu X, Xian Y, Agathopoulos S. Mo 2C-Based Ceramic Electrode with High Stability and Catalytic Activity for Hydrogen Evolution Reaction at High Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308068. [PMID: 38054769 DOI: 10.1002/smll.202308068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Developing robust electrodes with high catalytic performance is a key step for expanding practical HER (hydrogen evolution reaction) applications. This paper reports on novel porous Mo2C-based ceramics with oriented finger-like holes directly used as self-supported HER electrodes. Due to the suitable MoO3 sintering additive, high-strength (55 ± 6 MPa) ceramic substrates and a highly active catalytic layer are produced in one step. The in situ reaction between MoO3 and Mo2C enabled the introduction of O in the Mo2C crystal lattice and the formation of Mo2C(O)/MoO2 heterostructures. The optimal Mo2C-based electrode displayed an overpotential of 333 and 212 mV at 70 °C under a high current intensity of 1500 mA cm-2 in 0.5 m H2SO4 and 1.0 m KOH, respectively, which are markedly better than the performance of Pt wire electrode; furthermore, its price is three orders of magnitude lower than Pt. The chronopotentiometric curves recorded in the 50 - 1500 mA cm-2 range, confirmed its excellent long-term stability in acidic and alkaline media for more than 260 h. Density functional theory (DFT) calculations showed that the Mo2C(O)/MoO2 heterostructures has an optimum electronic structure with appropriate *H adsorption-free energy in an acidic medium and minimum water dissociation energy barrier in an alkaline medium.
Collapse
Affiliation(s)
- Anding Huang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haisen Huang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Feihong Wang
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nianwang Ke
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuntian Tan
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Luyuan Hao
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xin Xu
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yuxi Xian
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230031, P. R. China
| | - Simeon Agathopoulos
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, GR-451 10, Greece
| |
Collapse
|
9
|
Zhang T, Jiang J, Sun W, Gong S, Liu X, Tian Y, Wang D. Spatial configuration of Fe-Co dual-sites boosting catalytic intermediates coupling toward oxygen evolution reaction. Proc Natl Acad Sci U S A 2024; 121:e2317247121. [PMID: 38294936 PMCID: PMC10861885 DOI: 10.1073/pnas.2317247121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Oxygen evolution reaction (OER) is the pivotal obstacle of water splitting for hydrogen production. Dual-sites catalysts (DSCs) are considered exceeding single-site catalysts due to the preternatural synergetic effects of two metals in OER. However, appointing the specific spatial configuration of dual-sites toward more efficient catalysis still remains a challenge. Herein, we constructed two configurations of Fe-Co dual-sites: stereo Fe-Co sites (stereo-Fe-Co DSC) and planar Fe-Co sites (planar-Fe-Co DSC). Remarkably, the planar-Fe-Co DSC has excellent OER performance superior to stereo-Fe-Co DSC. DFT calculations and experiments including isotope differential electrochemical mass spectrometry, in situ infrared spectroscopy, and in situ Raman reveal the *O intermediates can be directly coupled to form *O-O* rather than *OOH by both the DSCs, which could overcome the limitation of four electron transfer steps in OER. Especially, the proper Fe-Co distance and steric direction of the planar-Fe-Co benefit the cooperation of dual sites to dehydrogenate intermediates into *O-O* than stereo-Fe-Co in the rate-determining step. This work provides valuable insights and support for further research and development of OER dual-site catalysts.
Collapse
Affiliation(s)
- Taiyan Zhang
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Jingjing Jiang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis),Beijing100094, People’s Republic of China
| | - Wenming Sun
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Shuyan Gong
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis),Beijing100094, People’s Republic of China
| | - Yang Tian
- Analytical Instrumentation Centre,Department of Chemistry, Capital Normal University, Beijing100048, People’s Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
| |
Collapse
|
10
|
Qian Q, Zhu Y, Ahmad N, Feng Y, Zhang H, Cheng M, Liu H, Xiao C, Zhang G, Xie Y. Recent Advancements in Electrochemical Hydrogen Production via Hybrid Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306108. [PMID: 37815215 DOI: 10.1002/adma.202306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Indexed: 10/11/2023]
Abstract
As one of the most promising approaches to producing high-purity hydrogen (H2 ), electrochemical water splitting powered by the renewable energy sources such as solar, wind, and hydroelectric power has attracted considerable interest over the past decade. However, the water electrolysis process is seriously hampered by the sluggish electrode reaction kinetics, especially the four-electron oxygen evolution reaction at the anode side, which induces a high reaction overpotential. Currently, the emerging hybrid electrochemical water splitting strategy is proposed by integrating thermodynamically favorable electro-oxidation reactions with hydrogen evolution reaction at the cathode, providing a new opportunity for energy-efficient H2 production. To achieve highly efficient and cost-effective hybrid water splitting toward large-scale practical H2 production, much work has been continuously done to exploit the alternative anodic oxidation reactions and cutting-edge electrocatalysts. This review will focus on recent developments on electrochemical H2 production coupled with alternative oxidation reactions, including the choice of anodic substrates, the investigation on electrocatalytic materials, and the deep understanding of the underlying reaction mechanisms. Finally, some insights into the scientific challenges now standing in the way of future advancement of the hybrid water electrolysis technique are shared, in the hope of inspiring further innovative efforts in this rapidly growing field.
Collapse
Affiliation(s)
- Qizhu Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Nazir Ahmad
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huaikun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Huanhuan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China Hefei, Anhui, 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, P. R. China
| |
Collapse
|
11
|
Li J, Ma Y, Zhang C, Zhang C, Ma H, Guo Z, Liu N, Xu M, Ma H, Qiu J. Green electrosynthesis of 3,3'-diamino-4,4'-azofurazan energetic materials coupled with energy-efficient hydrogen production over Pt-based catalysts. Nat Commun 2023; 14:8146. [PMID: 38065975 PMCID: PMC10709341 DOI: 10.1038/s41467-023-43698-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/16/2023] [Indexed: 03/23/2025] Open
Abstract
The broad employment of clean hydrogen through water electrolysis is restricted by large voltage requirement and energy consumption because of the sluggish anodic oxygen evolution reaction. Here we demonstrate a novel alternative oxidation reaction of green electrosynthesis of valuable 3,3'-diamino-4,4'-azofurazan energetic materials and coupled with hydrogen production. Such a strategy could greatly decrease the hazard from the traditional synthetic condition of 3,3'-diamino-4,4'-azofurazan and achieve low-cell-voltage hydrogen production on WS2/Pt single-atom/nanoparticle catalyst. The assembled two-electrode electrolyzer could reach 10 and 100 mA cm-2 with ultralow cell voltages of 1.26 and 1.55 V and electricity consumption of only 3.01 and 3.70 kWh per m3 of H2 in contrast of the conventional water electrolysis (~5 kWh per m3). Density functional theory calculations combine with experimental design decipher the synergistic effect in WS2/Pt for promoting Volmer-Tafel kinetic rate during alkaline hydrogen evolution reaction, while the oxidative-coupling of starting materials driven by free radical could be the underlying mechanism during the synthesis of 3,3'-diamino-4,4'-azofurazan. This work provides a promising avenue for the concurrent electrosynthesis of energetic materials and low-energy-consumption hydrogen production.
Collapse
Affiliation(s)
- Jiachen Li
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Cong Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chi Zhang
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Huijun Ma
- National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, 710127, China
| | - Zhaoqi Guo
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Ning Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
12
|
Yu R, Cao X, Chen Q, Li W, Huang A, Wei X, Mao J. D-Band Center Optimization of Edge-Rich Ultrathin RuZn Nanosheets With Moiré Superlattices for pH-Universal Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303440. [PMID: 37282780 DOI: 10.1002/smll.202303440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Indexed: 06/08/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is a promising way to produce pure and clean hydrogen. However, the preparation of efficient and economical catalysts for pH-universal HER remains a challenging but rewarding task. Herein, ultrathin RuZn nanosheets (NSs) with moiré superlattices and abundant edges are synthesized. The RuZn NSs with unique structure exhibit superb HER performance with overpotentials of 11, 13, and 29 mV to achieve 10 mA cm-2 in 1 M KOH, 1 M PBS, and 0.5 M H2 SO4 , respectively, which is substantially lower than those of Ru NSs and RuZn NSs without moiré superlattices. Density functional theory investigations reveal that the charge transfer from Zn to Ru will lead the appropriate downshift of the d-band center of surface Ru atoms, thus accelerating hydrogen desorption from the Ru sites, lowering the dissociation energy barrier of water and greatly improving the HER performance. This work provides an effective design scheme for high-performance HER electrocatalysts over a wide pH range, and propose a general route to prepare Ru-based bimetallic nanosheets with moiré superlattices.
Collapse
Affiliation(s)
- Rui Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Xi Cao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Qingqing Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Wenjiang Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Aijian Huang
- School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianwen Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Anhui University of Technology, Maanshan, 243 002, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
13
|
Ren T, Yu Z, Yu H, Deng K, Wang Z, Li X, Wang H, Wang L, Xu Y. Sustainable Ammonia Electrosynthesis from Nitrate Wastewater Coupled to Electrocatalytic Upcycling of Polyethylene Terephthalate Plastic Waste. ACS NANO 2023. [PMID: 37363822 DOI: 10.1021/acsnano.3c01862] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Integrating the nitrate reduction reaction (NO3RR) with polyethylene terephthalate (PET) hydrolysate oxidation to construct the nitrate/PET hydrolysate coelectrolysis system holds a great promise of realizing the simultaneous upcycling of nitrate wastewater and PET plastic waste, which, however, is still an almost untouched research area. Herein, we develop an ultralow content of Ru-incorporated Co-based metal-organic frameworks as a bifunctional precatalyst, which can be in situ reconstructed to Ru-Co(OH)2 at the cathode and Ru-CoOOH at the anode under electrocatalytic environments, and function as real active catalysts for the NO3RR and PET hydrolysate oxidation, respectively. With a two-electrode nitrate/PET hydrolysate coelectrolysis system, the current density of 50 mA cm-2 is achieved at a cell voltage of only 1.53 V, realizing the simultaneous production of ammonia and formate at a lower energy consumption. This study provides a concept for the construction of coelectrolysis systems for upcycling of nitrate wastewater and PET plastic waste.
Collapse
Affiliation(s)
- Tianlun Ren
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Zuan Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
14
|
Ma J, Chen K, Wang J, Huang L, Dang C, Gu L, Cao X. Killing Two Birds with One Stone: Upgrading Organic Compounds via Electrooxidation in Electricity-Input Mode and Electricity-Output Mode. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2500. [PMID: 36984379 PMCID: PMC10056343 DOI: 10.3390/ma16062500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The electrochemically oxidative upgrading reaction (OUR) of organic compounds has gained enormous interest over the past few years, owing to the advantages of fast reaction kinetics, high conversion efficiency and selectivity, etc., and it exhibits great potential in becoming a key element in coupling with electricity, synthesis, energy storage and transformation. On the one hand, the kinetically more favored OUR for value-added chemical generation can potentially substitute an oxygen evolution reaction (OER) and integrate with an efficient hydrogen evolution reaction (HER) or CO2 electroreduction reaction (CO2RR) in an electricity-input mode. On the other hand, an OUR-based cell or battery (e.g., fuel cell or Zinc-air battery) enables the cogeneration of value-added chemicals and electricity in the electricity-output mode. For both situations, multiple benefits are to be obtained. Although the OUR of organic compounds is an old and rich discipline currently enjoying a revival, unfortunately, this fascinating strategy and its integration with the HER or CO2RR, and/or with electricity generation, are still in the laboratory stage. In this minireview, we summarize and highlight the latest progress and milestones of the OUR for the high-value-added chemical production and cogeneration of hydrogen, CO2 conversion in an electrolyzer and/or electricity in a primary cell. We also emphasize catalyst design, mechanism identification and system configuration. Moreover, perspectives on OUR coupling with the HER or CO2RR in an electrolyzer in the electricity-input mode, and/or the cogeneration of electricity in a primary cell in the electricity-output mode, are offered for the future development of this fascinating technology.
Collapse
Affiliation(s)
- Jiamin Ma
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Keyu Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Lin Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Chenyang Dang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Li Gu
- School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xuebo Cao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
15
|
Jia X, Kang H, Hou G, Lu S, Yao Y, Wang Q, Qin W, Wu X. Coupling Ferrocyanide-Assisted PW/PB Redox with Efficient Direct Seawater Electrolysis for Hydrogen Production. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Xin Jia
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Hongjun Kang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Guangyao Hou
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Songtao Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yuan Yao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qing Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Wei Qin
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Xiaohong Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
16
|
Yan L, Song D, Liang J, Li X, Li H, Liu Q. Fabrication of highly efficient Rh-doped cobalt-nickel-layered double hydroxide/MXene-based electrocatalyst with rich oxygen vacancies for hydrogen evolution. J Colloid Interface Sci 2023; 640:338-347. [PMID: 36867930 DOI: 10.1016/j.jcis.2023.02.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
The development of nonprecious metal catalysts for producing hydrogen from economical alkaline water electrolysis that is both stable and efficient is crucial but remains challenging. In this study, Rh-doped cobalt-nickel-layered double hydroxide (CoNi LDH) nanosheet arrays with abundant oxygen vacancies (Ov) in-situ grown on Ti3C2Tx MXene nanosheets (Rh-CoNi LDH/MXene) were successfully fabricated. The synthesized Rh-CoNi LDH/MXene exhibited excellent long-term stability and a low overpotential of 74.6 ± 0.4 mV at -10 mA cm-2 for hydrogen evolution reaction (HER) owing to its optimized electronic structure. Experimental results and density functional theory calculations revealed that the incorporation of Rh dopant and Ov into CoNi LDH and the coupling interface between Rh-CoNi LDH and MXene optimized the hydrogen adsorption energy, which accelerated the hydrogen evolution kinetics, thereby accelerating the overall alkaline HER process. This work presents a promising strategy for designing and synthesizing highly efficient electrocatalysts for electrochemical energy conversion devices.
Collapse
Affiliation(s)
- Liang Yan
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Dan Song
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Jiayu Liang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Xinyi Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Hao Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
17
|
Yan D, Mebrahtu C, Wang S, Palkovits R. Innovative Electrochemical Strategies for Hydrogen Production: From Electricity Input to Electricity Output. Angew Chem Int Ed Engl 2022; 62:e202214333. [PMID: 36437229 DOI: 10.1002/anie.202214333] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Renewable H2 production by water electrolysis has attracted much attention due to its numerous advantages. However, the energy consumption of conventional water electrolysis is high and mainly driven by the kinetically inert anodic oxygen evolution reaction. An alternative approach is the coupling of different half-cell reactions and the use of redox mediators. In this review, we, therefore, summarize the latest findings on innovative electrochemical strategies for H2 production. First, we address redox mediators utilized in water splitting, including soluble and insoluble species, and the corresponding cell concepts. Second, we discuss alternative anodic reactions involving organic and inorganic chemical transformations. Then, electrochemical H2 production at both the cathode and anode, or even H2 production together with electricity generation, is presented. Finally, the remaining challenges and prospects for the future development of this research field are highlighted.
Collapse
Affiliation(s)
- Dafeng Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, 430062, Wuhan, China.,Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Chalachew Mebrahtu
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Lushan Nan Road, 410082, Changsha, China
| | - Regina Palkovits
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Research, Stiftstr. 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
18
|
Zou Y, Wu YZ, Huang Y, Liu JL, Liu H, Wang JJ. Engineering the electronic structure of Ni 3FeS with polyaniline for enhanced electrocatalytic performance of overall water splitting. NANOTECHNOLOGY 2022; 33:445701. [PMID: 35878590 DOI: 10.1088/1361-6528/ac83cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Developing highly efficient and stable electrocatalysts for oxygen evolution reaction is of significant importance for applications in energy conversion and storage. Modulation of electronic structure of catalysts is critical for improving the performance of the resulting electrodes. Here, we report a facile way to engineer the electronic structure of Ni3FeS by coating a thin polyaniline (PANI) layer for improving electrocatalytic activity for overall water splitting. Experimental investigations unveil that the strong electronic interactions between the lone electron pairs of nitrogen in PANI and d orbitals of iron, nickel in Ni3FeS result in an electron-rich structure of Ni and Fe, and consequently optimize the adsorption and desorption processes to promote the OER activity. Remarkably, the resulting PANI/Ni3FeS electrode exhibited much enhanced OER performance with a low overpotential of 143 mV at a current density of 10 mA·cm-2and good stability. Promisingly, coupled with the reported MoNi4/MoO2electrode, the two-electrode electrolyzer achieved a current density of 10 mA·cm-2with a relatively low potential of 1.55 V, and can generate oxygen and hydrogen bubbles steadily driven by a commercial dry battery, endowed the composite electrocatalyst with high potential for practical applications.
Collapse
Affiliation(s)
- Yang Zou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Yong-Zheng Wu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Yuan Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Jia-Lin Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan 250022, Shandong, People's Republic of China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, People's Republic of China
| |
Collapse
|