1
|
Zhu Y, Huang J, Mi H, Xu Z, Ai Y, Gong S, Li C, Wang M, Chen L. Intrinsically Photothermal-Driven and Reconfigurable Liquid Crystal Elastomer Actuators Enabled by Multifunctional Dynamic Covalent Organic Photothermal Molecules. Angew Chem Int Ed Engl 2025; 64:e202421915. [PMID: 39895387 DOI: 10.1002/anie.202421915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/04/2025]
Abstract
Intrinsically photothermal-responsive soft actuators possessing reconfigurability have attracted great attention due to their ability to change their actuation mode to satisfy diverse practical applications. However, challenges remain in designing and fabricating organic photothermal molecules featuring polymerizable or cross-linkable groups, especially those with multifunctional properties. Here, a novel class of versatile light-driven reconfigurable liquid crystal elastomer (LCE) materials, denoted as PUOLCE, has been developed. The multifunctional dynamic covalent organic photothermal molecules, serving as chain extenders, photothermal agents, and dynamic covalent bond precursors, are chemically bonded into LCEs, thereby endowing the LCEs with photothermal-responsiveness and dynamic properties. The intrinsic photothermal effect of PUOLCE allows the exchange reaction of dynamic oxime-carbamate bonds to undergo rapid welding under near-infrared (NIR) light. Leveraging the NIR-assisted welding strategy, the PUOLCE-based building units are capable of assembling into various complex actuators with new deformation modes. Besides, the assembled actuators can be easily reconfigured to perform different mechanical tasks (e.g., flower blooming, grasping objects, and elevating objects) under NIR illumination. Furthermore, the PUOLCE actuators can be controlled globally or locally for light-driven locomotion by controlling the area exposed to the NIR irradiation. This work provides insights into the development of adaptive soft actuators with tunable shape-morphing capabilities.
Collapse
Affiliation(s)
- Yangyang Zhu
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | - Jiaxiang Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | | | - Zhentian Xu
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | - Yun Ai
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | - Sihui Gong
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| | | | - Meng Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Lie Chen
- College of Chemistry and Engineering/ Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ the School of Information Engineering, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
2
|
Nie RP, Huang HD, Yan DX, Jia LC, Lei J, Li ZM. Boosting the Actuation Performance of a Dynamic Supramolecular Polyurethane-Urea Elastomer via Kinetic Control. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3982-3994. [PMID: 39762158 DOI: 10.1021/acsami.4c19128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The ongoing soft actuation has accentuated the demand for dielectric elastomers (DEs) capable of large deformation to replace the traditional rigid mechanical apparatus. However, the low actuation strain of DEs considerably limits their practical applications. This work developed high-performance polyurethane-urea (PUU) elastomers featuring large actuation strains utilizing an approach of kinetic control over the microphase separation structure during the fabrication process. Additionally, disulfide (DS) bonds were incorporated as dynamic chemical linkages to effectively heal the mechanical damage in the resulting elastomer (PUUDS). Alteration in processing conditions creates notable differences in the rate of phase separation among the multiphase materials. A faster phase separation rate is associated with a reduced degree of microphase separation, increased spacing within hard domains, a higher proportion of disordered hydrogen bonds, and hydrogen bonding index. These changes synergistically improved the electromechanical properties of the PUUDS elastomers, thereby enhancing their actuation performance. The sample processed under the fastest phase separation condition showed the lowest Young's modulus and a pronounced dielectric response at low frequencies. The electrostriction effect accounts for 89% of the total electromechanical coupling, achieving a significant reduction in the driving voltage during actuation. The maximum actuation strain recorded was 21.6% at an electric field of 45 MV/m. Benefiting from the fully reversible dynamic network, the damaged PUUDS elastomer can be healed and restored to its original elongation at break after 3 h at room temperature. Practical application was demonstrated through the development of a miniature butterfly model constructed from a single-layer PUUDS elastomer, showcasing potential applications in soft robotics. These findings highlight the critical role of kinetic control in optimizing the performance of advanced DEs.
Collapse
Affiliation(s)
- Run-Pan Nie
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
| | - Hua-Dong Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Robotic Satellite Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Zhou X, Jin B, Zhu Z, Wu J, Zhao Q, Chen G. Metal-Ligand Bonds Based Reprogrammable and Re-Processable Supramolecular Liquid Crystal Elastomer Network. Angew Chem Int Ed Engl 2024; 63:e202409182. [PMID: 39086017 DOI: 10.1002/anie.202409182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Dynamic covalent bonds endow liquid crystal elastomers (LCEs) with network rearrangeability, facilitating the fixation of mesogen alignment induced by external forces and enabling reversible actuation. In comparison, the bond exchange of supramolecular interactions is typically too significant to stably maintain the programmed alignment, particularly under intensified external stimuli. Nevertheless, remaking and recycling of supramolecular interaction-based polymer networks are more accessible than those based on dynamic covalent bonds, as the latter are difficult to completely dissociate. Thus, preparing an LCE that possesses both supramolecular-like exchangeability and covalent bond-level stability remains a significant challenge. In this work, we addressed this issue by employing metal-ligand bonds as the crosslinking points of LCE networks. As such, mesogen alignment can be repeatedly encoded through metal-ligand bond exchange and stably maintained after programming, since the bond exchange rate is sufficiently slow when the programming and actuation temperatures are below the bond dissociation temperature. More importantly, the metal-ligand bonds can be completely dissociated at high temperatures, allowing the LCE network to be dissolved in a solvent and reshaped into desired geometries via solution casting. Building on these properties, our LCEs can be fabricated into versatile actuators, such as reversible folding origami, artificial muscles, and soft robotics.
Collapse
Affiliation(s)
- Xiaorui Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Binjie Jin
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhan Zhu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjun Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315807, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Peng W, Zhao P, Zhou X, Liang X, Zhang X, Jin B, Chen G, Zhao Q, Xie T. Pluralizing actuation behavior of 3D printable liquid crystal elastomers via polymerization sequence control. SCIENCE ADVANCES 2024; 10:eadp4814. [PMID: 39121227 PMCID: PMC11313953 DOI: 10.1126/sciadv.adp4814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Mechanical stretching is commonly used for mesogen alignment which is essential for the muscle-like actuations of liquid crystal elastomers (LCEs). Despite the simplicity of the method, the mesogens are typically aligned in the stretching direction, limiting exclusively the LCE to an actuation mode of cooling-induced elongation. Here, we design an interpenetrating double network consisting of an LCE network and an elastomer network, with one polymerized network stretched before the polymerization of the other network. Depending on the polymerization sequence of the two networks, the double network shows two opposite actuation modes, namely, the conventional cooling-induced elongation or an unusual cooling-induced contraction. Strategic integration of the two opposite behaviors into the same LCE leads to sophisticated actuation difficult to achieve with a conventional LCE design. Coupled with 3D printing, geometrically complexed LCEs with diverse multimodal four-dimensional actuation behaviors are illustrated. Our work expands the design scope of LCE actuators and their potential device applications.
Collapse
Affiliation(s)
- Wenjun Peng
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Pengxin Zhao
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Xiaorui Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Liang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Xianming Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Emergent Elastomers, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Zhang C, Chen G, Zhang K, Jin B, Zhao Q, Xie T. Repeatedly Programmable Liquid Crystal Dielectric Elastomer with Multimodal Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313078. [PMID: 38231117 DOI: 10.1002/adma.202313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Dielectric elastomers (DEs) are actuatable under an electric field, whose large strain and fast response speed compare favorably with natural muscles. However, the actuation of DE-based devices is generally limited to a single mode and cannot be reconfigured after fabrication, which pales in comparison to biological counterparts given the ability to alter actuation modes according to external conditions. To address this, liquid crystal dielectric elastomers (LC-DEs) that can alter the dielectric actuation modes based on the thermally triggered shape-changing are prepared. Specifically, the two shapes through the LC phase transition possess different bending stiffness, which leads to distinct actuation modes after an electric field is applied. Moreover, the two shapes can be individually programmed/reprogrammed, that is, the one before the transition is regulated through force-directed solvent evaporation and the one after the transition is via bond exchange-enabled stress relaxation. As such, the multimodal dielectric actuation behaviors upon temperature change can be readily diversified. Meanwhile, the space charge mechanism endows LC-DEs with the significantly reduced driving e-field (8 V µm-1) and bidirectional actuation manners. It is believed this unique adaptivity in the actuation modes under a low electric field shall offer versatile designs for practical soft robots.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kaihang Zhang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310058, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
6
|
Zhao Z, Cao Z, Wu Z, Du W, Meng X, Chen H, Wu Y, Jiang L, Liu M. Bicontinuous vitrimer heterogels with wide-span switchable stiffness-gated iontronic coordination. SCIENCE ADVANCES 2024; 10:eadl2737. [PMID: 38457508 PMCID: PMC10923496 DOI: 10.1126/sciadv.adl2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/02/2024] [Indexed: 03/10/2024]
Abstract
Currently, it remains challenging to balance intrinsic stiffness with programmability in most vitrimers. Simultaneously, coordinating materials with gel-like iontronic properties for intrinsic ion transmission while maintaining vitrimer programmable features remains underexplored. Here, we introduce a phase-engineering strategy to fabricate bicontinuous vitrimer heterogel (VHG) materials. Such VHGs exhibited high mechanical strength, with an elastic modulus of up to 116 MPa, a high strain performance exceeding 1000%, and a switchable stiffness ratio surpassing 5 × 103. Moreover, highly programmable reprocessing and shape memory morphing were realized owing to the ion liquid-enhanced VHG network reconfiguration. Derived from the ion transmission pathway in the ILgel, which responded to the wide-span switchable mechanics, the VHG iontronics had a unique bidirectional stiffness-gated piezoresistivity, coordinating both positive and negative piezoresistive properties. Our findings indicate that the VHG system can act as a foundational material in various promising applications, including smart sensors, soft machines, and bioelectronics.
Collapse
Affiliation(s)
- Ziguang Zhao
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ziquan Cao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhixin Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenxin Du
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Xue Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Yuchen Wu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Jiang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial, Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P.R. China
| |
Collapse
|
7
|
Liu Y, Yue S, Tian Z, Zhu Z, Li Y, Chen X, Wang ZL, Yu ZZ, Yang D. Self-Powered and Self-Healable Extraocular-Muscle-Like Actuator Based on Dielectric Elastomer Actuator and Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309893. [PMID: 37879669 DOI: 10.1002/adma.202309893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Although dielectric elastomer actuators (DEAs) are promising artificial muscles for use as visual prostheses in patients with oculomotor nerve palsy (ONP), high driving voltage coupled with vulnerable compliant electrodes limits their safe long-term service. Herein, a self-healable polydimethylsiloxane compliant electrode based on reversible imine bonds and hydrogen bonds is prepared and coated on an acrylic ester film to develop a self-healable DEA (SDEA), followed by actuation with a high-output triboelectric nanogenerator (TENG) to construct a self-powered DEA (TENG-SDEA). Under 135.9 kV mm-1 , the SDEA exhibits an elevated actuated strain of 50.6%, comparable to the actuation under DC power. Moreover, the mechanically damaged TENG-SDEA displays a self-healing efficiency of over 90% for 10 cycles. The TENG ensures the safe using of TENG-SDEAs and an extraocular-muscle-like actuator with oriented motion ability integrated by several TENG-SDEAs is constructed. Additionally, the SDEA is directly used as a flexible capacitive sensor for real-time monitoring of the patient's muscle movement. Accordingly, a medical aid system based on a conjunction of the extraocular-muscle-like actuator and a flexible capacitive sensor is manufactured to help the patients suffering from ONP with physical rehabilitation and treatment.
Collapse
Affiliation(s)
- Yanze Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shangzhi Yue
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongyuan Tian
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zijuan Zhu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongji Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Materials Science and Engineering, Georgia Institute of Technology, GA, 30332, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|