1
|
Gu F, Ji M, Zhang L, Zhao T, Zhang R, Lv X, Tian H, Ma X. Visualization of photocuring and 4D printing with real-time phosphorescence. Nat Commun 2025; 16:4173. [PMID: 40325004 PMCID: PMC12052841 DOI: 10.1038/s41467-025-59502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
Facile and real-time visualization monitoring of photocuring process is a challenge. Base on the fact that pure organic room-temperature phosphorescence (RTP) is quite sensitive and easy to be regulated via internal rigidity changes of the surrounding environments of phosphore dyes, competitive organic candidates with advantageous RTP are brought into the fields of photocuring and 4D printing materials. Herein, we have put forward a strategy to introduce phosphors into photocuring materials because of the rigidity-increasing liquid-to-solid transformation. Based on this, the obtained luminescent curing films achieve RTP emission with full-color display of blue, green, and orange. Visible real-time monitoring can be realized by observations of phosphorescent changes, thus allowing the recording of curing speed, internal environment, and conversion during the curing process. Moreover, these curing materials successfully complete 4D printing and shape-memory process, demonstrating continuous dynamic deformation in fabricated 2D materials (the fabricated flower-pattern film) and 3D materials (the spaceman and pandas) with vivid RTP emission. Especially, the further regulations of the real-time phosphorescence can realize significant visualization in these 4D printing materials. We believe this discovery with the replacement of phosphors opens a door to further extension in the field of curing materials and more sophisticated morphing in 4D printing.
Collapse
Affiliation(s)
- Fan Gu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Mengxing Ji
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Lisha Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Tengjiao Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ruiqing Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xia Lv
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| |
Collapse
|
2
|
Li L, Wang J, Zou J, Hu J, Liu S, Wan S, Shi Y, Liang Z, Wang X, Ye C. Enhanced Solid-State Triplet-Triplet Annihilation Upconversion Steered by AIE-Active Isomers. Chemistry 2025:e202500553. [PMID: 40213990 DOI: 10.1002/chem.202500553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
A red-to-blue solid-state triplet-triplet annihilation upconversion (TTA-UC) molecular crystal with a significantly improved upconverted photoluminescence intensity was first achieved via a controlled crystallization pathway. Cyano-substituted stilbene derivatives and transition metal complexes were coupled for TTA-UC systems. The photophysical properties of the two annihilators and their TTA-UC systems in solution and aggregate were comprehensively studied. Particularly, UC crystals were simply prepared under different crystallization conditions resulting in different morphological and structural features. It turned out that the UC crystal prepared in the surfactant-assisted crystallization method demonstrated a 100-fold higher UC intensity than that in the evaporation crystallization method. The morphological and structural study indicated small nanograins with intact crystalline lattice would facilitate the triplet energy migration leading to a boosted UC efficiency. This work provides a novel perspective for the facile construction of high-efficient solid-state TTA-UC systems by utilizing crystals with appropriate morphology, which significantly promotes the practical applications of TTA-UC.
Collapse
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jin Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jie Zou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Jun Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shangjie Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Zuoqin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
3
|
Olikagu C, Khoshsorour S, Dulam SD, Yu H, Graham NA, Kim K, Jeong B, Hedrick JL, Bunnag‐Stoner A, Cheng K, Batchelor BL, Cho W, Park SB, Wie JJ, Kim Y, Bog M, Krishnan NB, Yang YY, Njardarson JT, Norwood RA, Pyun J. Photopolymer Resins from Sulfenyl Chloride Commodity Chemicals for Plastic Optics, Photopatterning and 3D-Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418149. [PMID: 40025669 PMCID: PMC11983257 DOI: 10.1002/adma.202418149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Indexed: 03/04/2025]
Abstract
The development of a low-cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high-quality, bulk optical glass. The low-cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57-1.59), low birefringence (Δn < 10-4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm-1 at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1-30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano-micropatterned arrays. Finally, large-scale 3D printing vat photopolymerization of DSMR using high-area rapid printing digital light processing additive manufacturing is demonstrated.
Collapse
Affiliation(s)
- Chisom Olikagu
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Shafagh Khoshsorour
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Satya D. Dulam
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Hyun‐Seok Yu
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Natasha A. Graham
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Kyung‐Jo Kim
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
| | - Byeongjoon Jeong
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
| | | | | | | | | | - Woongbi Cho
- Department of Organic and Nano EngineeringHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
| | - Seung Bin Park
- Department of Organic and Nano EngineeringHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
| | - Jeong Jae Wie
- Department of Organic and Nano EngineeringHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Department of Chemical EngineeringState University of New York College of Environmental Sciences and ForestrySyracuseNY13210USA
| | - Young‐Jae Kim
- Y&DK Co.Ltd169–148 Gwahak‐ro, Yuseong‐guDaejeon34133Republic of Korea
| | - Min‐Gap Bog
- Y&DK Co.Ltd169–148 Gwahak‐ro, Yuseong‐guDaejeon34133Republic of Korea
| | - Nithiyaa Bala Krishnan
- Bioprocessing technology instituteAgency for ScienceTechnology and Research (A*StAR)20 Biopolis Way, centros#06‐ 01Singapore138668Singapore
| | - Yi Yan Yang
- Bioprocessing technology instituteAgency for ScienceTechnology and Research (A*StAR)20 Biopolis Way, centros#06‐ 01Singapore138668Singapore
| | - Jon T. Njardarson
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Robert A. Norwood
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
- Department of Materials Science & EngineeringCollege of EngineeringUniversity of Arizona1235 James E. Rogers WayTucsonAZ85719USA
| | - Jeffrey Pyun
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
| |
Collapse
|
4
|
Hu X, Pollice L, Ronchi A, Roccanova M, Mauri M, Lardani D, Vanhecke D, Monguzzi A, Weder C. Confinement-Enhanced Multi-Wavelength Photon Upconversion Based on Triplet-Triplet Annihilation in Nanostructured Glassy Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415160. [PMID: 39950941 PMCID: PMC11984915 DOI: 10.1002/advs.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Indexed: 04/12/2025]
Abstract
Sensitized triplet-triplet annihilation photon upconversion (sTTA-UC) allows blue-shifting non-coherent low-intensity light and is potentially useful in solar-powered devices, bioimaging, 3D printing, and other applications. For technologically viable solar energy harvesting systems, solid materials that capture a large fraction of the solar spectrum and efficiently upconvert the absorbed energy must be developed. Here, it is shown that broadband-to-blue UC is possible in air-tolerant, easy-to-access, nanostructured polymers comprising a rigid hydrophilic matrix and liquid nanodroplets with dimensions on the order of tens of nanometers. The droplets contain 9,10-bis[(triisopropylsilyl)ethynyl] anthracene (TIPS-Ac) as emitter/annihilator and palladium(II) octaethyl porphyrin (PdOEP) and palladium(II) meso-tetraphenyl tetrabenzoporphine (PdTPBP) as sensitizers. The confinement of the three dyes in the liquid domains renders the various bimolecular energy transfer processes that are pivotal for the TIPS-Ac's triplet sensitization highly efficient, and the simultaneous use of multiple light harvesters with triplet energy levels resonant with the emitter/annihilator increases the absorption bandwidth to ca. 150 nm. The UC process at low power densities is most efficient when both sensitizers are simultaneously excited, thanks to their confinement in the nanodroplets, which leads to an increase in the triplet density, and therefore TTA rate and yield, optimizing the use of the harvested energy.
Collapse
Affiliation(s)
- Xueqian Hu
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Luca Pollice
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Alessandra Ronchi
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Marco Roccanova
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Michele Mauri
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Davide Lardani
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Dimitri Vanhecke
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| | - Angelo Monguzzi
- Dipartimento di Scienza dei MaterialiUniversità degli Studi Milano‐BicoccaVia Roberto Cozzi 55Milano20125Italy
| | - Christoph Weder
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
5
|
Jin P, Xu X, Yan Y, Hammecke H, Wang C. Luminescent Fe(III) Complex Sensitizes Aerobic Photon Upconversion and Initiates Photocatalytic Radical Polymerization. J Am Chem Soc 2024; 146:35390-35401. [PMID: 39658028 DOI: 10.1021/jacs.4c14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Light energy conversion often relies on photosensitizers with long-lived excited states, which are mostly made of precious metals such as ruthenium or iridium. Photoactive complexes based on highly abundant iron seem attractive for sustainable energy conversion, but this remains very challenging due to the short excited state lifetimes of the current iron complexes. This study shows that a luminescent Fe(III) complex sensitizes triplet-triplet annihilation upconversion with anthracene derivatives via underexplored doublet-triplet energy transfer, which is assisted by preassociation between the photosensitizer and the annihilator. In the presence of an organic mediator, the green-to-blue upconversion efficiency ΦUC with 9,10-diphenylanthracene (DPA) as the annihilator achieves a 6-fold enhancement to ∼0.2% in aerated solution at room temperature. The singlet excited state of DPA, accessed via photon upconversion in the Fe(III)/DPA pair, allows efficient photoredox catalytic radical polymerization of acrylate monomers in a spatially controlled manner, whereas this process is kinetically hindered with the prompt DPA. Our study provides a new strategy of using low-cost iron and low-energy visible light for efficient polymer synthesis, which is a significant step for both fundamental research and future applications.
Collapse
Affiliation(s)
- Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| | - Xinhuan Xu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, Osnabrück 49076, Germany
| |
Collapse
|
6
|
Aljuaid M, Chang Y, Haddleton DM, Wilson P, Houck HA. Thermoreversible [2 + 2] Photodimers of Monothiomaleimides and Intrinsically Recyclable Covalent Networks Thereof. J Am Chem Soc 2024; 146:19177-19182. [PMID: 38953610 PMCID: PMC11258687 DOI: 10.1021/jacs.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The development of intrinsically recyclable cross-linked materials remains challenged by the inherently unfavorable chemical equilibrium that dictates the efficiency of the reversible covalent bonding/debonding chemistry. Rather than having to (externally) manipulate the bonding equilibrium, we here introduce a new reversible chemistry platform based on monosubstituted thiomaleimides that can undergo complete and independent light-activated covalent bonding and on-demand thermal debonding above 120 °C. Specifically, repeated bonding/debonding of a small-molecule thiomaleimide [2 + 2] photodimer is demonstrated over five heat/light cycles with full conversion in both directions, thereby regenerating its initial monothiomaleimide constituents. This motivated the synthesis of multifunctional thiomaleimide reagents as precursors for the design of covalently cross-linked networks that display intrinsic switching between a monomeric and polymeric state. The resulting materials are shown to covalently dissociate and depolymerize upon heating both in solution and in bulk, thus transforming the densely photo-cross-linked material back into a viscous liquid. Temperature-regulated photorheology evidenced the intrinsic recyclability of the thiomaleimide-based thermosets during multiple cycles of UV cross-linking and thermal de-cross-linking. The thermally reversible photodimerization of thiomaleimides presents a new addition to the designer playground of dynamic polymer networks, providing interesting opportunities for the reprocessing and closed-loop recycling of covalently cross-linked materials.
Collapse
Affiliation(s)
- Mohammed Aljuaid
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
- Department
of Chemistry, Turabah University College,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yujing Chang
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Paul Wilson
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Hannes A. Houck
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Zeng J, Wu C, Zhan S, Liu Y. Tailoring upconversion fluorescence of lanthanide doped nanocrystals by coupling to single microcavity mode with specific symmetry. OPTICS EXPRESS 2024; 32:26500-26511. [PMID: 39538515 DOI: 10.1364/oe.519313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 11/16/2024]
Abstract
Lanthanide-doped upconversion nanoparticles have unique optical properties that can absorb low-energy infrared photons and then emit higher-energy visible ones, which have been widely used for advanced optical sensors and fluorescent probes. Efficiently tailoring the upconversion emission is desirable for meeting the wavelength requirement in various application fields. However, up to now, optimizing the composition combining with core/shell structure is still the predominant way to reach this goal. Here, we show that the relative intensities of the emission peaks of upconverting nanoparticles can be tuned by coupling to single microcavity mode with specific symmetry. Theoretical calculation based on the finite-difference time-domain (FDTD) indicates that the symmetries of the microcavity modes dominate their resonant absorption properties in the visible region. As a result, the upconversion emission peaks vary in these microcavities with different symmetries. This route can be developed for tailoring the emission spectra of other luminescent materials, such as quantum dots and fluorescent dyes.
Collapse
|
8
|
Wei S, Smith-Jones J, Lalisse RF, Hestenes JC, Chen D, Danielsen SPO, Bell RC, Churchill EM, Munich NA, Marbella LE, Gutierrez O, Rubinstein M, Nelson A, Campos LM. Light-Induced Living Polymer Networks with Adaptive Functional Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313961. [PMID: 38593210 PMCID: PMC11209791 DOI: 10.1002/adma.202313961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Indexed: 04/11/2024]
Abstract
The advent of covalent adaptable networks (CANs) through the incorporation of dynamic covalent bonds has led to unprecedented properties of macromolecular systems, which can be engineered at the molecular level. Among the various types of stimuli that can be used to trigger chemical changes within polymer networks, light stands out for its remote and spatiotemporal control under ambient conditions. However, most examples of photoactive CANs need to be transparent and they exhibit slow response, side reactions, and limited light penetration. In this vein, it is interesting to understand how molecular engineering of optically active dynamic linkages that offer fast response to visible light can impart "living" characteristics to CANs, especially in opaque systems. Here, the use of carbazole-based thiuram disulfides (CTDs) that offer dual reactivity as photoactivated reshuffling linkages and iniferters under visible light irradiation is reported. The fast response to visible light activation of the CTDs leads to temporal control of shape manipulation, healing, and chain extension in the polymer networks, despite the lack of optical transparency. This strategy charts a promising avenue for manipulating multifunctional photoactivated CANs in a controlled manner.
Collapse
Affiliation(s)
- Shixuan Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Julian Smith-Jones
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Julia C Hestenes
- Program of Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Danyang Chen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Scott P O Danielsen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Rowina C Bell
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Naiara A Munich
- Department of Chemistry, Barnard College, New York, NY, 10027, USA
| | - Lauren E Marbella
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Michael Rubinstein
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, 27708, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Departments of Chemistry, Biomedical Engineering, and Physics, Duke University, Durham, NC, 27708, USA
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
9
|
He Q, Wei L, He C, Yang C, Wu W. Supramolecular Annihilator with DPA Parallelly Arranged by Multiple Hydrogen-Bonding Interactions for Enhanced Triplet-Triplet Annihilation Upconversion. Molecules 2024; 29:2203. [PMID: 38792064 PMCID: PMC11124113 DOI: 10.3390/molecules29102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The triplet annihilator is a critical component for triplet-triplet annihilation upconversion (TTA-UC); both the photophysical properties of the annihilator and the intermolecular orientation have pivotal effects on the overall efficiency of TTA-UC. Herein, we synthesized two supramolecular annihilators A-1 and A-2 by grafting 9,10-diphenylanthracene (DPA) fragments, which have been widely used as triplet annihilators for TTA-UC, on a macrocyclic host-pillar[5]arenes. In A-1, the orientation of the two DPA units was random, while, in A-2, the two DPA units were pushed to a parallel arrangement by intramolecular hydrogen-bonding interactions. The two compounds showed very similar photophysical properties and host-guest binding affinities toward electron-deficient guests, but showed totally different TTA-UC emissions. The UC quantum yield of A-2 could be optimized to 13.7% when an alkyl ammonia chain-attaching sensitizer S-2 was used, while, for A-1, only 5.1% was achieved. Destroying the hydrogen-bonding interactions by adding MeOH to A-2 significantly decreased the UC emissions, demonstrating that the parallel orientations of the two DPA units contributed greatly to the TTA-UC emissions. These results should be beneficial for annihilator designs and provide a new promising strategy for enhancing TTA-UC emissions.
Collapse
Affiliation(s)
| | | | | | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China; (Q.H.); (L.W.); (C.H.)
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China; (Q.H.); (L.W.); (C.H.)
| |
Collapse
|
10
|
Li A, Wei X, Xie Y, Ren Y, Zhu X, Liu M, Liu S. Light exposure and its applications in human health. JOURNAL OF BIOPHOTONICS 2024; 17:e202400023. [PMID: 38576140 DOI: 10.1002/jbio.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.
Collapse
Affiliation(s)
- Angze Li
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yajia Xie
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xi Zhu
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Huang L, Han G. Triplet-triplet annihilation photon upconversion-mediated photochemical reactions. Nat Rev Chem 2024; 8:238-255. [PMID: 38514833 DOI: 10.1038/s41570-024-00585-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Photon upconversion is a method for harnessing high-energy excited states from low-energy photons. Such photons, particularly in the red and near-infrared wavelength ranges, can penetrate tissue deeply and undergo less competitive absorption in coloured reaction media, enhancing the efficiency of large-scale reactions and in vivo phototherapy. Among various upconversion methodologies, the organic-based triplet-triplet annihilation upconversion (TTA-UC) stands out - demonstrating high upconversion efficiencies, requiring low excitation power densities and featuring tunable absorption and emission wavelengths. These factors contribute to improved photochemical reactions for fields such as photoredox catalysis, photoactivation, 3D printing and immunotherapy. In this Review, we explore concepts and design principles of organic TTA-UC-mediated photochemical reactions, highlighting notable advancements in the field, as well as identify challenges and propose potential solutions. This Review sheds light on the potential of organic TTA-UC to advance beyond the traditional photochemical reactions and paves the way for research in various fields and clinical applications.
Collapse
Affiliation(s)
- Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
O’Dea C, Isokuortti J, Comer EE, Roberts ST, Page ZA. Triplet Upconversion under Ambient Conditions Enables Digital Light Processing 3D Printing. ACS CENTRAL SCIENCE 2024; 10:272-282. [PMID: 38435512 PMCID: PMC10906251 DOI: 10.1021/acscentsci.3c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 03/05/2024]
Abstract
The rapid photochemical conversion of materials from liquid to solid (i.e., curing) has enabled the fabrication of modern plastics used in microelectronics, dentistry, and medicine. However, industrialized photocurables remain restricted to unimolecular bond homolysis reactions (Type I photoinitiations) that are driven by high-energy UV light. This narrow mechanistic scope both challenges the production of high-resolution objects and restricts the materials that can be produced using emergent manufacturing technologies (e.g., 3D printing). Herein we develop a photosystem based on triplet-triplet annihilation upconversion (TTA-UC) that efficiently drives a Type I photocuring process using green light at low power density (<10 mW/cm2) and in the presence of ambient oxygen. This system also exhibits a superlinear dependence of its cure depth on the light exposure intensity, which enhances spatial resolution. This enables for the first-time integration of TTA-UC in an inexpensive, rapid, and high-resolution manufacturing process, digital light processing (DLP) 3D printing. Moreover, relative to traditional Type I and Type II (photoredox) strategies, the present TTA-UC photoinitiation method results in improved cure depth confinement and resin shelf stability. This report provides a user-friendly avenue to utilize TTA-UC in ambient photochemical processes and paves the way toward fabrication of next-generation plastics with improved geometric precision and functionality.
Collapse
Affiliation(s)
- Connor
J. O’Dea
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Jussi Isokuortti
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Emma E. Comer
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Sean T. Roberts
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| | - Zachariah A. Page
- Department of Chemistry, The
University of Texas at Austin, Austin, Texas 78712 ,United States
| |
Collapse
|
13
|
Zhang Y, Du W, Liu X. Photophysics and its application in photon upconversion. NANOSCALE 2024; 16:2747-2764. [PMID: 38250819 DOI: 10.1039/d3nr05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) upconversion is a phenomenon involving light-matter interaction, where the energy of the emitted photons is higher than that of the incident photons. PL upconversion has promising applications in optoelectronic devices, displays, photovoltaics, imaging, diagnosis and treatment. In this review, we summarize the mechanism of PL upconversion and ultrafast PL physical processes. In particular, we highlight the advances in laser cooling, biological imaging, volumetric displays and photonics.
Collapse
Affiliation(s)
- Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Gilligan AT, Owens R, Miller EG, Pompetti NF, Damrauer NH. Enhancing NIR-to-visible upconversion in a rigidly coupled tetracene dimer: approaching statistical limits for triplet-triplet annihilation using intramolecular multiexciton states. Chem Sci 2024; 15:1283-1296. [PMID: 38274080 PMCID: PMC10806848 DOI: 10.1039/d3sc04795d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Important applications of photon upconversion through triplet-triplet annihilation require conversion of near-IR photons to visible light. Generally, however, efficiencies in this spectral region lag behind bluer analogues. Herein we consider potential benefits from a conformationally well-defined covalent dimer annihilator TIPS-BTX in studies that systematically compare function to a related monomer model TIPS-tetracene (TIPS-Tc). TIPS-BTX exhibits weak electronic coupling between chromophores juxtaposed about a polycyclic bridge. We report an upconversion yield ϕUC for TIPS-BTX that is more than 20× larger than TIPS-Tc under comparable conditions (0.16%). While the dimer ϕUC is low compared to bluer champion systems, this yield is amongst the largest so-far reported for a tetracenic dimer system and is achieved under unoptimized conditions suggesting a significantly higher ceiling. Further investigation shows the ϕUC enhancement for the dimer is due exclusively to the TTA process with an effective yield more that 30× larger for TIPS-BTX compared to TIPS-Tc. The ϕTTA enhancement for TIPS-BTX relative to TIPS-Tc is indicative of participation by intramolecular multiexciton states with evidence presented in spin statistical arguments that the 5TT is involved in productive channels. For TIPS-BTX we report a spin-statistical factor f = 0.42 that matches or exceeds values found in champion annihilator systems such as DPA. At the same time, the poor relative efficiency of TIPS-Tc suggests involvement of non-productive bimolecular channels and excimeric states are suspected. Broadly these studies indicate that funneling of photogenerated electronic states into productive pathways, and avoiding parasitic ones, remains central to the development of champion upconversion systems.
Collapse
Affiliation(s)
- Alexander T Gilligan
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Raythe Owens
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Ethan G Miller
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Nicholas F Pompetti
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder Boulder Colorado 80309 USA
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder Boulder Colorado 80309 USA
| |
Collapse
|
15
|
Kuang X, Rong Q, Belal S, Vu T, López AML, Wang N, Arıcan MO, Garciamendez-Mijares CE, Chen M, Yao J, Zhang YS. Self-enhancing sono-inks enable deep-penetration acoustic volumetric printing. Science 2023; 382:1148-1155. [PMID: 38060634 PMCID: PMC11034850 DOI: 10.1126/science.adi1563] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/13/2023] [Indexed: 04/24/2024]
Abstract
Volumetric printing, an emerging additive manufacturing technique, builds objects with enhanced printing speed and surface quality by forgoing the stepwise ink-renewal step. Existing volumetric printing techniques almost exclusively rely on light energy to trigger photopolymerization in transparent inks, limiting material choices and build sizes. We report a self-enhancing sonicated ink (or sono-ink) design and corresponding focused-ultrasound writing technique for deep-penetration acoustic volumetric printing (DAVP). We used experiments and acoustic modeling to study the frequency and scanning rate-dependent acoustic printing behaviors. DAVP achieves the key features of low acoustic streaming, rapid sonothermal polymerization, and large printing depth, enabling the printing of volumetric hydrogels and nanocomposites with various shapes regardless of their optical properties. DAVP also allows printing at centimeter depths through biological tissues, paving the way toward minimally invasive medicine.
Collapse
Affiliation(s)
- Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Qiangzhou Rong
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Saud Belal
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Alice M. López López
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Nanchao Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mehmet Onur Arıcan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
He G, Parenti KR, Budden PJ, Niklas J, Macdonald T, Kumarasamy E, Chen X, Yin X, McCamey DR, Poluektov OG, Campos LM, Sfeir MY. Unraveling Triplet Formation Mechanisms in Acenothiophene Chromophores. J Am Chem Soc 2023; 145:22058-22068. [PMID: 37787467 DOI: 10.1021/jacs.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter J Budden
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas Macdonald
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xing Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
17
|
Zeppuhar AN, Falvey DE. Lamp vs Laser: A Visible Light Photoinitiator That Promotes Radical Polymerization at Low Intensities and Cationic Polymerization at High Intensities. J Org Chem 2023. [PMID: 37418315 DOI: 10.1021/acs.joc.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A visible light absorbing anthraquinone derivative 1-tosyloxy-2-methoxy-9,10-anthraquinone (QT) mediates both cationic and radical polymerizations depending on the intensity of visible light used. A previous study showed that this initiator generates para-toluenesulfonic acid through a stepwise, two-photon excitation mechanism. Thus, under high-intensity irradiation, QT generates acid in sufficient quantities to catalyze the cationic ring-opening polymerization of lactones. However, under low-intensity (lamp) conditions, the two-photon process is negligible, and QT photooxidizes DMSO, generating methyl radicals which initiate the RAFT polymerization of acrylates. This dual capability was utilized to switch between radical and cationic polymerizations to synthesize a copolymer using a one-pot procedure.
Collapse
Affiliation(s)
- Andrea N Zeppuhar
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|