1
|
Kim S, Kim DI, Yeo HG, Lee G, Kim JY, Choi H. Localized ultrasonic stimulation using a piezoelectric micromachined ultrasound transducer array for selective neural differentiation of magnetic cell-based robots. MICROSYSTEMS & NANOENGINEERING 2025; 11:52. [PMID: 40113763 PMCID: PMC11926166 DOI: 10.1038/s41378-025-00900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Targeted stem cell delivery utilizing a magnetic actuation system is an emerging technology in stem cell engineering that efficiently targets stem cells in specific areas in vitro. However, integrating precise magnetic control systems with selective neural differentiation has not yet been widely considered for building successful neural networks. Challenges arise in creating targeted functional neuronal networks, largely due to difficulties in simultaneously controlling the positions of stem cells and selectively stimulating their differentiation. These challenges often result in suboptimal differentiation rates and abnormalities in transplanted neural stem cells. In contrast, ultrasound stimulation has superior tissue penetration and focusing capability, and represents a promising noninvasive neural stimulation technique capable of modulating neural activity and promoting selective differentiation into neuronal stem cells. In this study, we introduce a method for targeted neural differentiation using localized ultrasonic stimulation with a piezoelectric micromachined ultrasound transducer (pMUT) array. Differentiation was assessed quantitatively by monitoring neurite outgrowth as the ultrasound intensity was increased. The neurite length of cells ultrasonically stimulated for 40 min was found to have increased, compared to the non-stimulated group (119.9 ± 34.3 μm vs. 63.2 ± 17.3 μm, respectively). Targeted differentiation was confirmed by measuring neurite lengths, where selective ultrasound stimulation induced differentiation in cells that were precisely delivered via an electromagnetic system. Magnetic cell-based robots reaching the area of localized ultrasound stimulation were confirmed to have enhanced differentiation. This research demonstrated the potential of the combination of precise stem cell delivery with selective neural differentiation to establish functional neural networks.
Collapse
Affiliation(s)
- Seonhyoung Kim
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Dong-In Kim
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Hong Goo Yeo
- Department of Advanced Materials Engineering, Sun Moon University, Asan-si, 31460, Republic of Korea
| | - Gyudong Lee
- Division of Nanotechnology, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, Republic of Korea
| | - Jin-Young Kim
- Division of Biotechnology, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics & Mechatronics Engineering, Daegu Gyeongbuk Institute Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, Daegu, 42988, Republic of Korea.
| |
Collapse
|
2
|
Wang H, Xiong J, Cai Y, Fu W, Zhong Y, Jiang T, Cheang UK. Stabilization of CsPbBr 3 Nanowires Through SU-8 Encapsulation for the Fabrication of Bilayer Microswimmers with Magnetic and Fluorescence Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400346. [PMID: 38958090 DOI: 10.1002/smll.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Indexed: 07/04/2024]
Abstract
All-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals have drawn great interest because of their excellent photophysical properties and potential applications. However, their poor stability in water greatly limited their use in applications that require stable structures. In this work, a facile approach to stabilize CsPbBr3 nanowires is developed by using SU-8 as a protection medium; thereby creating stable CsPbBr3/SU-8 microstructures. Through photolithography and layer-by-layer deposition, CsPbBr3/SU-8 is used to fabricate bilayer achiral microswimmers (BAMs), which consist of a top CsPbBr3/SU-8 layer and a bottom Fe3O4 magnetic layer. Compared to pure CsPbBr3 nanowires, the CsPbBr3/SU-8 shows long-term structural and fluorescence stability in water against ultrasonication treatment. Due to the magnetic layer, the motion of the microswimmers can be controlled precisely under a rotating magnetic field, allowing them to swim at low Reynolds number and tumble or roll on surfaces. Furthermore, CsPbBr3/SU-8 can be used to fabricate various types of planar microstructures with high throughput, high consistency, and fluorescence properties. This work provides a method for the stabilization of CsPbBr3 and demonstrates the potential to mass fabricate planar microstructures with various shapes, which can be used in different applications such as microrobotics.
Collapse
Affiliation(s)
- Haoying Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junfeng Xiong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhen Cai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Fu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Teng Jiang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wu J, Jiao N, Lin D, Li N, Ma T, Tung S, Cheng W, Wu A, Liu L. Dual-Responsive Nanorobot-Based Marsupial Robotic System for Intracranial Cross-Scale Targeting Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306876. [PMID: 37899660 DOI: 10.1002/adma.202306876] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Indexed: 10/31/2023]
Abstract
Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.
Collapse
Affiliation(s)
- Junfeng Wu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyang Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Arkansas, 72701, USA
| | - Wen Cheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Anhua Wu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
4
|
Xia B, Gao X, Qian J, Li S, Yu B, Hao Y, Wei B, Ma T, Wu H, Yang S, Zheng Y, Gao X, Guo L, Gao J, Yang Y, Zhang Y, Wei Y, Xue B, Jin Y, Luo Z, Zhang J, Huang J. A Novel Superparamagnetic Multifunctional Nerve Scaffold: A Remote Actuation Strategy to Boost In Situ Extracellular Vesicles Production for Enhanced Peripheral Nerve Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305374. [PMID: 37652460 DOI: 10.1002/adma.202305374] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Extracellular vesicles (EVs) have inherent advantages over cell-based therapies in regenerative medicine because of their cargos of abundant bioactive cues. Several strategies are proposed to tune EVs production in vitro. However, it remains a challenge for manipulation of EVs production in vivo, which poses significant difficulties for EVs-based therapies that aim to promote tissue regeneration, particularly for long-term treatment of diseases like peripheral neuropathy. Herein, a superparamagnetic nanocomposite scaffold capable of controlling EVs production on-demand is constructed by incorporating polyethyleneglycol/polyethyleneimine modified superparamagnetic nanoparticles into a polyacrylamide/hyaluronic acid double-network hydrogel (Mag-gel). The Mag-gel is highly sensitive to a rotating magnetic field (RMF), and can act as mechano-stimulative platform to exert micro/nanoscale forces on encapsulated Schwann cells (SCs), an essential glial cell in supporting nerve regeneration. By switching the ON/OFF state of the RMF, the Mag-gel can scale up local production of SCs-derived EVs (SCs-EVs) both in vitro and in vivo. Further transcriptome sequencing indicates an enrichment of transcripts favorable in axon growth, angiogenesis, and inflammatory regulation of SCs-EVs in the Mag-gel with RMF, which ultimately results in optimized nerve repair in vivo. Overall, this research provides a noninvasive and remotely time-scheduled method for fine-tuning EVs-based therapies to accelerate tissue regeneration, including that of peripheral nerves.
Collapse
Affiliation(s)
- Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xue Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jiaqi Qian
- College of Chemical Engineering, Fuzhou University, Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Beibei Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710032, P. R. China
| | - Yiming Hao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Bin Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Haining Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shijie Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710032, P. R. China
| | - Yi Zheng
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xueli Gao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lingli Guo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jianbo Gao
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yujie Yang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yongfeng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710032, P. R. China
| | - Yitao Wei
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Borui Xue
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
5
|
Lee J, Song HW, Nguyen KT, Kim S, Nan M, Park JO, Go G, Choi E. Magnetically Actuated Microscaffold with Controllable Magnetization and Morphology for Regeneration of Osteochondral Tissue. MICROMACHINES 2023; 14:434. [PMID: 36838133 PMCID: PMC9959313 DOI: 10.3390/mi14020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Magnetic microscaffolds capable of targeted cell delivery have been developed for tissue regeneration. However, the microscaffolds developed so far with similar morphologies have limitations for applications to osteochondral disease, which requires simultaneous treatment of the cartilage and subchondral bone. This study proposes magnetically actuated microscaffolds tailored to the cartilage and subchondral bone for osteochondral tissue regeneration, named magnetically actuated microscaffolds for cartilage regeneration (MAM-CR) and for subchondral bone regeneration (MAM-SBR). The morphologies of the microscaffolds were controlled using a double emulsion and microfluidic flow. In addition, due to their different sizes, MAM-CR and MAM-SBR have different magnetizations because of the different amounts of magnetic nanoparticles attached to their surfaces. In terms of biocompatibility, both microscaffolds were shown to grow cells without toxicity as potential cell carriers. In magnetic actuation tests of the microscaffolds, the relatively larger MAM-SBR moved faster than the MAM-CR under the same magnetic field strength. In a feasibility test, the magnetic targeting of the microscaffolds in 3D knee cartilage phantoms showed that the MAM-SBR and MAM-CR were sequentially moved to the target sites. Thus, the proposed magnetically actuated microscaffolds provide noninvasive treatment for osteochondral tissue disease.
Collapse
Affiliation(s)
- Junhyeok Lee
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Hyeong-Woo Song
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Kim Tien Nguyen
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Seokjae Kim
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Minghui Nan
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Jong-Oh Park
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Gwangjun Go
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Robot Research Initiative, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Republic of Korea
| |
Collapse
|