1
|
Johnson F, Rendell-Bhatti F, Esser BD, Hussey A, McComb DW, Zemen J, Boldrin D, Cohen LF. The Impact of Local Strain Fields in Noncollinear Antiferromagnetic Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401180. [PMID: 38618946 DOI: 10.1002/adma.202401180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect.
Collapse
Affiliation(s)
- Freya Johnson
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | | | - Bryan D Esser
- Monash Centre for Electron Microscopy, Monash University, Melbourne, 3800, Australia
| | - Aisling Hussey
- School of Physics, CRANN and AMBER, Trinity College Dublin, Dublin, D02PN40, Ireland
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - Jan Zemen
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague, 160 00 Praha 6, Czech Republic
| | - David Boldrin
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lesley F Cohen
- Department of Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Hu S, Qiu X, Pan C, Zhu W, Guo Y, Shao DF, Yang Y, Zhang D, Jiang Y. Frontiers in all electrical control of magnetization by spin orbit torque. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:253001. [PMID: 38467073 DOI: 10.1088/1361-648x/ad3270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Achieving all electrical control of magnetism without assistance of an external magnetic field has been highly pursued for spintronic applications. In recent years, the manipulation of magnetic states through spin-orbit torque (SOT) has emerged as a promising avenue for realizing energy-efficient spintronic memory and logic devices. Here, we provide a review of the rapidly evolving research frontiers in all electrical control of magnetization by SOT. The first part introduces the SOT mechanisms and SOT devices with different configurations. In the second part, the developments in all electrical SOT control of magnetization enabled by spin current engineering are introduced, which include the approaches of lateral symmetry breaking, crystalline structure engineering of spin source material, antiferromagnetic order and interface-generated spin current. The third part introduces all electrical SOT switching enabled by magnetization engineering of the ferromagnet, such as the interface/interlayer exchange coupling and tuning of anisotropy or magnetization. At last, we provide a summary and future perspectives for all electrical control of magnetization by SOT.
Collapse
Affiliation(s)
- Shuai Hu
- Institute of Quantum Materials and Devices, School of Electronic and Information Engineering; State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xuepeng Qiu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Chang Pan
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Wei Zhu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Yandong Guo
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Ding-Fu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Yumeng Yang
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Delin Zhang
- Institute of Quantum Materials and Devices, School of Electronic and Information Engineering; State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, People's Republic of China
| | - Yong Jiang
- Institute of Quantum Materials and Devices, School of Electronic and Information Engineering; State Key Laboratory of Separation Membrane and Membrane Processes, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
3
|
Sattigeri RM, Cuono G, Autieri C. Altermagnetic surface states: towards the observation and utilization of altermagnetism in thin films, interfaces and topological materials. NANOSCALE 2023; 15:16998-17005. [PMID: 37831060 DOI: 10.1039/d3nr03681b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The altermagnetism influences the electronic states allowing the presence of non-relativistic spin-splittings. Since altermagnetic spin-splitting is present along specific k-paths of the 3D Brillouin zone, we expect that the altermagnetic surface stateswill be present on specific surface orientations. We unveil the properties of the altermagnetic surface states considering three representative materials belonging to the orthorhombic, hexagonal and tetragonal space groups. We calculate the 2D projected Brillouin zone from the 3D Brillouin zone. We study the surfaces with their respective 2D Brillouin zones establishing where the spin-splittings with opposite sign merge annihilating the altermagnetic properties and on which surfaces the altermagnetism is preserved. Looking at the three principal surface orientations, we find that for several cases two surfaces are blind to the altermagnetism, while the altermagnetism survives for one surface orientation. Which surface preserves the altermagnetism depends also on themagnetic order. We qualitatively show that an electric field orthogonal to the blind surface can activate the altermagnetism. Our projection method was proven for strong altermagnetism, but it will be equivalently valid for recently discovered weak altermagnetism. Our results predict which surfaces to cleave in order to preserve altermagnetism in surfaces or interfaces and this paves the way to observe non-relativistic altermagnetic spin-splitting in thin films via spin-resolved ARPES and to interface the altermagnetism with other collective modes. We open future perspectives for the study of altermagnetic effects on the trivial and topological surface states.
Collapse
Affiliation(s)
- Raghottam M Sattigeri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
| | - Giuseppe Cuono
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
| | - Carmine Autieri
- International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
| |
Collapse
|
4
|
Qin P, Zhou X, Liu L, Meng Z, Yan H, Chen H, Wang X, Wu X, Liu Z. Antiferromagnetic spintronics: towards high-density and ultrafast information technology. Sci Bull (Beijing) 2023:S2095-9273(23)00278-5. [PMID: 37127488 DOI: 10.1016/j.scib.2023.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Peixin Qin
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaorong Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Li Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ziang Meng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Han Yan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Hongyu Chen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaoning Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiaojun Wu
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| | - Zhiqi Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|