1
|
Cazorla A, Delgado ÁV, Jiménez ML. Emergent localization phenomena in polymer-induced orientation in confined spherical compartments. Phys Rev E 2025; 111:L043403. [PMID: 40411029 DOI: 10.1103/physreve.111.l043403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/27/2025] [Indexed: 05/26/2025]
Abstract
In nanomaterials and microreactor technology, the intricate phenomena of localization, that is, the inhomogeneous spatial distribution of a physical property, serve as a booster for advancing innovative applications. In this work, we show from simple physical arguments that such spatial segregation can be spontaneously produced in mixtures of silver nanowires and DNA solution confined inside microdroplets. In particular, a reversible quadrupolar redistribution of the particles can be obtained by applying low frequency electric fields. As a consequence, the localization of the electro-orientation of the particles appears, which is induced by the interplay between the steric repulsion of the nanowires, the electrically stretched DNA coils, and the microdroplet wall, together with the DNA mediated depletion effects. We show, both experimentally and via Monte Carlo simulations, that particle segregation results in a decrease of the overall particle alignment.
Collapse
Affiliation(s)
- Ana Cazorla
- University of Granada, Deparment of Applied Physics, Avda. Fuente Nueva sn, 18071 Granada, Spain
| | - Ángel V Delgado
- University of Granada, Deparment of Applied Physics, Avda. Fuente Nueva sn, 18071 Granada, Spain
| | - María L Jiménez
- University of Granada, Deparment of Applied Physics, Avda. Fuente Nueva sn, 18071 Granada, Spain
| |
Collapse
|
2
|
Chen Q, Huang J, Feng X, Xie H, Zhou S. Controlling Self-Oscillation of a Single-Layer Liquid Crystal Elastomer at the Air-Water Interface via Light Programming for Water Strider-Inspired Aquatic Robots. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17433-17444. [PMID: 40042360 DOI: 10.1021/acsami.5c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Biomimicking aquatic organisms offers many opportunities for designing intelligent robots that can freely move on water. However, most works were focused on multilayered materials or assembled structures and faced limitations in stability, versatility, and motion navigation. Here, we develop an assembly-free water-strider-like aquatic robot using a single layer of light-programmable liquid-crystal elastomer (LCE) that could be used to create asymmetric structures. The LCE strider mimics both the shape and functions of natural water striders; it is designed with four legs, with the fore and hind legs being programmed respectively via light. Consequently, the LCE strider shows self-oscillation and self-propulsion behaviors on low-grade thermal water with a temperature gradient at the air-water interface, owing to unbalanced changes in the contact areas and tensions between the legs and water. Furthermore, the trajectories of the LCE strider are manipulated by NIR light after selectively depositing polydopamine with photothermal conversion. In this way, path navigation is realized, that is, moving straight and on-demand turning, similar to the movement of natural water striders. This study should inspire the development of soft intelligent robots using shape-morphing materials.
Collapse
Affiliation(s)
- Qiuyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinhui Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xinran Feng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hui Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
3
|
Zeng F, Wu J, Hua Z, Liu G. Complementary Nucleobase-Containing Double-Network Elastomers with High Energy Dissipation and Room-Temperature Fast Recovery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411446. [PMID: 39670704 DOI: 10.1002/smll.202411446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/14/2024]
Abstract
Elastomers have been widely employed in various industrial products such as tires, actuators, dampers, and sealants. While various methods have been developed to strengthen elastomers, achieving continuously high energy dissipation with fast room-temperature recovery remains challenging, prompting the need for further structural optimization. Herein, high energy dissipated and fast recoverable double-network (DN) elastomers are fabricated, in which the supramolecular polymers of complementary adenine and thymine serve as the first network and the covalently cross-linked soft polymer as the second network. Both networks are efficiently prepared via photopolymerization. The resulting DN elastomer displays high energy dissipation and room temperature fast recovery, which can be attributed to the good independence of supramolecular and covalent networks. Furthermore, it is demonstrated that the DN elastomer can be exploited as excellent cushioning materials under continuous impacts. This work presents a feasible avenue for fabricating DN elastomers with high energy dissipation and fast recovery based on the multiple hydrogen bonds of complementary nucleobases.
Collapse
Affiliation(s)
- Fanxuan Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Yang Z, Yang Y, Liang H, He E, Xu H, Liu Y, Wang Y, Wei Y, Ji Y. Robust liquid crystal semi-interpenetrating polymer network with superior energy-dissipation performance. Nat Commun 2024; 15:9902. [PMID: 39548105 PMCID: PMC11568150 DOI: 10.1038/s41467-024-54233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Liquid crystal networks (LCN) have attracted surging interest as extraordinary energy-dissipation materials owning to their unique dissipation mechanism based on the re-orientation of mesogens. However, how to integrate high Young's modulus, good dissipation efficiency and wide effective damping temperature range in energy-dissipation LCN remains a challenge. Here, we report a strategy to resolve this challenge by fabricating robust energy-dissipation liquid crystal semi-interpenetrating polymer network (LC-semi-IPN) consisting crystalline LC polymers (c-LCP). LC-semi-IPN demonstrates a superior synergistic performance in both mechanical and energy-dissipation properties, surpassing all currently reported LCNs. The crystallinity of c-LCP endows LC-semi-IPN with a substantial leap in Young's modulus (1800% higher than single network). The chain reptation of c-LCP also promotes an enhanced dissipation efficiency of LC-semi-IPN by 200%. Moreover, its effective damping temperature reaches up to 130 °C, which is the widest reported for LCNs. By leveraging its exceptional synergistic performance, LC-semi-IPN can be further utilized as a functional architected structure with exceptional energy-dissipation density and deformation-resistance.
Collapse
Affiliation(s)
- Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yixuan Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, 32023, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Zhang X, Zhou Y, Han M, Zheng Y, Liu J, Bao Y, Shan G, Yu C, Pan P. Non-monotonic Information and Shape Evolution of Polymers Enabled by Spatially Programmed Crystallization and Melting. CHEM & BIO ENGINEERING 2024; 1:790-797. [PMID: 39974185 PMCID: PMC11792907 DOI: 10.1021/cbe.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 02/21/2025]
Abstract
Stimuli-responsive polymer materials are a kind of intelligent material which can sense and respond to external stimuli. However, most current stimuli-responsive polymers only exhibit a monotonic response to a single constant stimulus but cannot achieve dynamic evolution. Herein, we report a method to achieve a non-monotonic response under a single stimulus by regionalizing the crystallization and melting kinetics in semicrystalline polymers. Based on the influence of cross-linking on the crystallization and melting kinetics of polymers, we employ light to spatially regulate the cross-linking degree in polymers. The prepared material can realize the self-evolved encryption of pattern information and the non-monotonic shape evolution without complex multiple stimuli. By combination of pattern and shape evolution, the coupled encryption of shape and pattern can be achieved. This approach empowers polymers with the ability to evolve under constant stimulus, offering insights into the functional design of polymer materials.
Collapse
Affiliation(s)
- Xing Zhang
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yichen Zhou
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mengzhe Han
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Zheng
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Junfeng Liu
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Yongzhong Bao
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Guorong Shan
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Chengtao Yu
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| | - Pengju Pan
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute
of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, China
| |
Collapse
|
6
|
Xu Z, Zhu Y, Ai Y, Zhou D, Wu F, Li C, Chen L. Programmable, Self-Healable, and Photochromic Liquid Crystal Elastomers Based on Dynamic Hindered Urea Bonds for Biomimetic Flowers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400520. [PMID: 38733234 DOI: 10.1002/smll.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Indexed: 05/13/2024]
Abstract
Recently, researchers have been exploring the use of dynamic covalent bonds (DCBs) in the construction of exchangeable liquid crystal elastomers (LCEs) for biomimetic actuators and devices. However, a significant challenge remains in achieving LCEs with both excellent dynamic properties and superior mechanical strength and stability. In this study, a diacrylate-functionalized monomer containing dynamic hindered urea bonds (DA-HUB) is employed to prepare exchangeable LCEs through a self-catalytic Michael addition reaction. By incorporating DA-HUB, the LCE system benefits from DCBs and hydrogen bonding, leading to materials with high mechanical strength and a range of dynamic properties such as programmability, self-healing, and recyclability. Leveraging these characteristics, bilayer LCE actuators with controlled reversible thermal deformation and outstanding dimensional stability are successfully fabricated using a simple welding method. Moreover, a biomimetic triangular plum, inspired by the blooming of flowers, is created to showcase reversible color and shape changes triggered by light and heat. This innovative approach opens new possibilities for the development of biomimetic and smart actuators and devices with multiple functionalities.
Collapse
Affiliation(s)
- Zhentian Xu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangyang Zhu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yun Ai
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Feiyan Wu
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chunquan Li
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lie Chen
- College of Chemistry and Chemical Engineering/ Institute of Polymers and Energy Chemistry (IPEC)/ the School of Information Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
7
|
Xu H, Liang H, Yang Y, Liu Y, He E, Yang Z, Wang Y, Wei Y, Ji Y. Rejuvenating liquid crystal elastomers for self-growth. Nat Commun 2024; 15:7381. [PMID: 39191791 DOI: 10.1038/s41467-024-51544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
To date, only one polymer can self-grow to an extended length beyond its original size at room temperature without external stimuli or energy input. This breakthrough paves the way for significant advancements in untethered autonomous soft robotics, eliminating the need for the energy input or external stimuli required by all existing soft robotics systems. However, only freshly prepared samples in an initial state can self-grow, while non-fresh ones cannot. The necessity of synthesizing from monomers for each use imposes significant limitations on practical applications. Here, we propose a strategy to rejuvenate non-fresh samples to their initial state for on-demand self-growth through the synergistic effects of solvents and dynamic covalent bonds during swelling. The solvent used for swelling physically transforms the non-fresh LCEs from the liquid crystal phase to the isotropic phase. Simultaneously, the introduction of the transesterification catalyst through swelling facilitates topological rearrangements through exchange reactions of dynamic covalent bonds. The rejuvenation process can also erase growth history, be repeated several times, and be regulated by selective swelling. This strategy provides a post-modulation method for the rejuvenation and reuse of self-growing LCEs, promising to offer high-performance materials for cutting-edge soft growing robotics.
Collapse
Affiliation(s)
- Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yixuan Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Taiwan, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Tian Y, Xu Z, Qi H, Lu X, Jiang T, Wang L, Zhang G, Xiao R, Wu H. Magnetic-field induced shape memory hydrogels for deformable actuators. SOFT MATTER 2024; 20:5314-5323. [PMID: 38712600 DOI: 10.1039/d4sm00248b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Magnetic hydrogel actuators exhibit promising applications in the fields of soft robotics, bioactuators, and flexible sensors owing to their inherent advantages such as remote control capability, untethered deformation and motion control, as well as easily manipulable behavior. However, it is still a challenge for magnetic hydrogels to achieve adjustable stiffness and shape fixation under magnetic field actuation deformation. Herein, a simple and effective approach is proposed for the design of magnetic shape memory hydrogels to accomplish this objective. The magnetic shape memory hydrogels, consisting of methacrylamide, methacrylic acid, polyvinyl alcohol and Fe3O4 magnetic particles, which crosslinked by hydrogen bonds, are facilely prepared via one-pot polymerization. The dynamic nature of noncovalent bonds offers the magnetic hydrogels with excellent mechanical properties, precisely controlled stiffness, and effective shape fixation. The presence of Fe3O4 particles renders the hydrogels soft when subjected to an alternating current field, facilitating their deformation under the influence of an actuation magnetic field. After the elimination of the alternating current magnetic field, the hydrogels stiffen and attain a fixed actuated shape in the absence of any external magnetic field. Moreover, this remarkable magnetic shape memory hydrogel is effectively employed as an underwater soft gripper for lifting heavy objects. This work provides a novel strategy for fabricating magnetic hydrogels with non-contact reversible actuation deformation, tunable stiffness and shape locking.
Collapse
Affiliation(s)
- Ye Tian
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Zhirui Xu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Hao Qi
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Xiaojun Lu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Ting Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| | - Liqian Wang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
| | - Guang Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
| | - Huaping Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National "2011 Plan"), Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
9
|
Liang H, Zhang Y, He E, Yang Y, Liu Y, Xu H, Yang Z, Wang Y, Wei Y, Ji Y. "Cloth-to-Clothes-Like" Fabrication of Soft Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400286. [PMID: 38722690 DOI: 10.1002/adma.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Inspired by adaptive natural organisms and living matter, soft actuators appeal to a variety of innovative applications such as soft grippers, artificial muscles, wearable electronics, and biomedical devices. However, their fabrication is typically limited in laboratories or a few enterprises since specific instruments, strong stimuli, or specialized operation skills are inevitably involved. Here a straightforward "cloth-to-clothes-like" method to prepare soft actuators with a low threshold by combining the hysteretic behavior of liquid crystal elastomers (LCEs) with the exchange reaction of dynamic covalent bonds, is proposed. Due to the hysteretic behavior, the LCEs (resemble "cloth") effectively retain predefined shapes after stretching and releasing for extended periods. Subsequently, the samples naturally become soft actuators (resemble "clothes") via the exchange reaction at ambient temperatures. As a post-synthesis method, this strategy effectively separates the production of LCEs and soft actuators. LCEs can be mass-produced in bulk by factories or producers and stored as prepared, much like rolls of cloth. When required, these LCEs can be customized into soft actuators as needed. This strategy provides a robust, flexible, and scalable solution to engineer soft actuators, holding great promise for mass production and universal applications.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubai Zhang
- Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Enjian He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhijun Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yixuan Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, Taiwan, 32023, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Pan X, Lan L, Li L, Naumov P, Zhang H. Flexible Organic Chiral Crystals with Thermal and Excitation Modulation of the Emission for Information Transmission, Writing, and Storage. Angew Chem Int Ed Engl 2024; 63:e202320173. [PMID: 38340073 DOI: 10.1002/anie.202320173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Organic single crystals quickly emerge as dense yet light and nearly defect-free media for emissive elements. Integration of functionalities and control over the emissive properties is currently being explored for a wide range of these materials to benchmark their performance against organic emissive materials diluted in powders or films. Here, we report mechanically flexible emissive chiral organic crystals capable of an unprecedented combination of fast, reversible, and low-fatigue responses. UV-excited single crystals of both enantiomers of the material, 4-chloro-2-(((1-phenylidene)imino)methyl)phenol, exhibit a drastic yet reversible change in the emission color from green to orange-yellow within a second and can be cycled at least 2000 times. The photoresponse was found to depend strongly on the excitation intensity and temperature. Combining chirality, mechanical compliance, rapid emission switching, multiple responses, and writability by UV light, this material provides a unique and versatile platform for developing organic crystal-based materials for on-demand signal transfer, information storage, and cryptography.
Collapse
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Linfeng Lan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, 129188, Abu Dhabi, UAE
- Department of Science and Engineering, Sorbonne University Abu Dhabi, 38044, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, 129188, Abu Dhabi, UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi, 129188, Abu Dhabi, UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, 10003, New York, USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| |
Collapse
|
11
|
Cazorla A, Martín-Martín S, Delgado ÁV, Jiménez ML. Electro-optics of confined systems. J Colloid Interface Sci 2024; 658:52-60. [PMID: 38096679 DOI: 10.1016/j.jcis.2023.11.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Confinement in microenvironments occurs in many natural systems and technological applications. However, little is known about the behaviour of the immersed nanoparticles. In this work we show that their diffusion, electro-orientation and electric field induced polarization can be determined through electric birefringence experiments. We analyze aqueous dispersions of silver nanowires and clay particles confined inside microdroplets. We have observed that confinement reduces the amount of particles that can be oriented by the external electric field. However, the polarizability of the oriented particles is not affected by the presence of the oil/water boundary, and it is the same as in unbounded media, which agrees with the fact that the electric polarization and related phenomena are short-ranged.
Collapse
Affiliation(s)
- Ana Cazorla
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| | - Sergio Martín-Martín
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| | - Ángel V Delgado
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| | - María L Jiménez
- Department of Applied Physics, University of Granada, Avda. de Fuente Nueva sn, 18071, Granada, Spain.
| |
Collapse
|
12
|
Xiong X, Wang H, Xue L, Cui J. Self-Growing Organic Materials. Angew Chem Int Ed Engl 2023; 62:e202306565. [PMID: 37432074 DOI: 10.1002/anie.202306565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
The growth of living systems is ubiquitous. Living organisms can continually update their sizes, shapes, and properties to meet various environmental challenges. Such a capability is also demonstrated by emerging self-growing materials that can incorporate externally provided compounds to grow as living organisms. In this Minireview, we summarize these materials in terms of six aspects. First, we discuss their essential characteristics, then describe the strategies for enabling crosslinked organic materials to self-grow from nutrient solutions containing polymerizable compounds. The developed examples are grouped into five categories based on their molecular mechanisms. We then explain the mechanism of mass transport within polymer networks during growth, which is critical for controlling the shape and morphology of the grown products. Afterwards, simulation models built to explain the interesting phenomena observed in self-growing materials are discussed. The development of self-growing materials is accompanied by various applications, including tuning bulk properties, creating textured surfaces, growth-induced self-healing, 4D printing, self-growing implants, actuation, self-growing structural coloration, and others. These examples are then summed up. Finally, we discuss the opportunities brought by self-growing materials and their facing challenges.
Collapse
Affiliation(s)
- Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hong Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P. R. China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
13
|
Mohd Yasin SB, Terry JS, Taylor AC. Fracture and mechanical properties of an impact toughened polypropylene composite: modification for automotive dashboard-airbag application. RSC Adv 2023; 13:27461-27475. [PMID: 37711376 PMCID: PMC10498717 DOI: 10.1039/d3ra04151d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
Thermoplastic olefin (TPO) is the principal material for automotive instrument panels and is prone to fracture especially under heavy airbag deployment, which can prevent the airbag deploying properly. Thus, polyolefin elastomer (POE) was introduced to improve impact properties and fracture resistance. Fundamental methods to characterise TPO with the addition of POE are proposed. The influence of POE content on the mechanical properties was examined. With increasing POE content, the storage modulus and glass transition temperature values decreased, and the damping increased due to the POE increasing the polymer chain mobility. The tensile modulus, ultimate tensile strength and yield stress decreased with increasing POE content, while the ductility of the blends significantly increased. Furthermore, the POE reduced hardness and increased energy absorption during impact. In the fracture analysis, the addition of POE content increased the fracture resistance by increasing the crack energy and decreasing the resistance to crack initiation. Fractographic analysis showed how stretched microfibrils in the blends increase the fracture resistance. These results gave a significant indication of the utility of the elastomer in improving some mechanical properties and impact toughness of the interior automotive material to resist an undesired failure or over-fracture in airbag deployment.
Collapse
Affiliation(s)
- Saiful Bahri Mohd Yasin
- Mechanical Engineering Department, Imperial College London, South Kensington Campus London SW7 2AZ UK
- Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perlis Kampus Arau 02600 Arau Perlis Malaysia
| | - Joseph S Terry
- Mechanical Engineering Department, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Ambrose C Taylor
- Mechanical Engineering Department, Imperial College London, South Kensington Campus London SW7 2AZ UK
| |
Collapse
|