1
|
Dong Y, Feng S, Huang W, Ma X. Algorithm in chemistry: molecular logic gate-based data protection. Chem Soc Rev 2025; 54:3681-3735. [PMID: 40159995 DOI: 10.1039/d4cs01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Data security is crucial for safeguarding the integrity, authenticity, and confidentiality of documents, currency, merchant labels, and other paper-based assets, which sequentially has a profound impact on personal privacy and even national security. High-security-level logic data protection paradigms are typically limited to software (digital circuits) and rarely applied to physical devices using stimuli-responsive materials (SRMs). The main reason is that most SRMs lack programmable and controllable switching behaviors. Traditional SRMs usually produce static, singular, and highly predictable signals in response to stimuli, restricting them to simple "BUFFER" or "INVERT" logic operations with a low security level. However, recent advancements in SRMs have collectively enabled dynamic, multidimensional, and less predictable output signals under external stimuli. This breakthrough paves the way for sophisticated encryption and anti-counterfeiting hardware based on SRMs with complicated logic operations and algorithms. This review focuses on SRM-based data protection, emphasizing the integration of intricate logic and algorithms in SRM-constructed hardware, rather than chemical or material structural evolutions. It also discusses current challenges and explores the future directions of the field-such as combining SRMs with artificial intelligence (AI). This review fills a gap in the existing literature and represents a pioneering step into the uncharted territory of SRM-based encryption and anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, P. R. China.
| |
Collapse
|
2
|
Qi Y, Wang J, Hu T, Cao X, Li S, Liu Q, Gao Z, Zhang S. Self-damping photonic crystals with differentiated reversible crosslinking domains for biomimetic delayed visual perception of underwater impact stress. MATERIALS HORIZONS 2025. [PMID: 40109121 DOI: 10.1039/d4mh01725k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Structural color-based impact sensors output light or electrical signals through entropic elasticity storing and releasing of the polymer network, inspiring the design of armors for underwater equipment. Designing self-damping units at the molecular and nanostructural levels will contribute to capturing and analyzing relevant impact and mechanical signals by the naked eye. Herein, inspired by the octopus' sucker, we proposed self-damping photonic crystals (SDPCs) with differentiated reversible crosslinking domains, which can delayed-release entropic elasticity in water and visually perceive stress field evolution via structural color. These domains are generated by weak and strong hydrogen bonds (H-bonds) assigned by differentiated copolymerization, corresponding to weak and strong crosslinking domains, respectively. The compressed network stores entropic elasticity, showing size-effect-induced blueshift structural colors. During entropic elasticity release, the weak/strong crosslinking domains are disrupted successively, resulting in temporary macropore asymmetry and forming transient Laplacian pressure difference (ΔP). The self-damping effect based on the continuous recombination of domains and the equilibrium iteration of ΔP achieves a delayed visual perception of entropy elasticity release. Given this, impact stress sensing and structural color self-erasing techniques have been developed.
Collapse
Affiliation(s)
- Yong Qi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
- Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Jiahui Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Tong Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Xianfei Cao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Shi Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Qingyu Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Zhaoyong Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT), P.O. Box 89, West Campus, 2# Linggong Rd, Dalian 116024, China.
| |
Collapse
|
3
|
Xu S, Liu Q, Wang Y, Ji Z, Lian Z, Tan H, Zhou J, Wang C. Template-based synthesis of novel polymeric colloidal photonic crystals. Chem Commun (Camb) 2025; 61:3884-3887. [PMID: 39935303 DOI: 10.1039/d4cc06754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Here, we devise a universal method for preparing colloidal photonic crystals (CPCs) composed of novel building blocks, using inverse opal materials as templates. This method not only enables the preparation of three-dimensional (3D) CPCs composed of hard sphere building blocks, but also, facilitates the creation of two-dimensional(2D) CPCs composed of chitosan and 3D CPCs composed of polydimethylsiloxane(PDMS) elastic soft spheres.
Collapse
Affiliation(s)
- Shunan Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Qingyao Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuanhui Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Zhihao Ji
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Zhengshuai Lian
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Hongzi Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Chuan Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| |
Collapse
|
4
|
Che M, Chen X, Wu Z, Xu W, Suh YD, Wu S, Liu X, Huang W. Dynamic Modulation of Afterglow Emission in Polymeric Phosphors via Inverse Opal Photonic Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415835. [PMID: 39663735 DOI: 10.1002/adma.202415835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Tuning the afterglow of polymeric phosphors is critical for advancing their use in optical data storage and display technologies. Despite advancements in polymer matrix design and dopant engineering, achieving dynamic control over afterglow intensity remains a significant challenge. In this study, a novel approach is introduced for dynamically tuning the afterglow of polymeric phosphors by integrating them into an inverse opal photonic structure. By precisely aligning the photonic stopband of the inverse opal structure with the afterglow band of the polymer film, a remarkable 15-fold enhancement in afterglow intensity is achieved. This enhancement is tunable, decreasing from 15 to 1.2 by infiltrating the photonic structure with media of varying refractive indices ranging from 1.00 (air) to 1.37 (ethyl acetate). The tunability arises from reducing the mismatch between the stopband and the afterglow band, as the weighted refractive index shifts between 1.15 and 1.40. Additionally, the inverse opal photonic structure induces angle-dependent structural colors in the Janus polymeric phosphors, modulated by the refractive index of the infiltrating media. This integration of dynamically tunable afterglow with angle-dependent structural coloration unlocks new potential for advanced optoelectronic applications.
Collapse
Affiliation(s)
- Mengfen Che
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xue Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Weidong Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yung Doug Suh
- Department of Chemistry and School of Energy and Chemical Engineering UNIST, Ulsan, 44919, Republic of South Korea
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2nd Linggong Road, Dalian, 116024, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts &Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
5
|
Leo SY, Leverant CJ, Zhang Y, Jiang J, Alshammari T, Jiang P, Basile V, Taylor C. Chromogenic Photonic Crystal Detectors for Monitoring Small Molecule Diffusion at Solid-Solid Interfaces Using Stimuli-Responsive Shape Memory Polymers. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2238-2249. [PMID: 39682031 DOI: 10.1021/acsami.4c17700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
In situ monitoring of small molecule diffusion at solid-solid interfaces is challenging, even with sophisticated equipment. Here, novel chromogenic photonic crystal detectors enabled by integrating bioinspired structural color with stimuli-responsive shape memory polymer (SMP) for detecting trace amounts of small molecule interfacial diffusion are reported. Colorless macroporous SMP membranes with deformed macropores can recover back to the "memorized" photonic crystal microstructures and the corresponding iridescent structural colors when triggered by diffused small molecules. Systematic experimental and theoretical investigations using various microscopes, optical spectroscopy and modeling, spatio-resolved energy-dispersive X-ray spectroscopy, and theoretical diffusion calculations confirm the diffusion-induced shape memory and chromogenic mechanisms. Importantly, proof-of-concept sensing of temporospatial-resolved diffusion of bioactive ingredients used in drug delivery, including anti-inflammatory methyl salicylate in pain relieving patches and vitamin E barriers loaded in contact lens, and phthalates plasticizers in commercial PVC products has been demonstrated. These innovative detectors are inexpensive, reusable, and easy to operate and deploy for both qualitative and quantitative analyses, promising for opening new avenues in biomedical research, threat detection, and monitoring of plastics, food, and environmental safety. Moreover, reconfigurable photonic crystals with micrometer-scale resolution, which are of great importance in tunable and integrated nanooptics, can be fabricated by diffusion-enabled microcontact printing.
Collapse
Affiliation(s)
- Sin-Yen Leo
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Calen J Leverant
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Yifan Zhang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - James Jiang
- The Frazer School, Gainesville, Florida 32605, United States
| | - Taisan Alshammari
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Peng Jiang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Vito Basile
- STIIMA-CNR, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, Via Bassini, 15, Milano 20133, Italy
| | - Curtis Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Liu M, Wang X, Pan X, Geng M, Liu Y, Zhang Z, Liu H, Gao M. Porous cellulose photonic film via controlled unidirectional interlayer freezing for rapid visual sensing. Carbohydr Polym 2025; 347:122767. [PMID: 39486994 DOI: 10.1016/j.carbpol.2024.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 11/04/2024]
Abstract
Structure color, arising from the interaction of light with regularly arranged sub-micrometer-sized structures, has spurred interest in sensor design. However, typical cellulose nanocrystal (CNC) photonic films derived from biomass, known for their sustainability and cost-effectiveness, often suffer from limited sensitivity and slow response times due to their dense structure. To address this challenge, we have utilized a unidirectional interlayer freezing-photopolymerization strategy to introduce porous structures into CNC photonic films without compromising their vibrant structural color. This method harnesses ice crystal-induced lamellar pores while preserving the periodic arrangement of CNCs. The underlying mechanism of ice kinetics and CNC assembly is established, highlighting the transition from non-iridescent aerogels to iridescent, porous photonic films. The resulting porous CNC photonic film exhibits apparent color response and rapid sensing capabilities in response to various solvent stimuli, outperforming its non-porous counterparts. We have validated the film as a portable vapor detector for rapid visualized alcohol detection. This approach provides promising developments in sustainable, highly responsive sensor technologies.
Collapse
Affiliation(s)
- Mengmeng Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaojuan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaosen Pan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mengchen Geng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengjian Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Hu T, Zhang S, Qi Y. Unclonable Encryption-Verification Strategy Based on Bilayer Shape Memory Photonic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405243. [PMID: 39291889 DOI: 10.1002/smll.202405243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Indexed: 09/19/2024]
Abstract
The ability to reversibly exhibit structural color patterns has positioned photonic crystals (PCs) at the forefront of anti-counterfeiting. However, the security offered by the mere reversible display is susceptible to illicit alteration and disclosure. Herein, inspired by the electronic message captcha, bilayer photonic crystal (BPC) systems with integrated decryption and verification modules, are realized by combining inverse opal (IO) and double inverse opal (DIO) with polyacrylate polymers. When the informationized BPC is immersed in ethanol or water, the DIO layer displayed encrypted information due to the solvent-induced ordered rearrangement of polystyrene (PS) microspheres. The verification step is established based on the different structural colors of the IO layer pattern, which result from the deformation or recovery of the macroporous skeleton induced by solvent evaporation. Moreover, through the evaporation-induced random self-assembly of PS@SiO2 and SiO2 microspheres, unclonable structurally colored identifying codes are created in the IO layer, ensuring the uniqueness upon the verification. The decrypted code in the DIO layer is valid only when the IO layer displays the pattern with the predetermined structural color; otherwise, it is a pseudo-code. This structural color-based "decryption-verification" approach offers innovative anti-counterfeiting applications in nanophotonics.
Collapse
Affiliation(s)
- Tong Hu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Zhang X, Zhang Z, Long J, Shang B. Vapor Absorption and Liquefication Triggered Dynamic Color Changes and Pattern Conversions on Photonic Crystal Films for Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61360-61370. [PMID: 39447080 DOI: 10.1021/acsami.4c14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The widespread use of counterfeit goods caused significant damage to economy, personal data security, and public health. There is an urgent need to develop innovative anticounterfeiting materials to enhance their performance. Anticounterfeiting labels based on responsive photonic crystals have been widely researched for the inherent difficulty in replicating the delicate structures and structure colors. By integrating various distinct nanoparticles (NPs), it is expected to produce photonic crystal patterns that offer more intricate color effects and improved anticounterfeiting capabilities. In this work, we reported a photonic crystal anticounterfeiting label with dynamic color variations in solvent vapors and pattern conversions upon vapor liquefication by utilizing three different nanoparticles including d-SiO2, h-SiO2, and m-SiO2 NPs as building blocks. This anticounterfeiting label exhibits a wealth of dynamic color changes associated with the absorption time, absorption rate, absorption medium, and microstructure of the nanoparticles, offering diverse visual effects and showcasing interesting anticounterfeiting performances. The dynamic color change or pattern conversion effect of this photonic crystal (PC) pattern is realized through refractive index changes induced by vapor absorption or solvent filling, which involves no volume changes and shows exceptional durability for repeated applications. This label shows promising broad applications in anticounterfeiting areas.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Ziyuan Zhang
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Jin Long
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| | - Binbin Shang
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
| |
Collapse
|
9
|
Meng Z, Liu Y, Huang H, Wu S. Flexible self-supporting photonic crystals: Fabrications and responsive structural colors. Adv Colloid Interface Sci 2024; 333:103272. [PMID: 39216399 DOI: 10.1016/j.cis.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Photonic crystals (PCs) play an increasingly significant role in anti-counterfeiting, sensors, displays, and other fields due to their tunable structural colors produced by light manipulation of photonic stop bands. Flexible self-supporting photonic crystals (FSPCs) eliminate the requirement for conventional structures to rely on the existence of hard substrates, as well as the problem of poor mechanical qualities caused by the stiffness of the building blocks. Meanwhile, diverse production techniques and materials provide FSPCs with varied stimulus-responsive color-changing capacities, thus they have received an abundance of focus. This review summarizes the preparation strategies and variable structural colors of FSPCs. First, a series of preparation strategies by integrating polymers with PCs are summarized, including assembly of colloidal spheres on flexible substrates, polymer packaging, polymer-based direct assembly, nanoimprinting, and 3D printing. Subsequently, variable structural colors of FSPCs with different stimulations, such as viewing angle, chemical stimulation (solvents, ions, pH, biomolecules, etc.), temperature, mechanical/magnetic stress, and light, are described in detail. Finally, the outlook and challenges regarding FSPCs are presented, and several potential directions for their fabrication and application are discussed. It's believed that FSPCs will be a valuable platform for advancing the practical implementation of optical metamaterials.
Collapse
Affiliation(s)
- Zhipeng Meng
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yukun Liu
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Haofei Huang
- Research Institute of Clean Chemical Technology, School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China..
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China..
| |
Collapse
|
10
|
Hu Y, Qi C, Ma D, Yang D, Huang S. Multicolor recordable and erasable photonic crystals based on on-off thermoswitchable mechanochromism toward inkless rewritable paper. Nat Commun 2024; 15:5643. [PMID: 38969630 PMCID: PMC11226673 DOI: 10.1038/s41467-024-49860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Mechanochromic photonic crystals are attractive due to their force-dependent structural colors; however, showing unrecordable color and unsatisfied performances, which significantly limits their development and expansion toward advanced applications. Here, a thermal-responsive mechanochromic photonic crystal with a multicolor recordability-erasability was fabricated by combining non-close-packing mechanochromic photonic crystals and phase-change materials. Multicolor recordability is realized by pressing thermal-responsive mechanochromic photonic crystals to obtain target colors over the phase-change temperature followed by fixing the target colors and deformed configuration at room temperature. The stable recorded color can be erased and reconfigured by simply heating and similar color-recording procedures respectively due to the thermoswitchable on-off mechanochromism of thermal-responsive mechanochromic photonic crystals along with solid-gel phase transition. These thermal-responsive mechanochromic photonic crystals are ideal rewritable papers for ink-freely achieving multicolor patterns with high resolution, difficult for conventional photonic papers. This work offers a perspective for designing color-recordable/erasable and other stimulus-switchable materials with advanced applications.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chenze Qi
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Dongpeng Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Shaoming Huang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
11
|
Gao L, Kou D, Lin R, Ma W, Zhang S. Visual Recognition of Volatile Organic Compounds by Photonic Nose Integrated with Multiple Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308641. [PMID: 38282134 DOI: 10.1002/smll.202308641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/10/2024] [Indexed: 01/30/2024]
Abstract
The photonic nose inspired by the olfactory system is an integrated detection platform constructed by multiple sensing units as channels. However, in the detection of volatile organic compounds (VOCs), the sensing results that cannot be directly readable and the poor ability to distinguish analytes with similar chemical properties are the main challenges faced by this sensor. Here, 8 metal-organic frameworks (MOF)-based photonic crystals are used as the basic sensing units to construct a photonic nose detection platform. The microscopic adsorption of VOCs by MOFs enables the photonic crystals (PCs) to produce macroscopic structural color output, and further makes the photonic nose have specific color fingerprints for different VOCs, the response time of all PCs to VOCs can be within 1 s. Through the color fingerprint, the visual identification of VOCs produced by 5 common solvent vapors is realized, and 9 VOCs with similar chemical properties are further distinguished. In addition, the application potential of the photonic nose in the actual environment is verified by identifying different contents of benzene in the paint. It is envisaged that the MOF-based photonic nose has great reference value for the development of intelligent and multi-component synergistic functional gas sensors.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Donghui Kou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Ruicheng Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| |
Collapse
|
12
|
Yuan H, Qi Y, Niu W, Ma W, Zhang S. Bioinspired Colorimetric Double Inverse Opal Photonic Crystal Indicators for Ethanol Concentration Sensing in Fermentation Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11184-11195. [PMID: 38748593 DOI: 10.1021/acs.langmuir.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photonic crystal-based ethanol concentration indicators with rapid response and brilliant structural color output definitely take a place in colorimetric sensors. Here, based on the H-bond-regulated swelling of acrylate shape memory polymers (SMPs) and the solvent-induced structural color change of the double inverse opal photonic crystals (DIOPCs), new-type photonic crystals (PCs) colorimetric indicators were constructed, exhibiting a span of maximum reflection wavelength (λmax) up to ∼166 nm in response to alcohols with concentrations from 0 to 100 vol %. DIOPC indicators (DIOPCIs) show a rapid response to alcohols (<1.5 s) and output different structural colors (covering from blue to red). The colorimetric sensing mechanism includes the solvent-triggered recovery of the inverse opal skeleton, the cosolvency effect and H-bonds induced swelling/shrinkage of the polymer, the phase separation between polystyrene (PS) microsphere and polymer skeleton, and the light diffraction of DIOPCs. While ensuring a larger λmax span by regulating the H-bond interactions in polymer chains through acrylamide (AAm), AAm-modified DIOPCIs are sensitive to some specific ethanol concentrations. The real-time sensing of ethanol concentration during fermentation verified the practicability of DIOPCIs, thus establishing a visual model between structural color and corresponding fermentation kinetics. We envisage that the DIOPCIs will contribute to the intelligentization of the alcoholic fermentation and distillation industry.
Collapse
Affiliation(s)
- Hang Yuan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Yong Qi
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Lin R, Kou D, Gao L, Li S, Gao Z, Li X, Ma W, Zhang S. Biomimetic Photonic Elastomer Exhibiting Stress/Moisture Reconfigurable Wrinkle-Lattice for Reversible Deformation Information Storage. ACS NANO 2024; 18:13346-13360. [PMID: 38726755 DOI: 10.1021/acsnano.4c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Photonic elastomers, capable of converting imperceptible deformations into visible colors, show significant potential in smart materials. However, instantaneous deformation is arduous to record accurately due to the disappearance of optical information after deformation recovery. Herein, inspired by the folding structures of iridocytes in cephalopods, a stress- and moisture-triggered wrinkling and erasure effect is proposed to be introduced in the construction of a photonic elastomer. Implemented in a dual-network polymer framework with modulatable locking, it allows for reversible deformation storage. The photonic elastomer comprises a surface one-dimensional photonic crystal (1DPC) and a poly(dimethylsiloxane) (PDMS) substrate. The deformed 1DPC lattice transforms into a wrinkled state due to a substrate deformation mismatch, preserving strain-induced structural color information through interchain hydrogen bonding and crystalline shape-locking in dual-network polymers. Reading the color provides multidimensional information about the instantaneous deformation degree and distribution. Moreover, the moisture-induced shape-memory feature of the 1DPC can be triggered with a minute amount of water, like fingertip perspiration or humidity change (35% to 80%), to restore the original color. This stress/moisture-responsive photonic elastomer, with its dynamically reconfigurable wrinkle-lattice, holds great promise for applications in mechanical sensing, inkless writing, and anticounterfeiting, significantly enhancing the versatility of photonic materials.
Collapse
Affiliation(s)
- Ruicheng Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Donghui Kou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Lei Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Shi Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Zhaoyong Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Xuefen Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| |
Collapse
|
14
|
Zhao W, Wu B, Lei Z, Wu P. Hydrogels with Differentiated Hydrogen-Bonding Networks for Bioinspired Stress Response. Angew Chem Int Ed Engl 2024; 63:e202400531. [PMID: 38546292 DOI: 10.1002/anie.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/19/2024]
Abstract
Stress response, an intricate and autonomously coordinated reaction in living organisms, holds a reversible, multi-path, and multi-state nature. However, existing stimuli-responsive materials often exhibit single-step and monotonous reactions due to the limited integration of structural components. Inspired by the cooperative interplay of extensor and flexor cells within Mimosa's pulvini, we present a hydrogel with differentiated hydrogen-bonding (H-bonding) networks designed to enable the biological stress response. Weak H-bonding domains resemble flexor cells, confined within a hydrophobic network stabilized by strong H-bonding clusters (acting like extensor cells). Under external force, strong H-bonding clusters are disrupted, facilitating water diffusion from the bottom layer and enabling transient expansion pressure gradient along the thickness direction. Subsequently, water diffuses upward, gradually equalizing the pressure, while weak H-bonding domains undergo cooperative elastic deformation. Consequently, the hydrogel autonomously undergoes a sequence of reversible and pluralistic motion responses, similar to Mimosa's touch-triggered stress response. Intriguingly, it exhibits stress-dependent color shifts under polarized light, highlighting its potential for applications in time-sensitive "double-lock" information encryption systems. This work achieves the coordinated stress response inspired by natural tissues using a simple hydrogel, paving the way for substantial advancements in the development of intelligent soft robots.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS), Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr, Garching, 185748, Germany
| | - Zhouyue Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
Zhang X, Yin T, Ge J. Thermochromic Photonic Crystal Paper with Integrated Multilayer Structure and Fast Thermal Response: A Waterproof and Mechanically Stable Material for Structural-Colored Thermal Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309344. [PMID: 37906731 DOI: 10.1002/adma.202309344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Thermochromic photonic crystals are promising materials for thermal printing due to their unfaded colors under chemical/illuminated environments and the absence of toxic chemicals. However, the slow thermochromic response, the multistep printing procedures, the use of inks or developing liquids, and the requirement of expensive parts in printers limit their applications. Here, a thermochromic polyurethane/hydrophobic-SiO2 photonic crystal/paraffin (PU/HPO-SiO2 -PC/Para) film with an integrated multilayer structure is fabricated for all-solid-state and single-step thermal printing that is fully compatible with commercial printers. The fast thermochromic response in milliseconds enables high-resolution and grayscale printing as the paraffin infiltration and the color change can be finely controlled in a microscale range. The integrated and hydrophobic multilayer structure renders the thermochromic film good stability in daily liquids, which addresses the long-existing concern of print fading. Meanwhile, the integrated multilayer structure also enhances the mechanical stability when it is deposited on fibrous paper so that people can fold, cut, or staple the thermal papers, and make notes confidently in practical usage.
Collapse
Affiliation(s)
- Xin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Department of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, China
| | - Tian Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
| | - Jianping Ge
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| |
Collapse
|
16
|
Wang HQ, Tang Y, Huang ZY, Wang FZ, Qiu PF, Zhang X, Li CH, Li Q. A Dual-Responsive Liquid Crystal Elastomer for Multi-Level Encryption and Transient Information Display. Angew Chem Int Ed Engl 2023; 62:e202313728. [PMID: 37818673 DOI: 10.1002/anie.202313728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Information security has gained increasing attention in the past decade, leading to the development of advanced materials for anti-counterfeiting, encryption and instantaneous information display. However, it remains challenging to achieve high information security with simple encryption procedures and low-energy stimuli. Herein, a series of strain/temperature-responsive liquid crystal elastomers (LCEs) are developed to achieve dual-modal, multi-level information encryption and real-time, rewritable transient information display. The as-prepared polydomain LCEs can change from an opaque state to a transparent state under strain or temperature stimuli, with the transition strains or temperatures highly dependent on the concentration of long-chain flexible spacers. Information encrypted by different LCE inks can be decrypted under specific strains or temperatures, leading to multi-level protection of information security. Furthermore, with the combination of the phase transition of polydomain LCEs and the photothermal effect of multi-walled carbon nanotubes (MWCNTs), we achieved a repeatable transient information display by using near-infrared (NIR) light as a pen for writing. This study provides new insight into the development of advanced encryption materials with versatility and high security for broad applications.
Collapse
Affiliation(s)
- Hong-Qin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Zi-Yang Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Fang-Zhou Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Peng-Fei Qiu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Xinfang Zhang
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210023, Nanjing, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
- Materials Science Graduate Program, Kent State University, 44242, Kent, Ohio, USA
| |
Collapse
|
17
|
Zhou MX, Jin F, Wang JY, Dong XZ, Liu J, Zheng ML. Dynamic Color-Switching of Hydrogel Micropillar Array under Ethanol Vapor for Optical Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304384. [PMID: 37480176 DOI: 10.1002/smll.202304384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Responsive structural colors from artificially engineered micro/nanostructures are critical to the development of anti-counterfeiting, optical encryption, and intelligent display. Herein, the responsive structural color of hydrogel micropillar array is demonstrated under the external stimulus of ethanol vapor. Micropillar arrays with full color are fabricated via femtosecond laser direct writing by controlling the height and diameter of the micropillars according to the FDTD simulation. Color-switching of the micropillar arrays is achieved in <1 s due to the formation of liquid film among micropillars. More importantly, the structural color blueshift of the micropillar arrays is sensitive to the micropillar diameter, instead of the micropillar height. The micropillar array with a diameter of 772 nm takes 400 ms to complete blueshift under ethanol vapor, while that with a diameter of 522 nm blueshifts at 2400 ms. Microscale patterns are realized by employing the size-dependent color-switching of designed micropillar arrays under ethanol vapor. Moreover, Morse code and directional blueshift of structural colors are realized in the micropillar arrays. The advantages of controllable color-switching of the hydrogel micropillar array would be prospective in the areas of optical encryption, dynamic display, and anti-counterfeiting.
Collapse
Affiliation(s)
- Ming-Xia Zhou
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jian-Yu Wang
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|