1
|
Wang S, Zhai H, Zhang Q, Hu X, Li Y, Xiong X, Ma R, Wang J, Chang Y, Wu L. Trends in Flexible Sensing Technology in Smart Wearable Mechanisms-Materials-Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:298. [PMID: 39997861 PMCID: PMC11858378 DOI: 10.3390/nano15040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Flexible sensors are revolutionizing our lives as a key component of intelligent wearables. Their pliability, stretchability, and diverse designs enable foldable and portable devices while enhancing comfort and convenience. Advances in materials science have provided numerous options for creating flexible sensors. The core of their application in areas like electronic skin, health medical monitoring, motion monitoring, and human-computer interaction is selecting materials that optimize sensor performance in weight, elasticity, comfort, and flexibility. This article focuses on flexible sensors, analyzing their "sensing mechanisms-materials-applications" framework. It explores their development trajectory, material characteristics, and contributions in various domains such as electronic skin, health medical monitoring, and human-computer interaction. The article concludes by summarizing current research achievements and discussing future challenges and opportunities. Flexible sensors are expected to continue expanding into new fields, driving the evolution of smart wearables and contributing to the intelligent development of society.
Collapse
Affiliation(s)
- Sen Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Haorui Zhai
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Qiang Zhang
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xueling Hu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yujiao Li
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xin Xiong
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Ruhong Ma
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jianlei Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ying Chang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Lixin Wu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
2
|
Chen W, Lin J, Ye Z, Wang X, Shen J, Wang B. Customized surface adhesive and wettability properties of conformal electronic devices. MATERIALS HORIZONS 2024; 11:6289-6325. [PMID: 39315507 DOI: 10.1039/d4mh00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformal and body-adaptive electronics have revolutionized the way we interact with technology, ushering in a new era of wearable devices that can seamlessly integrate with our daily lives. However, the inherent mismatch between artificially synthesized materials and biological tissues (caused by irregular skin fold, skin hair, sweat, and skin grease) needs to be addressed, which can be realized using body-adaptive electronics by rational design of their surface adhesive and wettability properties. Over the past few decades, various approaches have been developed to enhance the conformability and adaptability of bioelectronics by (i) increasing flexibility and reducing device thickness, (ii) improving the adhesion and wettability between bioelectronics and biological interfaces, and (iii) refining the integration process with biological systems. Successful development of a conformal and body-adaptive electronic device requires comprehensive consideration of all three aspects. This review starts with the design strategies of conformal electronics with different surface adhesive and wettability properties. A series of conformal and body-adaptive electronics used in the human body under both dry and wet conditions are systematically discussed. Finally, the current challenges and critical perspectives are summarized, focusing on promising directions such as telemedicine, mobile health, point-of-care diagnostics, and human-machine interface applications.
Collapse
Affiliation(s)
- Wenfu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Xiangyu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| |
Collapse
|
3
|
Chen L, Liang H, Liu P, Shu Z, Wang Q, Dong X, Xie J, Feng B, Duan H. Phase-Change Stamp with Highly Switchable Adhesion and Stiffness for Damage-Free Multiscale Transfer Printing. ACS NANO 2024; 18:23968-23978. [PMID: 39177029 DOI: 10.1021/acsnano.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Transfer printing is a technology widely used in the production of flexible electronics and vertically stacked devices, which involves the transfer of predefined electronic components from a rigid donor substrate to a receiver substrate with a stamp, potentially avoiding the limitations associated with lithographic processes. However, the stamps typically used in transfer printing have several limitations related to unwanted organic solvents, substantial loading, film damage, and inadequate adhesion switching ratios. This study introduces a thermally responsive phase-change stamp for efficient and damage-free transfer printing inspired by the adhesion properties observed during water freezing and ice melting. The stamp employs phase-change composites and simple fabrication protocols, providing robust initial adhesion strength and switchability. The underlying mechanism of switchable adhesion is investigated through experimental and numerical studies. Notably, the stamp eliminates the need for extra preload by spontaneously interlocking with the ink through in situ melting and crystallization. This minimizes ink damage and wrinkle formation during pickup while maintaining strong initial adhesion. During printing, the stamp exhibits a sufficiently weak adhesion state for reliable and consistent release, enabling multiscale, conformal, and damage-free transfer printing, ranging from nano- to wafer-scale. The fabrication of nanoscale short-channel transistors, epidermal electrodes, and human-machine interfaces highlights the potential of this technique in various emerging applications of nanoelectronics, nano optoelectronics, and soft bioelectronics.
Collapse
Affiliation(s)
- Lei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China
| | - Peng Liu
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Zhiwen Shu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China
| | - Quan Wang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China
| | - Xiaoqian Dong
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha 410000, P. R. China
| | - Jianfei Xie
- Nursing Department, The Third Xiangya Hospital, Central South University, Changsha 410000, P. R. China
| | - Bo Feng
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, P. R. China
| |
Collapse
|
4
|
Ahn J, Han H, Ha JH, Jeong Y, Jung Y, Choi J, Cho S, Jeon S, Jeong JH, Park I. Micro-/Nanohierarchical Structures Physically Engineered on Surfaces: Analysis and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300871. [PMID: 37083149 DOI: 10.1002/adma.202300871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The high demand for micro-/nanohierarchical structures as components of functional substrates, bioinspired devices, energy-related electronics, and chemical/physical transducers has inspired their in-depth studies and active development of the related fabrication techniques. In particular, significant progress has been achieved in hierarchical structures physically engineered on surfaces, which offer the advantages of wide-range material compatibility, design diversity, and mechanical stability, and numerous unique structures with important niche applications have been developed. This review categorizes the basic components of hierarchical structures physically engineered on surfaces according to function/shape and comprehensively summarizes the related advances, focusing on the fabrication strategies, ways of combining basic components, potential applications, and future research directions. Moreover, the physicochemical properties of hierarchical structures physically engineered on surfaces are compared based on the function of their basic components, which may help to avoid the bottlenecks of conventional single-scale functional substrates. Thus, the present work is expected to provide a useful reference for scientists working on multicomponent functional substrates and inspire further research in this field.
Collapse
Affiliation(s)
- Junseong Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Hyeonseok Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hwan Ha
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Yongrok Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Young Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seokjoo Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Chen L, Khan A, Dai S, Bermak A, Li W. Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302858. [PMID: 37890452 PMCID: PMC10724424 DOI: 10.1002/advs.202302858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Department of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Arshad Khan
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Shuqin Dai
- Department School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Amine Bermak
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Wen‐Di Li
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
| |
Collapse
|
6
|
Yi L, Hou B, Liu X. Optical Integration in Wearable, Implantable and Swallowable Healthcare Devices. ACS NANO 2023; 17:19491-19501. [PMID: 37807286 DOI: 10.1021/acsnano.3c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Recent advances in materials and semiconductor technologies have led to extensive research on optical integration in wearable, implantable, and swallowable health devices. These optical systems utilize the properties of light─intensity, wavelength, polarization, and phase─to monitor and potentially intervene in various biological events. The potential of these devices is greatly enhanced through the use of multifunctional optical materials, adaptable integration processes, advanced optical sensing principles, and optimized artificial intelligence algorithms. This synergy creates many possibilities for clinical applications. This Perspective discusses key opportunities, challenges, and future directions, particularly with respect to sensing modalities, multifunctionality, and the integration of miniaturized optoelectronic devices. We present fundamental insights and illustrative examples of such devices in wearable, implantable, and swallowable forms. The constant pursuit of innovation and the dedicated approach to critical challenges are poised to influence diverse fields.
Collapse
Affiliation(s)
- Luying Yi
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Bo Hou
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|