1
|
Sui B, Zhang Z, Jiang X, Tao S, Pan C, Yang B, Li Y. Mechanically Strong Nanocolloidal Supramolecular Plastics Assembled from Carbonized Polymer Dots with Photoactivated Room-Temperature Phosphorescence. NANO LETTERS 2025; 25:7020-7028. [PMID: 40238468 DOI: 10.1021/acs.nanolett.5c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The innovative development of supramolecular plastics (SPs) is recognized as one of the global efforts to address the environmental pollution caused by petroleum-based plastics. Traditional SPs usually show weak mechanical strength because of relatively weak noncovalent bonds and a lack of appropriate functions for practical applications. To overcome these limitations, we herein report nanocolloidal supramolecular plastics (NSPs) assembled from newly emerging nanoparticles, namely, carbonized polymer dots (CPDs) modified with ureido pyrimidinone groups. These NSPs display good mechanical properties, unique photoactivated room-temperature phosphorescence (RTP), and excellent solvent stability. Notably, NSPs are recyclable with maintenance of their original mechanics and photoactivated RTP after several usages. Furthermore, photoactivated RTP with multiple colors is achieved by incorporating organic molecules into NSPs. We show proof-of-concept applications of NSPs in high-level information security. The results in this work pave an avenue toward functional materials assembled from CPDs and will advance the development of innovative nanomaterials for sustainable applications.
Collapse
Affiliation(s)
- Bowen Sui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhihan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuemei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chunyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
2
|
Li C, Jiao F, Dong L, Hu J, Ma X, Lou Q, Chen X, Xu W, Zhu Y, Zhu J. Time-Division Multiplexing Physical Unclonable Functions Based on Multicolor Phosphorescent Carbon Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502522. [PMID: 40223363 DOI: 10.1002/adma.202502522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/26/2025] [Indexed: 04/15/2025]
Abstract
Phosphorescent materials offer a promising approach to information encryption due to their long luminescence lifetimes and high signal-to-noise ratios. However, fixed phosphorescent patterns are vulnerable to imitation over time, limiting their effectiveness in advanced encryption. Here, a time-division multiplexing physical unclonable function (TDM-PUF) label utilizing multicolor phosphorescent carbon dots (CDs) is proposed that leverages variations in wavelength and lifetime to construct time-resolved, multidimensional cryptographic protocols. Efficient multi-color phosphorescence in CDs is achieved by enhancing intersystem crossing, suppressing non-radiative transitions through confinement effects, and regulating emission spectra via energy transfer. The random spatial distribution and unpredictable emissions of phosphorescent CDs significantly enhance the complexity of the PUF system, thereby fortifying its defenses against mimicry attacks. Furthermore, this PUF system exhibits multiple optical responses over time, allowing correct information recognition only at specified time nodes, achieving time-resolved anti-counterfeiting. Finally, by segmenting PUF labels based on emission color and time channels, non-overlapping multicolor and multi-time segments are achieved, enabling highly secure time-division multiplexed encryption. The study provides a competitive anti-counterfeiting label and inspires the development of novel anti-counterfeiting strategies.
Collapse
Affiliation(s)
- Chao Li
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Fuhang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Junhua Hu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xuejun Ma
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xu Chen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wen Xu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, P. R. China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Jinyang Zhu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
He X, Huang W, Zheng Y, Xu X, Wei H, Liang P, Yang X, Hu C, Zhang X, Lei B, Zhang X, Ye J, Liu Y, Zhuang J. Achieving Room-Temperature Phosphorescence in Solution Phase from Carbon Dots Confined in Nanocrystals. Angew Chem Int Ed Engl 2025; 64:e202423388. [PMID: 39907178 DOI: 10.1002/anie.202423388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Carbon dots (CDs) have attracted growing interest in the construction of room-temperature phosphorescent (RTP) materials. However, in the solution phase of CDs, it is still challenging to obtain efficient and stable phosphorescent emission due to the intense quenching effect by dissolved oxygen and solvent molecules. Herein, we report robust phosphorescence in the solution phase, achieved by encapsulating citrate-derived CDs into NaYF4 nanocrystals via a one-step method of high-temperature coprecipitation. Combined characterizations show that the triplet emission from CDs is related to the abundance of C=O in the CDs, the formation of ionic-bond networks around the CDs, and the spatial confinement and quenching inhibition effects of NaYF4 nanocrystals. Notably, the transition of CDs@NaYF4 from hydrophobicity to hydrophilicity can be easily achieved by simple surface modulation of NaYF4 nanocrystals, which allows the RTP of CDs to be maintained in either polar or nonpolar solvents. In addition, CDs@NaYF4 exhibits stable afterglow in different pH environments, suggesting its excellent stability. Finally, we demonstrated the application of CDs@NaYF4 in 3D printing, oily anti-counterfeiting patterns, and cell imaging. Our work can serve the controllable preparation of solution-phase RTP materials and their various applications.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Weilan Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Xiaokai Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Haopeng Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Ping Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Xianfeng Yang
- Analytical and Testing Center, South China University of Technology, Guangzhou, 510641, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jianting Ye
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642
- Device Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen
| |
Collapse
|
4
|
Yao Q, Wang Z, Gaponenko NV, Shi J, Da Z, Zhang C, Wang J, Wan W, Wang M. Aromatic ring compounds with different conjugation degrees in a boronic acid matrix to realize multicolor phosphorescence for time division colorful multiplexing. NANOSCALE 2025; 17:5204-5212. [PMID: 39871660 DOI: 10.1039/d4nr05190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Long lifetime multicolor phosphorescence materials possess excellent optical properties and have important application prospects in the fields of advanced anti-counterfeiting and information encryption. However, realizing long lifetime and color-tunable room temperature phosphorescent (RTP) carbon dot (CD) materials has proved challenging. In this study, the organic precursor molecules 2-phenethylamine (2-Ph), 9-aminophenanthrene (9-Ph) and 1-aminopyrene (1-Py) with different degrees of conjugation were selected to synthesize RTP CD composites: 2-Ph@BA, 9-Ph@BA and 1-Py@BA were synthesized by mixing with a boric acid (BA) matrix under high temperature pyrolysis. During high temperature pyrolysis, CDs form effective covalent and hydrogen bonds with the BA matrix to promote RTP activity and obtain a stable triplet state, which suppresses nonradiative transitions and leads to long lifetime RTP. Besides, as the conjugation of the organic precursor molecules 2-Ph, 9-Ph and 1-Py gradually increases, it results in a gradual decrease of the triplet state energy T1. Thus, 2-Ph@BA, 9-Ph@BA and 1-Py@BA RTP emission showed a significant redshift, leading to green, yellow and red phosphorescence colors, respectively. Finally, RTP CD composites are used in information security and time division colorful multiplexing based on the synthesized samples with different phosphorescence colors and lifetimes.
Collapse
Affiliation(s)
- Qing Yao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Zeyu Wang
- Frontier Institute of Science and Technology (FIST) and Micro- and Nano-Technology Research Center of State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Nikolai V Gaponenko
- Belarusian State University of Informatics and Radioelectronics, P. Browki 6, 220013 Minsk, Belarus
| | - Jindou Shi
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Zheyuan Da
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Chen Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Junnan Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Wangchao Wan
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research & Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China
| |
Collapse
|
5
|
Zhang H, Liu H, Liu X, Song A, Jiang H, Wang X. Progress on Carbon Dots with Intrinsic Bioactivities for Multimodal Theranostics. Adv Healthc Mater 2025; 14:e2402285. [PMID: 39440645 DOI: 10.1002/adhm.202402285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Carbon dots (CDs) with intrinsic bioactivities are candidates for bioimaging and disease therapy due to their diverse bioactivities, high biocompatibility, and multiple functionalities in multimodal theranostics. It is a multidisciplinary research hotspot that includes biology, physics, materials science, and chemistry. This progress report discusses the CDs with intrinsic bioactivities and their applications in multimodal theranostics. The relationship between the synthesis and structure of CDs is summarized and analyzed from a material and chemical perspective. The bioactivities of CDs including anti-tumor, antibacterial, anti-inflammatory etc. are discussed from biological points of view. Subsequently, the optical and electronic properties of CDs that can be applied in the biomedical field are summarized from a physical perspective. Based on the functional review of CDs, their applications in the biomedical field are reviewed, including optical diagnosis and treatment, biological activity, etc. Unlike previous reviews, this review combines multiple disciplines to gain a more comprehensive understanding of the mechanisms, functions, and applications of CDs with intrinsic bioactivities.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Hao Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
6
|
Tang Z, Zeng J, Guan Z, Zheng Y, Liu X. Stable, Full-Color, Long-Lasting Aqueous Room-Temperature Phosphorescent Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408303. [PMID: 39676342 DOI: 10.1002/smll.202408303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Indexed: 12/17/2024]
Abstract
Ultralong room-temperature phosphorescent (URTP) materials have garnered significant attention in anti-counterfeiting, optoelectronic displays, and bio-imaging due to their unique optical properties. However, most URTP materials exhibit weak emission or are quenched in aqueous solutions. This study proposes a simple and effective strategy for preparing full-color aqueous URTP materials using a one-step microwave method. Guest molecules are embedded in a rigid cyanuric acid (CA) matrix formed from urea. By enhancing the conjugation of the guest molecules, a series of full-color URTP materials is successfully produced. These materials exhibit excellent phosphorescent properties, with a maximum phosphorescent lifetime of 7.96 s. Protected by the CA matrix, they retain phosphorescence even in aqueous environments, displaying an afterglow visible to the naked eye for over 30 s in water. Additionally, under low water content conditions, the materials exhibit exceptional water-enhanced properties, achieving a phosphorescence quantum yield (PhQY) of 40.4%. Importantly, these aqueous URTP materials can be prepared in just 5 min, showcasing great potential in information encryption and afterglow displays.
Collapse
Affiliation(s)
- Zhaorun Tang
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Jianwen Zeng
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Zhihao Guan
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Yuewei Zheng
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| | - Xinghai Liu
- Hubei Engineering Technology Research Center of Spectrum and Imaging Instrument, School of Electronic Information, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
7
|
Guo Z, Bian Y, Zhang L, Zhang J, Sun C, Cui D, Lv W, Zheng C, Huang W, Chen R. Multi-Stimuli-Responsive Carbon Dots with Intrinsic Photochromism and In Situ Radical Afterglow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409361. [PMID: 39267460 DOI: 10.1002/adma.202409361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/28/2024] [Indexed: 09/17/2024]
Abstract
The combination of advanced photoluminescence characteristics to photochromism is highly attractive in preparing high-performance multifunctional photo-responsive materials for optoelectronic applications. However, this is rather challenging in material design owing to the limited mechanism understanding and construction principles. Here, an effective strategy to integrate photochromism and afterglow emission in carbon dots (CDs) is proposed through embedding naphthaleneimide (NI) structure in CDs followed by polyvinylpyrrolidone (PVP) encapsulation. The NI-structured CDs-PVP shows intrinsic photochromism owing to the in situ formation of NI-radical anions and controllable multi-stimuli-responsive afterglow behaviors related to the oxygen-trigged triplet exciton quenching and Förster resonance energy transfer (FRET) from the pristine CDs to the photoactivated CDs radicals. Notably, a wide range of appearance colors from colorless to brown, luminescence color transition from blue to yellow, and much elongated afterglow lifetime up to 253 ms are observed. With the extraordinary stimuli-chromic and stimuli-luminescent CDs-PVP film dynamically responsive to multiple external stimuli, reversible secure snapchat, data encryption/decryption and synaptic imaging recognition are realized. These findings demonstrate a fundamental principle to design multi-stimuli-responsive photochromic CDs with afterglow, providing important understandings on the synergic mechanism of dynamic photochromism and emission behaviors and thereby expanding their applications in advanced information anti-counterfeiting and artificial intelligence.
Collapse
Affiliation(s)
- Zhenli Guo
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yanfang Bian
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Longyan Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jingyu Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengxi Sun
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dongyue Cui
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wenzhen Lv
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chao Zheng
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
8
|
Zhu J, Li C, Zhu Y, Hu J, Nan Y, Chen X, Liu KK, Wang H, Shan C, Xu W, Lou Q. Long-Wavelength Afterglow Emission with Nearly 100% Efficiency through Space-Confined Energy Transfer in Organic-Carbon Dot Hybrid. NANO LETTERS 2024; 24:13307-13314. [PMID: 39388536 DOI: 10.1021/acs.nanolett.4c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Long-wavelength afterglow emitters are crucial for optoelectronics and information security; however, it remains a challenge in achieving high luminescence efficiency due to the lack of effective modulation in electronic coupling and nonradiative transitions of singlet/triplet excitons. Here, we demonstrate an organic-carbon-dot (CD) hybrid system that operates via a space-confined energy transfer strategy to obtain bright afterglow emission centered at 600 nm with near-unity luminescence efficiency. Photophysical characterization and theoretical calculation confirm efficient luminescence can be assigned to the synergistic effect of intermolecular energy transfer from triplet excitons of CDs to singlets of subluminophores and the intense restraint in nonradiative decay losses of singlet/triplet-state excitons via rationally space-confined rigidification and amination modification. By utilizing precursor engineering, yellow and near-infrared afterglow centered at 575 and 680 nm with luminescence efficiencies of 94.4% and 45.9% has been obtained. Lastly, these highly emissive powders enable superior performance in lighting and information security.
Collapse
Affiliation(s)
- Jinyang Zhu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chao Li
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongsheng Zhu
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Junhua Hu
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yang Nan
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xu Chen
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Kai-Kai Liu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Hailong Wang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chongxin Shan
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Wen Xu
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, P. R. China
| | - Qing Lou
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
9
|
Yang H, Ran Z, Luo Y, Liu S, Xu W, Liu J, Cui J, Lei B, Hu C, Zhuang J, Liu Y, Xiao Y. Exploration and Design of Carbon Dot-Based Long Afterglow Materials Using Active Machine Learning and Quantum Chemical Simulations. ACS NANO 2024; 18:29203-29213. [PMID: 39378139 DOI: 10.1021/acsnano.4c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Long afterglow materials based on carbon dots (CDs) have attracted extensive attention in the field of optics due to their low cost and nontoxic properties. However, the targeted synthesis of specific properties of complex and unknown structures such as CDs remains a daunting challenge. In this study, the powerful nonlinear fitting ability of machine learning was used to explore the afterglow properties of CDs. The XGBoost algorithm demonstrates high prediction accuracy in determining the optimal excitation wavelength, optimal emission wavelength, and afterglow lifetime. Using Bayesian optimization, we screened and synthesized the CDs-based long afterglow materials with the longest lifetime reported so far by a one-step microwave method. By combining quantum chemical calculations with experimental data, we revealed the structure-function relationship between CDs and their precursors through electron-hole analysis. These results show that machine learning can establish nonlinear correlations between precursors and materials with unknown structures, clarify their intrinsic relationships, simplify the material design process, and thus accelerate the development of advanced materials.
Collapse
Affiliation(s)
- Hongwei Yang
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhun Ran
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yimeng Luo
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Siyuan Liu
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weizhe Xu
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinkun Liu
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianghu Cui
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Bingfu Lei
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Chaofan Hu
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianle Zhuang
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yong Xiao
- Key Laboratory for Biomass Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Liu C, Zhu X, Liu Y, Sun W, Wang H, Bao X, Li H, Yuan X. Carbon Dot-Based Composite with Color Excitation-Dependent Room-Temperature Phosphorescence for Advanced Optical Encryption and Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22409-22416. [PMID: 39375876 DOI: 10.1021/acs.langmuir.4c03247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The phenomenon of multicolor afterglow emission has attracted considerable attention in information encryption, bioimaging, and sensing. Consequently, there is a growing demand for the development of multicolor afterglow and phosphorescence switching methods utilizing carbon dot (CD) materials. Herein, multicolor room-temperature phosphorescence (RTP) emission in CD-based materials (PM-CD@BA composite) was achieved by developing multiple emission centers and tuning the excitation wavelength. The color of the afterglow observed in this composite covered from the deep-blue to the green region. The experimental results reveal that under heating treatment, the CDs embedded in inorganic boric acid/B2O3 matrix materials and a rigid framework generated in the composite system effectively suppressed the nonradiative transition and promoted the RTP emission. Finally, high-resolution multilevel RTP 2D code data encryption was realized by inkjet printing technology. The developed concepts of information encryption and anticounterfeiting exhibit the significant potential of CD-based afterglow materials applied in advanced optical applications.
Collapse
Affiliation(s)
- Chengkun Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xiaodong Zhu
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Yu Liu
- China Germanium Co., Ltd, Nanjing 211200, China
| | - Wenquan Sun
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Hui Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xin Bao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hui Li
- Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022, China
| | - Xi Yuan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
11
|
Liang YC, Shao HC, Liu KK, Cao Q, Jiang LY, Shan CX, Kuang LM, Jing H. Thermally Enhanced Phosphorescent Carbon Nanodots for Monitoring Cold-Chain Logistics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312218. [PMID: 38716754 DOI: 10.1002/smll.202312218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/21/2024] [Indexed: 10/04/2024]
Abstract
Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hao-Chun Shao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Quantum Materials and Physics Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Quantum Materials and Physics Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Le-Man Kuang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Hui Jing
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
12
|
Zhang X, Suo H, Guo Y, Chen J, Wang Y, Wei X, Zheng W, Li S, Wang F. Continuous tuning of persistent luminescence wavelength by intermediate-phase engineering in inorganic crystals. Nat Commun 2024; 15:6797. [PMID: 39122769 PMCID: PMC11316030 DOI: 10.1038/s41467-024-51180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Multicolor tuning of persistent luminescence has been extensively studied by deliberately integrating various luminescent units, known as activators or chromophores, into certain host compounds. However, it remains a formidable challenge to fine-tune the persistent luminescence spectra either in organic materials, such as small molecules, polymers, metal-organic complexes and carbon dots, or in doped inorganic crystals. Herein, we present a strategy to delicately control the persistent luminescence wavelength by engineering sub-bandgap donor-acceptor states in a series of single-phase Ca(Sr)ZnOS crystals. The persistent luminescence emission peak can be quasi-linearly tuned across a broad wavelength range (500-630 nm) as a function of Sr/Ca ratio, achieving a precision down to ~5 nm. Theoretical calculations reveal that the persistent luminescence wavelength fine-tuning stems from constantly lowered donor levels accompanying the modified band structure by Sr alloying. Besides, our experimental results show that these crystals exhibit a high initial luminance of 5.36 cd m-2 at 5 sec after charging and a maximum persistent luminescence duration of 6 h. The superior, color-tunable persistent luminescence enables a rapid, programable patterning technique for high-throughput optical encryption.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hao Suo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- College of Physics Science & Technology, Hebei University, Baoding, 071002, China
| | - Yang Guo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jiangkun Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- College of Physics Science & Technology, Hebei University, Baoding, 071002, China
| | - Xiaohe Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Shuohan Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Ai L, Xiang W, Xiao J, Liu H, Yu J, Zhang L, Wu X, Qu X, Lu S. Tailored Fabrication of Full-Color Ultrastable Room-Temperature Phosphorescence Carbon Dots Composites with Unexpected Thermally Activated Delayed Fluorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401220. [PMID: 38652510 DOI: 10.1002/adma.202401220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The development of single-system materials that exhibit both multicolor room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) with tunable after glow colors and channels is challenging. In this study, four metal-free carbon dots (CDs) are developed through structural tailoring, and panchromatic high-brightness RTP is achieved via strong chemical encapsulation in urea. The maximum lifetime and quantum yield reaches 2141 ms and 56.55%, respectively. Moreover, CDs-IV@urea, prepared via coreshell interaction engineering, exhibits a dual afterglow of red RTP and green TADF. The degree of conjugation and functional groups of precursors affects the binding interactions of the nitrogen cladding on CDs, which in turn stabilizes triplet energy levels and affects the energy gap between S1 and T1 (ΔEST) to induce multicolor RTP. The enhanced wrapping interaction lowers the ΔEST, promoting reverse intersystem crossing, which leads to phosphorescence and TADF. This strong coreshell interaction fully stabilizes the triplet state, thus stabilizing the material in water, even in extreme environments such as strong acids and oxidants. These afterglow materials are tested in multicolor, time, and temperature multiencryption as well as in multicolor in vivo bioimaging. Hence, these materials have promising practical applications in information security as well as biomedical diagnosis and treatment.
Collapse
Affiliation(s)
- Lin Ai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjuan Xiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiping Xiao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Huimin Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingkun Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| | - Linlin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xueting Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
14
|
Li J, Zhou H, Jin S, Xu B, Teng Q, Li C, Li J, Li Q, Gao Z, Zhu C, Wang Z, Su W, Yuan F. Achieving Bright and Long-Lived Aqueous Room-Temperature Phosphorescence of Carbon Nitrogen Dots Through In Situ Host-Guest Binding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401493. [PMID: 38422537 DOI: 10.1002/adma.202401493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Indexed: 03/02/2024]
Abstract
The development of bright and long-lived aqueous room-temperature phosphorescent (RTP) materials holds paramount importance in broadening the application scope of RTP material system. However, the conventional RTP materials usually exhibit low efficiency and short lifetime in aqueous solution. Herein, an in situ host-guest strategy is proposed to achieve cyanuric acid (CA)-derived phosphorescent carbon nitrogen dots (CNDs) composite (CNDs@CA) that demonstrates a significant enhancement of both quantum yield (QY) and lifetime mediated by water. Detailed investigations reveal that the robust hydrogen bonding networks between CNDs@CA and water effectively stabilize triplet excitons and suppress nonradiative decays, as well as facilitate efficient energy transfer from CA to CNDs, thereby prolonging the lifetime and enhancing the efficiency of RTP. The phosphorescent QY and lifetime of CNDs@CA can be increased to 26.89% (3.9-fold increase) and 951.25 ms (5.5-fold increase), respectively, with the incorporation of 50 wt% water under ambient conditions. Even in fully aqueous environments (with up to 400 wt% water added), CNDs@CA exhibits persistent water-boosted RTP properties, demonstrating exceptional stability. The robust water-boosted RTP property of CNDs@CA in aqueous solutions presents significant potential for high signal-to-noise ratio afterglow bioimaging as well as advanced information encryption.
Collapse
Affiliation(s)
- Jie Li
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Heng Zhou
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Shan Jin
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Bin Xu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Qian Teng
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chenhao Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jinsui Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Qijun Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhenhua Gao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chaofeng Zhu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Zifei Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
15
|
Liang YC, Shao HC, Liu KK, Cao Q, Deng Y, Hu YW, Yang K, Jiang LY, Shan CX, Kuang LM, Jing H. Visualizing Motion Trail via Phosphorescence Carbon Nanodots-Based Delay Display Array. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26643-26652. [PMID: 38716902 DOI: 10.1021/acsami.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
A scene that contains both old and instant events with a clear motion trail is visually intriguing and dynamic, which can convey a sense of change, transition, or evolution. Developing an eco-friendly delay display system offers a powerful tool for fusing old and instant events, which can be used for visualizing motion trails. Herein, we brighten triplet excitons of carbon nanodots (CNDs) and increase their emission yield by a multidimensional confinement strategy, and the CND-based delay display array is demonstrated. The intense confinement effects via multidimensional confinement strategy suppress nonradiative transitions, and 240% enhancement in the phosphorescence efficiency and 260% enhancement in the lifetime of the CNDs are thus realized. Considering their distinctive phosphorescence performances, a delay display array containing a 4 × 4 CND-based delay lighting device is demonstrated, which can provide ultralong phosphorescence over 7 s, and the motion that occurred in different timelines is recorded clearly. This finding will motivate the investigation of phosphorescent CNDs in motion trail recognition.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hao-Chun Shao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Wei Hu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Kun Yang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Le-Man Kuang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Hui Jing
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
16
|
Zhang Q, Xu S, Zhang L, Yang L, Jiang C. Multiemitting Ultralong Phosphorescent Carbonized Polymer Dots via Synergistic Enhancement Structure Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400781. [PMID: 38552147 PMCID: PMC11095232 DOI: 10.1002/advs.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/03/2024] [Indexed: 05/16/2024]
Abstract
Advancing a metal-free room temperature phosphorescent (RTP) material that exhibits multicolor emission, remarkable RTP lifetime, and high quantum yield still faces the challenge of achieving intersystem crossing between singly and triplet excited states, as well as the rapid decay of triplet excited states due to nonradiative losses. In this study, a novel strategy is proposed to address these limitations by incorporating o-phenylenediamine, which generates multiple luminescent centers, and long-chain polyacrylic acid to synthesize carbonized polymer dots (CPDs). These CPDs are then embedded in a rigid B2O3 matrix, effectively limiting nonradiative losses through the synergistic effects of polymer cross-linking and the rigid matrix. The resulting CPD-based materials exhibit remarkable ultralong phosphorescence in shades of blue and lime green, with a visible lifetime of up to 49 s and a high phosphorescence quantum yield. Simultaneously, this study demonstrates the practical applicability of these excellent material properties in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Qipeng Zhang
- Institute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Department of ChemistryUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Shihao Xu
- Institute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- State Key Laboratory of Transducer TechnologyChinese Academy of SciencesHefeiAnhui230031China
| | - Lanpeng Zhang
- Institute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- Department of ChemistryUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Liang Yang
- Institute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- State Key Laboratory of Transducer TechnologyChinese Academy of SciencesHefeiAnhui230031China
| | - Changlong Jiang
- Institute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhui230031China
- State Key Laboratory of Transducer TechnologyChinese Academy of SciencesHefeiAnhui230031China
| |
Collapse
|
17
|
Shi M, Gao Q, Rao J, Lv Z, Chen M, Chen G, Bian J, Ren J, Lü B, Peng F. Confinement-Modulated Clusterization-Triggered Time-Dependent Phosphorescence Color from Xylan-Carbonized Polymer Dots. J Am Chem Soc 2024; 146:1294-1304. [PMID: 38054299 DOI: 10.1021/jacs.3c07034] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Achieving time-dependent phosphorescence color (TDPC) in organic materials is attractive but extremely challenging due to the nonradiative decay and modulation puzzle of triplet state. Herein, xylan, a hemicellulose waste from the paper mill, was used to construct carbonized polymer dots (CPDs) with clusterization-triggered room-temperature phosphorescence (RTP). CPDs were endowed with tuneable triplet energy levels by through-space conjugation of heteroatom groups, which could be confined in silica to simultaneously activate surface oxide-related low-energy and cross-linked core N-related high-energy emissive centers. Thus, the blue emissive center with a lifetime of 425.6 ms and green emissive center with a longer lifetime of 1506 ms coexisted in the confined CPDs; the former was the dominant contribution to RTP at first, and the latter became dominant over time, leading to a typical TDPC evolution with large color contrast from blue to blue-green and then to green. Meanwhile, the TDPC could remain unobstructed after the confined CPDs were soaked in water for more than a month. The CPDs were successfully applied in location and deformation imaging of hydrogel and advanced dynamic information encryption and anticounterfeiting. The work may shed new light on the design of TDPC materials and broaden the high-value use of paper-mill waste xylan.
Collapse
Affiliation(s)
- Meichao Shi
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qian Gao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jun Rao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Lv
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mingxing Chen
- Analytical Instrumentation Center of Peking, Peking University Beijing 100871, China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
18
|
He X, Zheng Y, Hu C, Lei B, Zhang X, Liu Y, Zhuang J. The afterglow of carbon dots shining in inorganic matrices. MATERIALS HORIZONS 2024; 11:113-133. [PMID: 37856234 DOI: 10.1039/d3mh01034a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Yihao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chaofan Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jianle Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Yu J, Sun Z, Ma H, Wang C, Huang W, He Z, Wu W, Hu H, Zhao W, Zhu WH. Efficient Visible-Light-Activated Ultra-Long Room-Temperature Phosphorescence Triggered by Multi-Esterification. Angew Chem Int Ed Engl 2023; 62:e202316647. [PMID: 37968887 DOI: 10.1002/anie.202316647] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
The development of ultra-long room-temperature phosphorescence (UL-RTP) in processable amorphous organic materials is highly desirable for applications in flexible displays, anti-counterfeiting, and bio-imaging. However, achieving efficient UL-RTP from amorphous materials remains a challenging task, especially with activation by visible light and a bright afterglow. Here we report a general and rational molecular-design strategy to enable efficient visible-light-excited UL-RTP by multi-esterification of a rigid large-plane phosphorescence core. Notably, multi-esterification minimizes the aggregation-induced quenching and accomplishes a 'four birds with one stone' possibility in the generation and radiation process of UL-RTP: i) shifting the excitation from ultraviolet light to blue-light through enhancing the transition dipole moment of low-lying singlet-states, ii) facilitating the intersystem crossing process through the incorporation of lone-pair electrons, iii) boosting the decay process of long-lived triplet excitons resulting from a significantly increased transition dipole moment, and iv) reducing the intrinsic triplet nonradiative decay by substitution of high-frequency vibrating hydrogen atoms. All these factors synergistically contribute to the most efficient and stable visible-light-stimulated UL-RTP (lifetime up to 2.01 s and efficiency up to 35.4 % upon excitation at 450 nm) in flexible films using multi-esterified coronene, which allows high-tech applications in single-component time-delayed white light-emitting diodes and information technology based on flashlight-activated afterglow encryption.
Collapse
Affiliation(s)
- Jiahong Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiyu Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Chengyun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, P. R. China
| | - Zikai He
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Wenjun Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Honglong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weijun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
20
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
21
|
Luo X, Tian B, Zhai Y, Guo H, Liu S, Li J, Li S, James TD, Chen Z. Room-temperature phosphorescent materials derived from natural resources. Nat Rev Chem 2023; 7:800-812. [PMID: 37749285 DOI: 10.1038/s41570-023-00536-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have enormous potential in many different areas. Additionally, the conversion of natural resources to RTP materials has attracted considerable attention. Owing to their inherent luminescent properties, natural materials can be efficiently converted into sustainable RTP materials. However, to date, only a few reviews have focused on this area of endeavour. Motivated by this lack of coverage, in this Review, we address this shortcoming and introduce the types of natural resource available for the preparation of RTP materials. We mainly focus on the inherent advantages of natural resources for RTP materials, strategies for activating and enhancing the RTP properties of the natural resources as well as the potential applications of these RTP materials. In addition, we discuss future challenges and opportunities in this area of research.
Collapse
Affiliation(s)
- Xiongfei Luo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongda Guo
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China.
| |
Collapse
|
22
|
Zang J, Jiao F, Wei J, Lou Q, Zheng G, Shen C, Deng Y, Soheyli E, Sahraei R, Yang X, Zang H, Zhou W, Fan W, Wang S, Dong L, Shan CX. Carbon nanodot with highly localized excitonic emission for efficient luminescent solar concentrator. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4117-4126. [PMID: 39635635 PMCID: PMC11501919 DOI: 10.1515/nanoph-2023-0578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 12/07/2024]
Abstract
Luminescent solar concentrators (LSCs) are attractive for the easy operation and high compatibility with building integrated photovoltaics due to their low cost, large-scale and applicability. However, underutilized sunlight in visible wavelengths often impedes the advance of LSCs. Here, we demonstrate an orange-emitting carbon nanodots-based LSC (O-CDs) with excitation concentrated in the visible wavelengths. The orange-emitting carbon nanodots (O-CDs) with highly localized excitonic emission are prepared via atomic condensation of doped pyrrolic nitrogen, delivering a high photoluminescence quantum yield of 80 % and a suitable Stokes shift with absorption spectrum situated in the visible region. The O-CDs are embedded in polyvinylpyrrolidone to obtain a highly transparent, stable and environmentally friendly O-CDs-based LSC. Thanks to efficient utilization of solar radiation in visible areas and well match between the emission of O-CDs and the response bands of photovoltaic cells, the O-CDs-based LSC reveals an optical conversion efficiency of 5.17 %, superior to that of most carbon nanodots-based LSCs. These results provide an effective strategy to develop carbon-based luminescent concentrated materials for architectural integrated photovoltaic technology.
Collapse
Affiliation(s)
- Jinhao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Fuhang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Jianyong Wei
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Guangsong Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Chenglong Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Ehsan Soheyli
- Department of Physics, Faculty of Science, Ilam University, Ilam, Iran
| | - Reza Sahraei
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Xun Yang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Huaping Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Weimin Zhou
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
| | - Wei Fan
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
| | - Shaoyi Wang
- Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Liang P, Zheng Y, Liu F, Shao H, Hu C, Lei B, Zhang X, Liu Y, Zhuang J, Zhang X. General Synthesis of Carbon Dot-Based Composites with Triple-Mode Luminescence Properties and High Stability. JACS AU 2023; 3:2291-2298. [PMID: 37654575 PMCID: PMC10466326 DOI: 10.1021/jacsau.3c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Carbon dot (CD)-based luminescent materials have attracted great attention in optical anti-counterfeiting due to their excellent photophysical properties in response to ultraviolet-to-visible excitation. Hence, there is an urgent need for the general synthesis of CD-based materials with multimode luminescence properties and high stability; however, their synthesis remains a formidable challenge. Herein, CDs were incorporated into a Yb,Tm-doped YF3 matrix to prepare CDs@YF3:Yb,Tm composites. The YF3 plays a dual role, not only serving as a host for fixing rare earth luminescent centers but also functioning as a rigid matrix to stabilize the triplet state of the CDs. Under the excitation of 365 nm ultraviolet light and 980 nm near-infrared light, CDs@YF3:Yb,Tm exhibited blue fluorescence and green room-temperature phosphorescence of CDs and upconversion luminescence of Tm3+, respectively. Due to the strong protection of the rigid matrix, the stability of CDs@YF3:Yb,Tm is greatly improved. This work provides a general synthesis strategy for achieving multimode luminescence and high stability of CD-based luminescent materials and offers opportunities for their applications in advanced anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Ping Liang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Yihao Zheng
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
| | - Fengru Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Huaiyu Shao
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, China
| | - Chaofan Hu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Xuejie Zhang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Jianle Zhuang
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong
Provincial Engineering Technology Research Center for Optical Agriculture,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, China
| | - Xingcai Zhang
- School
of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|