1
|
Guo F, Yang X, Wang P, Bai X, Kong T, Wang M, Gu Z, Song Y. Advances in Single-Crystal Films: Synergistic Insights from Perovskites and Organic Molecules for High-Performance Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412101. [PMID: 39989101 DOI: 10.1002/smll.202412101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Indexed: 02/25/2025]
Abstract
Semiconductor single-crystal thin films are crucial for the advancement of high-performance optoelectronic devices. Despite significant progress in fabricating perovskite and organic single-crystal films, interdisciplinary insights between these domains remain unexplored. This review aims to bridge this gap by summarizing recent advances in fabrication strategies for perovskite and organic molecular single-crystal films. Five preparation methods-solution-phase epitaxy, solid-phase epitaxy, meniscus-induced crystallization, antisolvent-induced crystallization, and space-confined growth-are analyzed with a focus on their principles, functional properties, and distinct advantages. By comparing these approaches across material systems, this review identifies transferable insights that can drive the development of large-scale, high-quality single-crystal films. Furthermore, the optoelectronic applications of these films are explored, including solar cells, photodetectors, light-emitting devices, and transistors, while addressing challenges such as scalability, defect control, and integration. This work highlights the importance of cross-disciplinary innovation and provides an effective pathway for integrating perovskite and organic molecular processing to advance the next generation of single-crystal film technologies.
Collapse
Affiliation(s)
- Fengmin Guo
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Xiaodong Yang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Pengkun Wang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Xintao Bai
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Tianle Kong
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Mengxuan Wang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Zhenkun Gu
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Yanlin Song
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Wang Z, Wu X, Zhang S, Yang S, Gao P, Huang P, Xiao Y, Shen X, Yao X, Zeng D, Jie J, Zhou Y, Yang F, Li R, Hu W. Breaking the mobility-stability dichotomy in organic semiconductors through adaptive surface doping. Proc Natl Acad Sci U S A 2025; 122:e2419673122. [PMID: 40178892 PMCID: PMC12002308 DOI: 10.1073/pnas.2419673122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/01/2025] [Indexed: 04/05/2025] Open
Abstract
Organic semiconductors (OSCs) are pivotal for next-generation flexible electronics but are limited by an intrinsic trade-off between mobility and stability. We introduce adaptive surface doping (ASD), an innovative strategy to overcome this dichotomy in OSCs. ASD's adaptive mechanism accommodates a broad range of dopant concentrations, optimally passivating trap states as needed. This approach significantly lowers the trap energy level from 84 meV to 14 meV above the valence band edge, promoting a transition from hopping to band-like transport mechanisms. ASD boosts carrier mobility by over 60%, reaching up to 30.7 cm2 V-1 s-1, while extending the extrapolated operational lifetime of treated devices beyond 57.5 y. This breakthrough sets a standard in organic electronics, positioning ASD as a powerful method for simultaneously enhancing performance and stability in OSC devices.
Collapse
Affiliation(s)
- Zhaofeng Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Xianshuo Wu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Siyuan Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Shuyuan Yang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Pichao Gao
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Panhui Huang
- Zurich Instruments Aktiengesellschaft, Zurich8005, Switzerland
| | - Yanling Xiao
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou215123, Jiangsu, China
| | - Xianfeng Shen
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Ximeng Yao
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Dong Zeng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials, Soochow University, Suzhou215123, Jiangsu, China
| | - Yecheng Zhou
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou510275, China
| | - Fangxu Yang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Rongjin Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin300072, China
| |
Collapse
|
3
|
Keo P, Yan T, Wang J, Zhang X, Shi Y, Jie J. Anchored epitaxial growth of single-oriented one-dimensional organic nanowires towards their integration into field-effect transistors and polarization-sensitive photodetector arrays. RSC Adv 2025; 15:9891-9898. [PMID: 40165916 PMCID: PMC11956851 DOI: 10.1039/d4ra08354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The deliberate assembly of organic small molecules into single-oriented one-dimensional (1D) nanowires is essential for the large-scale, on-chip integration of organic nanowire-based (opto)electronic devices. However, achieving single-oriented 1D organic nanowires remains a considerable challenge, predominantly attributed to the intricate nucleation and growth behaviors of the molecules. Herein, an anchored epitaxial growth method was developed to facilitate the single-oriented growth of 1D organic nanowires using the parallel nanogrooves on the annealed sapphire as anchoring seed crystal templates. The depth of the nanogrooves was greater than the length of the molecules, enabling the molecules to be embedded into the V-shaped nanogrooves and to form anchored nuclei during the physical vapor deposition process. Subsequently, these nuclei exhibited directional epitaxial growth along the nanogrooves, resulting in the formation of single-oriented 1D organic nanowires. Various organic small molecule 1D nanowires with uniform molecular packing and orientation were obtained and utilized for subsequent device integration. 2,7-Dioctyl[1]benzothiophene (C8-BTBT) was used as a model material, and the flexible organic field-effect transistor (OFET) based on the single C8-BTBT nanowire exhibited a mobility of up to 1.5 cm2 V-1 s-1. Benefiting from high mobility and uniform orientation, the integrated polarization-sensitive photodetector arrays based on 1D C8-BTBT nanowires exhibited a high dichroic ratio of up to 2.83, which was higher than those of some previously investigated 1D nanowires and two-dimensional materials. This work presents new opportunities to fabricate single-oriented 1D organic nanowires for integrated devices.
Collapse
Affiliation(s)
- Phetluengxay Keo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Tingyi Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jinwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Yandi Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China
| |
Collapse
|
4
|
Wu X, Zhu X, Sun L, Zhang S, Ren Y, Wang Z, Zhang X, Yang F, Zhang HL, Hu W. Navigating the transitional window for organic semiconductor single crystals towards practical integration: from materials, crystallization, and technologies to real-world applications. Chem Soc Rev 2025; 54:1699-1732. [PMID: 39716807 DOI: 10.1039/d4cs00987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality. The commercialization trend of organic optoelectronic devices is driving the development of highly integrated OSSCs. Therefore, timely tracking of material requirements, crystallization demands, and key technologies for high integration, along with exploring their limitations and potential pathways, will provide critical guidance during this pivotal transition period. From the perspective of materials properties, multifunctional materials, such as ambipolar charge transport materials, high mobility emission materials and others, aiming at high integration, deserve our attention, and the material design rules are carefully discussed in the first section. Following this, we delve into the controllable growth of large-scale OSSCs based on crystallization thermodynamics and kinetics. Key technologies for achieving high integration are then discussed, with an emphasis on methods for growing wafer-scale organic single crystals and patterning single crystalline arrays. Subsequently, we outline the cutting-edge optoelectronic applications based on OSSCs, including organic logic circuits, electroluminescent displays, and image sensors. Moreover, explicitly recognizing as yet limitations and prospects on the road to 'lab-to-fab' transitions for OSSCs is crucial. Thus, we conclude by offering an objective assessment of key limitations and potential, encompassing aspects such as uniformity, integration density, stability, and driving capability, providing an instructive projection for future advancements.
Collapse
Affiliation(s)
- Xianshuo Wu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Xiaoting Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Lingjie Sun
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Shihan Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiwen Ren
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Zhaofeng Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Xiaotao Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | - Fangxu Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Hao-Li Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
5
|
Wang C, Zhang T, Zhang L, Wang J, Ge M, Hu Y, Huang J, Mei L, Wang T, Chen XK, Du W. Tension Induced Photoluminescence Enhancement in an Organic Single Crystal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403035. [PMID: 39030885 DOI: 10.1002/smll.202403035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/09/2024] [Indexed: 07/22/2024]
Abstract
Organic single crystals possess distinct advantages due to their highly ordered molecular structures, resulting in improved stability, enhanced carrier mobility, and superior optical characteristics. However, their mechanical rigidity and brittleness impede the applications in flexible and wearable optoelectronic devices. Here, photoluminescence (PL) emission from 2,6-diphenylanthracene (DPA) single crystals is studied under tensile strain, which shows PL enhancement by more than two times with a strain of ≈1.42%. Such a tension induced PL enhancement is reversible, exhibiting no clear optical degradations during 100 cycles of bending and recovery processes. Theoretical calculations reveal that the deformation of molecular structure under strain induces a decrease of the dihedral between anthracene and benzene moieties in DPA molecules. Further, the increased molecular conjugation enhances the molecular oscillator strength, leading to the brightened PL emission. Meanwhile, with the decreased dihedral, the molecular vibrations in DPA crystals are suppressed, which can reduce the non-radiative decay rate. In contrast, no tension induced PL enhancement is observed in polycrystalline DPA thin films as the strain can be released via the grain boundaries. This study highlights the superior optical performance of DPA single crystals under strain field, which will provide new possibilities for DPA-based flexible devices.
Collapse
Affiliation(s)
- Chunjiao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Tao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junhui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Maowen Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yidan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jingwei Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le Mei
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xian-Kai Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Liu B, Dong X, Li Y, He Z, Sun H, Wang K, Wang M, Xu M, Miao C, Huang W, Liu J. Centimeter-Scale Assembly of Fractal Organic Crystals with Crisscross Structures for Flexible Photosynapses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404733. [PMID: 39139061 DOI: 10.1002/smll.202404733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Fractal assembly technology enables scalable construction of organic crystal patterns for emerging nanoelectronics and optoelectronics. Here, a polymer-templating assembly strategy is presented for centimeter-scale patterned growth of fractal organic crystals (FOCs). These structures are formed by drop-coating perylene solution directly onto a gelatin-modified surface, resulting in the formation of crisscross fractal patterns. By adjusting the tilt angle of the template, the morphology of FOCs can be effectively controlled, with the diameter distribution of each level branch ranging from hundreds to ten micrometers. The planar FOC device exhibits flexible photoreception and photosynaptic capabilities, with a high specific detectivity of 1.35 × 109 Jones and paired-pulse facilitation (PPF) index of 104%, withstanding a 0.5 cm bending radius during bending test. These findings present a reliable route for large-scale assembly of flexible organic crystalline materials toward neuromorphic electronics.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xuemei Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yinxiang Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Hongchao Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Min Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Min Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Chunyang Miao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
7
|
Ding CY, Zhong YW. Multicolor Electrochemiluminescence of Binary Microcrystals of Iridium and Ruthenium Complexes. Chem Asian J 2024:e202400987. [PMID: 39226114 DOI: 10.1002/asia.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
We here report the multicolor electrochemiluminescence (ECL) of binary microcrystals prepared from a blue-emissive iridium complex 1 and an orange-emissive ruthenium complex 2. These materials display a plate-like morphology with high crystallinity, as demonstrated by microscopic and powder X-ray diffraction analyses. Under light excitation, these microcrystals exhibit gradient emission color changes as a result of the efficient energy transfer between two complexes. When modified on glass carbon electrodes, these microcrystals exhibit tunable ECLs with varied emission colors including sky-blue, white, orange, and red, depending on the doping ratio of complex 2 and the applied potential. Furthermore, organic amines with different molecular sizes are used as the co-reactant to examine their influences on the ECL efficiency of the porous microcrystals of 1. The analysis on the luminance and RGB values of ECL suggests the existence of energy transfer in the generation of multicolor ECLs in these binary crystals.
Collapse
Affiliation(s)
- Chun-Yun Ding
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Xie Z, Liu D, Zhao Z, Gao C, Wang P, Jiang C, Liu X, Zhang X, Ren Z, Yan S, Hu W, Dong H. High Mobility Emissive Excimer Organic Semiconductor Towards Color-Tunable Light-Emitting Transistors. Angew Chem Int Ed Engl 2024; 63:e202319380. [PMID: 38246876 DOI: 10.1002/anie.202319380] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Organic light-emitting transistors (OLETs) are highly integrated and minimized optoelectronic devices with significant potential superiority in smart displays and optical communications. To realize these various applications, it is urgently needed for color-tunable emission in OLETs, but remains a great challenge as a result of the difficulty for designing organic semiconductors simultaneously integrating high carrier mobility, strong solid-state emission, and the ability for potential tunable colors. Herein, a high mobility emissive excimer organic semiconductor, 2,7-di(2-anthryl)-9H-fluorene (2,7-DAF) was reasonably designed by introducing a rotatable carbon-carbon single bond connecting two anthracene groups at the 2,7-sites of fluorene, and the small torsion angles simultaneously guarantee effective conjugation and suppress fluorescence quenching. Indeed, the unique stable dimer arrangement and herringbone packing mode of 2,7-DAF single crystal enables its superior integrated optoelectronic properties with high carrier mobility of 2.16 cm2 ⋅ V-1 ⋅ s-1 , and strong excimer emission with absolute photoluminescence quantum yield (PLQY) of 47.4 %. Furthermore, the voltage-dependent electrically induced color-tunable emission from orange to blue was also demonstrated for an individual 2,7-DAF single crystal based OLETs for the first time. This work opens the door for a new class of high mobility emissive excimer organic semiconductors, and provides a good platform for the study of color-tunable OLETs.
Collapse
Grants
- 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology
- 52233010, 52103245, 61890943, 22021002, 51725304 and 22305252 Innovative Research Group Project of the National Natural Science Foundation of China
- YSBR-053 Training Program for Excellent Young Innovators of Changsha
- 2023YFB3609000, 2022YFB3603800, 2018YFA0703200 Ministry of Science and Technology of China
- 52233010, 52103245, 22021002, and 22305252 Natural Science Foundation of China
- YSBR-053 CAS Project for Young Scientists in Basic Research
- BNLMS-CXXM-202012 Beijing National Laboratory for Molecular Sciences
- 2023M733555 China Postdoctoral Science Foundation
- GZB20230771 Postdoctoral Fellowship Program of CPSF
Collapse
Affiliation(s)
- Ziyi Xie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|