1
|
Hou J, Ji S, Ma X, Gong B, Wang T, Xu Q, Cao H. Functionalized MXene composites for protection on metals in electric power. Adv Colloid Interface Sci 2025; 341:103505. [PMID: 40179536 DOI: 10.1016/j.cis.2025.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Metals used in electric power suffer from icing, wear, and corrosion problems, resulting in high energy consumption, economic losses, security risks, and increased CO2 emission. To address these problems, researchers have turned to two-dimensional (2D) transition metal carbide or nitride (MXene) materials, which possess strong near-infrared adsorption, photothermal conversion, shear ability, low friction coefficient, and impermeability. These properties make MXene a promising candidate for surface protection on metals in electric power, including anti-icing, anti-wear, and anti-corrosion applications. However, the comprehensively protective ability and the promising application of MXene in electric power have not yet been reported. In this review, recent progress in MXene-based composites for anti-icing, anti-wear, and anti-corrosion in electric power is summarized to understand the protective mechanisms and the promising applications. First, the chemical and structure of MXene are briefly introduced, followed by a summary of its intrinsic properties. Next, the latest research on deicing MXene composite coatings, anti-wear MXene-based composites and coatings, and anti-corrosive MXene coatings, along with the corresponding mechanisms, is discussed. Finally, the challenges and opportunities of MXene-based composites in electric power are highlighted. This review provides guidance for understanding the comprehensively protective abilities of MXene and rationally designing MXene-based materials used in electric power.
Collapse
Affiliation(s)
- Jiale Hou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shuxian Ji
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaoqing Ma
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Baolong Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Tiange Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaijie Cao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China.
| |
Collapse
|
2
|
Wang T, Feng H, Cao L, Zhao Z, Li W, Chen S. Mechanism and design strategy of ice-phobic surface: A comprehensive review. Adv Colloid Interface Sci 2025; 341:103478. [PMID: 40139068 DOI: 10.1016/j.cis.2025.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/19/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Ice accumulation on the surface can significantly impact the normal operation of industrial facilities and even lead to damage, resulting in economic losses. Modifying the physical structure and chemical state of the surface can effectively mitigate ice nucleation, growth, and adhesion processes. Building upon previous definitions of ice-phobic surfaces, this review provides a refined definition of ice-phobicity and reviews recent advancements in ice-phobic surfaces research. Firstly, ice-phobic mechanisms are summarized, which including principles of ice formation, theory of solid-liquid wettability of interface, and theory of solid-solid interface mechanics. Subsequently, strategies for developing near-term ice-phobic surfaces are discussed encompassing superhydrophobic surfaces, interfacial water induced surfaces, low adhesion surfaces, as well as thermal de-icing surfaces. Furthermore, a comparison is made regarding test detail definitions and commonly used test methods in researching ice-phobic surfaces to promote methodological uniformity. Lastly, the latest research findings on four distinct ice-phobic surfaces are highlighted, while also prospecting the challenges to be considered in future ice-phobic surface design.
Collapse
Affiliation(s)
- Tong Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Huimeng Feng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Lin Cao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhipeng Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Key Laboratory of Marine Extreme Environmental Materials, Qingdao 266404, China.
| |
Collapse
|
3
|
Ahmed N, Xiong X, Zhang L, Sattar F, Chen B, Jing T, Cui J. Designing the Future of Cooling: Superhydrophobic Passive Daytime Radiative Cooling Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27629-27650. [PMID: 40304596 DOI: 10.1021/acsami.5c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Passive daytime radiative cooling (PDRC) is a sustainable technology that reduces temperature by utilizing materials with high solar reflectance and thermal emittance to provide cooling without electricity. However, its performance is often compromised by dust and environmental contamination, with even minimal dust deposition (0.1 mg/cm2) reducing cooling capacity by ∼7.1 W/m2. To overcome this, superhydrophobicity has been integrated into PDRC systems through various techniques and materials. This Review explores superhydrophobic PDRC (SH-PDRC) systems, examining their principles, preparation strategies, and material innovations. Advanced fabrication methods, including electrohydrodynamics, phase separation, chemical vapor deposition, and layered patterns, have enabled the development of hierarchical structures that optimize solar reflectance, infrared emissivity, and water repellency. A variety of polymeric, inorganic, and hybrid materials is used to achieve durability, thermal stability, and environmental resilience. These materials are tailored to enhance performance for long-term use in extreme conditions, ensuring a high radiative cooling efficiency. SH-PDRC systems have potential applications in wearable textiles, agricultural greenhouses, and food preservation, demonstrating their versatility. By summarizing recent progress and challenges, this Review aims to provide researchers with clear guidelines for fabricating advanced SH-PDRC systems that achieve enhanced cooling performance, environmental durability, and efficiency, paving the way for designing the future of cooling.
Collapse
Affiliation(s)
- Numan Ahmed
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou, Huzhou 313000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou, Huzhou 313000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Luzhi Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou, Huzhou 313000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Fazli Sattar
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou, Huzhou 313000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Bo Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou, Huzhou 313000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Tu Jing
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou, Huzhou 313000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou, Huzhou 313000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
4
|
Xia X, Chen H, Wang Y, Yu H, Zou B, Zhang Y. Robust Stick-and-Play Photothermal Icephobic Film with Bioinspired Insulation Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2502687. [PMID: 40091403 PMCID: PMC12079502 DOI: 10.1002/advs.202502687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/19/2025] [Indexed: 03/19/2025]
Abstract
The integration of photothermal de-icing and micro/nanostructured anti-icing technologies into a surface is regarded as a promising solution to solve ice accretion aggravated. Unfortunately, light-dependent heat effect and large-scale production of micro/nano building still challenge the anti-icing ability and applications for real-world. Herein, a stick-and-play film embedded with bioinspired thermal-management cells is developed. Inspired by the hollow framework of lotus seedpods, thermal-management hydrophobic microcells (THMC) are designed by incorporating candle soot into insulating porous diatomite. Once embedding such microcells into PDMS substrate, the resulting THMC film delivers effective photothermal effect since the synergy of photothermal and insulation design. COMSOL simulations demonstrate thermal management effect of the "framework" and "photothermal seeds," which causes increases in the heating rate by 20% and equilibrium temperature by 10%. Moreover, the self-similarity structure of THMCs enable them to have durable hydrophobicity (148.7°) and photothermal effect (79.9 °C) even after repeated abrasions. When a stick-and-play functionality is imparted by designing adjustable milli-suction cups, this THMC film could adhere effectively to various surfaces despite dry and humid conditions while maintaining efficient anti-/de-icing capabilities. This study provides a designing strategy of robust and efficient photothermal films constructed from THMC and finds flexible use for diverse surfaces.
Collapse
Affiliation(s)
- Xiaohu Xia
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and MaterialsGuangxi UniversityNanning530004P. R. China
| | - Haotian Chen
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and MaterialsGuangxi UniversityNanning530004P. R. China
| | - Yiming Wang
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and MaterialsGuangxi UniversityNanning530004P. R. China
| | - Haidong Yu
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and MaterialsGuangxi UniversityNanning530004P. R. China
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and MaterialsGuangxi UniversityNanning530004P. R. China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and MaterialsGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
5
|
Ren Z, Niu S, Gao H, Wang C, Liu X, Wang K, Wang Q. Bioinspired Structured Metal-Insulator-Metal Metamaterials with Gradient Resonator for High Efficiency and Solar Selective Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501698. [PMID: 40289491 DOI: 10.1002/smll.202501698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Efficient utilization of solar energy is crucial in addressing energy challenges. Solar selective absorption materials, like metal-insulator-metal (MIM) absorbers, are highly efficient in converting solar energy to heat due to their strong solar absorption and minimal radiation loss. However, traditional planar MIM absorbers have narrow solar absorption bands and limited spectral tuning, restricting their practical use. Inspired by marine diatoms, this study designs and fabricates a structured MIM metamaterial (SMM) to achieve omnidirectional and polarization-insensitive selective absorption. The SMM features a concave-structured design with gradient resonance cavities, significantly expanding absorption across the solar spectrum and enabling tailored electromagnetic responses for selective absorption in different wavelength bands. With a thickness of just 180 nm, the SMM absorber shows outstanding selective absorption, reaching up to 91% absorptivity in the 0.3-2.5 µm and emissivity only 0.09 in the infrared range. The SMM absorber also exhibits size insensitivity, reducing design constraints in practical applications. In terms of photothermal conversion, the SMM absorber demonstrates stable performance, achieving a surface temperature of 165 °C under 3 sun illumination. Compared to planar MIM structures, this structured design significantly enhances solar absorption without affecting infrared emissivity, offering a novel approach to improving selective absorption performance.
Collapse
Affiliation(s)
- Zhiyu Ren
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Sijia Niu
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Haixiang Gao
- School of Metallurgy, Northeastern University, Shenyang, 110819, China
| | - Chenchong Wang
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, China
| | - Xiaoming Liu
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Kai Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China
| |
Collapse
|
6
|
Gao H, Yin T, Ma J, Zhou Y, Li K, Bao J. Research Progress of Photothermal Superhydrophobic Surfaces for Anti-Icing/Deicing. Molecules 2025; 30:1865. [PMID: 40363672 PMCID: PMC12073101 DOI: 10.3390/molecules30091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Photothermal superhydrophobic surfaces with micro/nano-structured morphologies have emerged as promising candidates for anti-icing and deicing applications due to their exceptional water repellency and efficient solar-to-thermal conversion. These surfaces synergistically integrate the passive icephobicity of superhydrophobic coatings with the active heating capability of photothermal materials, offering energy-efficient and environmentally friendly solutions for sectors such as aviation, wind energy, and transportation. Hence, they have received widespread attention in recent years. This review provides a comprehensive overview of recent advances in photothermal superhydrophobic coatings, focusing on their anti-icing/deicing mechanisms, surface wettability, and photothermal conversion performance for anti-icing/deicing applications. Special emphasis is placed on material categories, including metals and their compounds, carbon-based materials, and polymers, analyzing their structural features and application effectiveness. Furthermore, the application of anti-icing/deicing in various fields is described. Finally, perspectives on future development are presented, including pursuing fluorine-free, cost-effective, and multifunctional coatings to meet the growing demand for innovative, sustainable anti-icing/deicing technologies.
Collapse
Affiliation(s)
- Hui Gao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (H.G.)
| | - Tianjun Yin
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (H.G.)
| | - Jieyin Ma
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (H.G.)
| | - Yuqin Zhou
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (H.G.)
- College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
| | - Ke Li
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (H.G.)
| | - Jiayi Bao
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China; (H.G.)
| |
Collapse
|
7
|
Peng K, Chen H, Ye J, Guo X, Ran Y, Su L, Niu M, Lu D, Wang H. Tailoring SiC Nanowire Aerogel in Phase Change Composites with Multiresponsive Thermal Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22871-22881. [PMID: 40183926 DOI: 10.1021/acsami.5c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Phase change materials have demonstrated attractive application prospects in various thermal energy storage and management systems. However, the design and manufacture of high-performance phase change composites with tunable thermal properties and multiresponsive thermal energy storage remain a great challenge. Herein, a SiC nanowire aerogel with tailorable porosity and surface was used to encapsulate stearic acid for fabricating phase change composites. The porosity of the SiC nanowire aerogel could be facilely tailored by a uniaxial hot-pressing method, and its surface could be coated with C or SiO2 via chemical vapor deposition or the oxidation method. Meanwhile, the latent heat and thermal conductivity of the phase change composites were tuned by tailoring the porosity and surface of the SiC nanowire aerogel. The resulting phase change composites exhibit ultrahigh latent heat retention (96.9%) and excellent shape stability, cycling stability, and recyclability. In addition, the multiresponsiveness of the phase change composites to temperature, light, electricity, and microwave endows them with the ability to harvest thermal, solar, electric energy, and especially microwave radial energy. This study provides a promising strategy for designing and tailoring phase change composites for multienergy utilization.
Collapse
Affiliation(s)
- Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honglin Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingying Ye
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingwang Guo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanni Ran
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - De Lu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Mei J, Liao H, Huang H, Tu H, Yao F, Zhao S, Wang J. High-Performance Electromagnetic Interference Shielding and Photothermal Superhydrophobicity Achieved by Nuclear Sheath Stacking in Three-Dimensional Honeycomb Structure and Multi-Level Heterogeneous Interfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20270-20283. [PMID: 40111128 DOI: 10.1021/acsami.5c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The unpredictable and extremely cold weather conditions, combined with increasing electromagnetic pollution, have posed a serious threat to human health and socioeconomic well-being. However, existing deicing technologies and electromagnetic interference (EMI) materials lack adaptability to low-temperature, high-humidity environments. This study developed a lightweight asymmetric layered composite foam by integrating multilevel core-shell structures with heterogeneous core-shell fillers into a melamine foam (MF) matrix. Designed to leverage the differences in conductivity and dielectric constant between multiscale heterogeneous interfaces, this composite foam enhances the movement of free electrons and the relative displacement between electrons and atomic nuclei, thereby achieving efficient polarization and conduction losses. More than that, the unique feature of this composite lies in its ″absorption-absorption-reflection-reabsorption″ multilevel structure, enabling the composite to achieve an EMI shielding effectiveness of 70.7 dB in the X-band (8.2-12.4 GHz) and an absorption efficiency of 79.8%. Benefiting from the destructive interference of electromagnetic waves within the layered foam structure, the asymmetric composite foam (MHC-MNPF-ACN) exhibits superior absorption-dominated EMI shielding performance with excellent frequency selectivity. Additionally, by anchoring dual-size fillers onto the MF skeleton via impregnation adsorption to form a honeycomb-like 3D ″light-trapping″ network. This not only allows the composite foam to reach 93.6 °C under 1 sun, enabling rapid deicing within 160 s but also endows it with excellent superhydrophobicity and mechanical properties. These features provide a novel and multifunctional integrated approach to the fabrication of frequency-selective, absorption-dominated EMI shielding materials, proposing a new strategy for the protection of outdoor electromagnetic facilities in extremely low-temperature environments.
Collapse
Affiliation(s)
- Jie Mei
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Huimin Liao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Hongjian Huang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Hao Tu
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Fang Yao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Shuai Zhao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
9
|
Yang X, Huang W, Dong H, Zha JW. Smart Polydimethylsiloxane Materials: Versatility for Electrical and Electronic Devices Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500472. [PMID: 40091339 DOI: 10.1002/adma.202500472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Bio-inspired autonomous smart polydimethylsiloxane (PDMS) and its composite materials hold immense promise for a wide range of applications in electrical and electronic devices. These materials mimic natural protective mechanisms with self-healing, self-reporting, and self-cleaning properties, enabling innovative and efficient device design. Smart PDMS materials autonomously activate repair mechanisms in response to mechanical or electrical damage, achieving rapid structural and functional recovery and preventing failure due to the accumulation of minor damage. These materials can intuitively report their status through striking color changes, fluorescence, or luminescence when exposed to external stimuli, providing efficient and practical visual feedback for device health monitoring and fault warning. They also have the capacity to effectively eliminate contaminants and ice deposits from their surfaces, thereby ensuring stable device operation. This review aims to introduce the current research progress in self-healing, self-cleaning, and self-reporting PDMS materials. The review systematically discusses the principles, methodological innovations, mechanistic analysis, and applications of these materials, highlighting their significant potential for applications in the field of electrical and electronic devices. Moreover, the review provides an in-depth analysis of the key challenges facing current research and offers insights into future research directions and strategies.
Collapse
Affiliation(s)
- Xing Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenjie Huang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hao Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jun-Wei Zha
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528300, P. R. China
| |
Collapse
|
10
|
Jiang J, Shen Y, Xu Y, Wang Z, Liu S, Lin Y, Tao J, Chen Z. Excellent Dynamic Non-Wetting Performance Induced by Asymmetric Structure at Low Temperatures: Retraction Actuation and Nucleation Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500590. [PMID: 40019370 PMCID: PMC12021054 DOI: 10.1002/advs.202500590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/16/2025] [Indexed: 03/01/2025]
Abstract
Asymmetric structures have exhibited significant advantages in regulating wetting behavior. Nevertheless, the influence of this unique structural feature on anti-icing performance remains to be further explored. In this work, static/dynamic anti-icing performance is investigated on the asymmetric superhydrophobic structures fabricated by micro-milling combined with electrodeposition. Notably, although the reduction of the degree of asymmetry increases the droplet adhesion force by augmenting the solid-liquid interface, asymmetric structures can still enable the droplet to bounce off the surface through the horizontal Laplace force generated by the contact angle difference between the two sides of the droplet. On this basis, a dynamic behavior criterion for the droplet to detach from the surface is established at low temperatures. Molecular dynamics simulation indicates that the asymmetric structure can reduce the icing probability on the precursor film by inhibiting the nucleation and growth process of water molecules, decreasing the liquid-ice interface, and reducing the adhesion under low temperatures. Generally, specific asymmetric structures with nucleation inhibition characteristics can reduce droplet adhesion and increase the driving force during the droplet retraction stage by enhancing the horizontal Laplace force, effectively improving the dynamic non-wetting performance of the surface at even -40 °C.
Collapse
Affiliation(s)
- Jiawei Jiang
- State Key Laboratory of Mechanics and Control for Aerospace StructuresNanjing University of Aeronautics and AstronauticsNo. 29 Yudao StreetNanjing210016P. R. China
| | - Yizhou Shen
- State Key Laboratory of Mechanics and Control for Aerospace StructuresNanjing University of Aeronautics and AstronauticsNo. 29 Yudao StreetNanjing210016P. R. China
| | - Yangjiangshan Xu
- Beijing Blue Sky Innovation Center for Frontier ScienceYard 11, anningzhuang Road, Haidian DistrictBeijing100080P. R. China
| | - Zhen Wang
- State Key Laboratory of Mechanics and Control for Aerospace StructuresNanjing University of Aeronautics and AstronauticsNo. 29 Yudao StreetNanjing210016P. R. China
| | - Senyun Liu
- Key Laboratory of Icing and Anti/De‐icingChina Aerodynamics Research and Development Center6 Erhuan South Rd.Mianyang621000P. R. China
| | - Yanyan Lin
- School of Materials Science and EngineeringNanjing Institute of TechnologyNanjing211167P. R. China
| | - Jie Tao
- State Key Laboratory of Mechanics and Control for Aerospace StructuresNanjing University of Aeronautics and AstronauticsNo. 29 Yudao StreetNanjing210016P. R. China
| | - Zhong Chen
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
11
|
Liu Y, Pan S, Xia W, Qin P, Wang W, Liu Q, Chen X, Ma L, Ding S, Wang Q. Strong interaction between plasmon and topological surface state in Bi 2Se 3/Cu 2-xS nanowires for solar-driven photothermal applications. SCIENCE ADVANCES 2025; 11:eadt2884. [PMID: 40073118 PMCID: PMC11900859 DOI: 10.1126/sciadv.adt2884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in Bi2Se3/Cu2-xS nanowires. This hybrid, which Cu2-xS nanosheets were grown on Bi2Se3 nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption. A series of tests reveals the strong resonance coupling, TSS-induced hot electron injection, and plasmon-induced hot hole relaxation within the hybrids, endowing the Bi2Se3/Cu2-xS with excellent photothermal performance. By integrating the hybrids into a hydrogel with a thermoelectric module, the Bi2Se3/Cu2-xS evaporator achieves a remarkable water evaporation rate of 3.67 kilograms per square meter per hour with a solar-to-vapor efficiency of 95.2%, and a maximum output power of 1.078 watts per square meter under simulated sunlight irradiation. Moreover, a conical mirror was introduced to the device, which greatly enhances the evaporation rate and maximum output power without additional energy input.
Collapse
Affiliation(s)
- Yang Liu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Shengfeng Pan
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wenxi Xia
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Pingli Qin
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wei Wang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Qingbo Liu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xiangbai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Sijing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, P. R. China
| | - Ququan Wang
- Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
12
|
Liu Q, Wang Y, Liu X, Li Y, Yu E, Sun Z, Wang L, Zhuang G, Yu J, Liu S. Robust and Ultra-Efficient Anti-/De-Icing Surface Engineered Through Photo-/Electrothermal Micro-Nanostructures With Switchable Solid-Liquid States. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410941. [PMID: 39568235 DOI: 10.1002/adma.202410941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/05/2024] [Indexed: 11/22/2024]
Abstract
Photothermal superhydrophobic surfaces present a promising energy-saving solution for anti-/de-icing, offering effective icing delay and photothermal de-icing capabilities. However, a significant challenge in their practical application is the mechanical interlocking of micro-nanostructures with ice formed from condensed water vapor, leading to meltwater retention and compromised functionality post-de-icing. Here, a robust photo-/electrothermal icephobic surface with dynamic phase-transition micro-nanostructures are demonstrated through laser microfabrication and surface engineering. The engineered surface exhibits ultra-efficient, long-term stable anti-/de-icing performance and excellent superhydrophobicity, demonstrating an icing delay of ≈ 1250 s, photothermal de-icing in 8 s, water contact angle of 165°, and sliding angle of 0.2°. Furthermore, the surface maintains efficient anti-/de-icing ability and water repellency after 400 linear abrasion cycles under 0.93 MPa. Remarkably, under simulated natural icing conditions, where water vapor freezes within the micro-nanostructures causing mechanical interlocking, the surface remains entirely non-wetted after photo-/electrothermal de-icing, maintaining superhydrophobicity and effectiveness for continued anti-/de-icing. This exceptional performance is attributed to the designed phase-transition micro-nanostructures that liquefy during de-icing, significantly reducing interactions with water molecules, as quantitatively validated by molecular dynamics simulations. This work provides new perspectives and methodologies for designing and creating innovative, high-performance anti-/de-icing surfaces.
Collapse
Affiliation(s)
- Qiuyue Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yunpeng Wang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, P. R. China
| | - Xihuan Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yizhen Li
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Enze Yu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, P. R. China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jie Yu
- School of Laboratory Medicine and School of Bioengineering, Hangzhou Medical College, Hangzhou, 310014, P. R. China
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
13
|
Yang S, Liu J, Hoque MJ, Huang A, Chen Y, Yang W, Feng J, Miljkovic N. A Critical Perspective on Photothermal De-Icing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415237. [PMID: 39711482 PMCID: PMC11837899 DOI: 10.1002/adma.202415237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/16/2024] [Indexed: 12/24/2024]
Abstract
To tackle the formidable challenges posed by extreme cold weather events, significant advancements have been made in developing functional surfaces capable of efficiently removing accreted ice. Nevertheless, many of these surfaces still require external energy input, such as electrical power, which raises concerns regarding their alignment with global sustainability goals. Over the past decade, increasing attention has been directed toward photothermal surface designs that harness solar energy-a resource available on Earth in quantities exceeding the total reserves of coal and oil combined. By converting solar energy into heat, these designs enable the transformation of the interfacial solid-solid contact (ice-substrate) into a liquid-solid contact (water-substrate), significantly reducing interfacial adhesion and facilitating rapid ice removal. This critical perspective begins by emphasizing the advantages of photothermal design over traditional de-icing methods. It then delves into an in-depth analysis of three primary photothermal mechanisms, examining how these principles have expanded the scope of de-icing technologies and contributed to advancements in photothermal surface design. Finally, key fundamental and technical challenges are identified, offering strategic guidelines for future research aimed at enabling practical, real-world applications.
Collapse
Affiliation(s)
- Siyan Yang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Jiazheng Liu
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Muhammad Jahidul Hoque
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Anxu Huang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Yiyang Chen
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Wentao Yang
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Jie Feng
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - Nenad Miljkovic
- Department of Mechanical Science and EngineeringThe Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Electrical and Computer EngineeringThe Grainger College of EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Institute for SustainabilityEnergy and EnvironmentUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- International Institute for Carbon Neutral Energy Research (WPI‐I2CNER)Kyushu University74 MotookaNishi‐kuFukuoka819‐0395Japan
| |
Collapse
|
14
|
Zhang Y, Guo Z. Lobelia-Inspired Photothermal Storage Flexible Film for Efficient Deicing. SMALL METHODS 2025:e2402006. [PMID: 39865729 DOI: 10.1002/smtd.202402006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/09/2025] [Indexed: 01/28/2025]
Abstract
The insufficient density and discontinuity of solar energy of photothermal superhydrophobic flexible film seriously affect the practical application. Light energy harvesting and heat energy storage are effective ways to solve this problem. Inspired by the viscous temperature-regulating material within the inflorescence of Lobelia telekii and the arrangement of bracts on its surface, a flexible film for photoheat storage is proposed that integrated a three-order photoheat trap and one-order heat storage. The surface of the flexible film features microcone array with micro-grooves, modified carbon nanotubes (MCNTs), and layered structures on microcapsules, forming a three-level photoheat trap. The generated heat increases the surface temperature and is partially absorbed by the heat storage material inside the microcapsule. The stable photothermal temperature of polyurethane films with microcone structure (Sx) was elevated by 3-5 °C compared to without it (Flat-Sx), while the stable photothermal temperature of MCNTs-Sx (Flat-Sx with MCNTs) exceeds that of Sx by 2-6 °C. The ice particles on the MCNTs-S0.45 completely dissolved within 180 s under xenon lamp light source. Meanwhile, MCNTs-Sx demonstrated superhydrophobicity and outstanding anti-fouling capabilities. The fabricated MCNTs-Sx realized biomimicry of Lobelia telekii in both structure and performance, providing a strategy for biomimetic photothermal de-icing.
Collapse
Affiliation(s)
- Yidan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
15
|
Chai Z, Teng Z, Guo P, He Y, Zhao D, Zuo X, Liu K, Jiang L, Heng L. A Photoelectric Synergistic Flexible Solid Slippery Surface for All-Day Anti-Icing/Frosting. SMALL METHODS 2025; 9:e2400859. [PMID: 39535523 DOI: 10.1002/smtd.202400859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
The accumulation of ice on surface has caused great harm to lots of fields such as transportation or aerospace. Nowadays, various equipment or tools used in low-temperature environments, which face the risk of interface icing, usually have irregular shapes. Traditional rigid anti-icing materials are difficult to meet practical application requirements. Thus, it is crucial to develop flexible anti-icing materials that can be applied to various shape surfaces (curved surfaces, flat surfaces). In this paper, a photoelectric synergistic flexible solid slippery surface (FSSS) is prepared by using flexible basalt fiberglass cloth, flexible copper foil, flexible polyurethane/carbon nanotubes mixture, and flexible solid lubricant (the mixture of coconut wax and coconut oil). Even under harsh conditions of the temperature as low as -80 °C, the FSSS exhibits excellent all-day anti/de-icing performance whether on flat or curved surface. Moreover, the FSSS shows long-term stability both on flat and curved surface: situated in air for 60 days, submerged in water for 60 days, kept in acid environment (pH 1) and base environment (pH 13) for 30 days. Besides, the FSSS can also achieve self-healing function under -80 °C. This flexible surface provides a novel approach for de-icing/frosting of multi-shaped objects in the future.
Collapse
Affiliation(s)
- Ziyuan Chai
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Ziyi Teng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Pu Guo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yueran He
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Di Zhao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xiaobiao Zuo
- National Engineering Research Center of Functional Carbon Composite, Aerospace Research Institute of Materials and Processing Technology, Beijing, 100076, China
| | - Kesong Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Liping Heng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
16
|
Luo T, Kong L, Lu J, Xie M, Lin B, Fu L, Huang B, Xu C. Neuron-Inspired Flexible Phase Change Materials for Ambient Energy Harvesting and Respiration Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411820. [PMID: 39436043 DOI: 10.1002/adma.202411820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/03/2024] [Indexed: 10/23/2024]
Abstract
The global energy crisis and climate change pose unprecedented challenges. Wearable devices with personal thermoregulation and energy harvesting hold great promise for achieving energy savings and human thermal comfort. Here, inspired by neurons, a novel phase change material (PCM) is reported for efficient energy harvesting and respiratory monitoring via a self-assembly strategy. The use of gum arabic (GA) enabled the encapsulation of polyethylene glycol (PEG) and the targeted distribution of carboxylated multi-walled carbon nanotubes (cMWCNTs) simultaneously in poly (ethylene vinyl acetate) (EVA) matrix. The material exhibits an outstanding toughness value of 14.88 MJ m-3 and high elongation at a break of 565.67%, exhibiting remarkable flexibility. The material with sufficient melting enthalpy (71.11 J g-1) demonstrates high photothermal conversion efficiency (95.27%) under 808 nm laser irradiation (105 mW cm-2). In addition, due to the synergistic effect of GA and PEG, especially the formation of microdome structures on the surface, the material demonstrates ultrasensitive humidity responsiveness for respiratory monitoring with high precision, excellent repeatability, and fast response/recovery time (50.4/50.5 ms). Notably, it shows great potential for moisture-electric generators (MEGs) with the function of non-contact sensing. This material opens the path toward next-generation wearable devices in energy conversion and health monitoring.
Collapse
Affiliation(s)
- Tianwen Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Lingli Kong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Junjie Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Man Xie
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Baofeng Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Lihua Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Bai Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Chuanhui Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
17
|
Jiang L, Dong L, Zhou X, Tu K, Chen Y, Li X, Xiao T, Tan X. The Enhanced Hydrophobic, Photothermal, and Anti-Icing/Ice-Melting Performance of C/TiN/WC/PDMS Composite Coating by Inserting a Thermal Insulation Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25207-25219. [PMID: 39527832 DOI: 10.1021/acs.langmuir.4c03531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enhancing the hydrophobic and photothermal characteristics of the coating can significantly boost its anti-icing/ice-melting capabilities. In this study, an epoxy resin thermal insulation layer is interposed between the aluminum sheet substrate and the C/TiN/WC/PDMS photothermal composite coating. This method not only equips the coating with exceptional superhydrophobic properties but also markedly elevates its photothermal and anti-icing/ice-melting performance. The incorporation of the thermal insulation layer has been observed to elevate the water contact angle from approximately 125° to 155° ± 0.5° while simultaneously reducing the water sliding angle from over 90° to about 4° ± 0.5°. In an environmental setting of -15 °C and 65% ± 5% humidity, under irradiation of 1.0, 0.7, 0.5, and 0.3 kW/m2, the coating with the thermal insulation layer exhibited saturation temperature increments of roughly 4.7, 3.4, 5.4, and 4.6 °C, respectively, compared to the photothermal coating without the insulation layer. In the absence of irradiation, the coating with the insulation layer delayed the freezing time of 80 μL water droplets by up to three and six times compared to the coating without an insulation layer and the bare aluminum sheet substrate, respectively. Furthermore, under 0.3 kW/m2 irradiation, the coating with the insulation layer reduced the initial melting time and complete melting time of ice beads by nearly half and one-third, respectively, whereas the ice beads on the aluminum sheet substrate remained unmelted throughout the observation period.
Collapse
Affiliation(s)
- Lihua Jiang
- College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, Yichang, Hubei 443002, China
- College of Electrical Engineering & New Energy, Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang, Hubei 443002, China
| | - Lulu Dong
- College of Electrical Engineering & New Energy, Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xin Zhou
- College of Electrical Engineering & New Energy, Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang, Hubei 443002, China
| | - Kai Tu
- College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, Yichang, Hubei 443002, China
| | - Yutong Chen
- College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, Yichang, Hubei 443002, China
| | - Xinyi Li
- College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, Yichang, Hubei 443002, China
| | - Ting Xiao
- College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, Yichang, Hubei 443002, China
| | - Xinyu Tan
- College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, Yichang, Hubei 443002, China
| |
Collapse
|
18
|
Liu X, Li S, Wu Y, Guo T, Xie J, Tao J, Wu H, Ran Q. Durable Photothermal Superhydrophobic Coating Comprising Micro- and Nanoscale Morphologies and Water-Soluble Siloxane for Efficient Anti-Icing and Deicing. ACS NANO 2024; 18:31957-31966. [PMID: 39495088 DOI: 10.1021/acsnano.4c09705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photothermal superhydrophobic coatings offer immense promise for anti-icing and deicing applications. However, achieving long-term passive anti-icing and active deicing in photothermal superhydrophobic coating remains a significant challenge. We introduce a durable photothermal superhydrophobic coating, coprepared from water-soluble polytrimethylsiloxane (PMATF) in synergy with cactus-inspired composite nanoparticles (MPCS), which is composed of MoS2, polydopamine (PDA), Cu nanoparticles, and octadecanethiol (18-SH). The PM-MPCS coating exhibits a maximum water contact angle (WCA) of 171.8° and retains a high WCA after 330 cycles of sandpaper abrasion and 210 cycles of tape peeling. Additionally, the PM-MPCS coating exhibits exceptional photothermal conversion ability. The PM-MPCS films attain a surface temperature of 86.9 °C, displaying a photothermal conversion efficiency of 77.4%. In anti-icing tests conducted at -15 °C, PM-MPCS significantly prolonged the freezing time; the freezing time of a 5 μL water droplet was extended to 43 min. The active deicing performance is similarly effective, with PM-MPCS melting a 5 μL ice sphere in 5.5 min. Furthermore, PM-MPCS exhibits a low ice adhesion strength of 6.0 kPa, enabling effective ice removal even after numerous freeze-thaw cycles. The exceptional anti-icing and deicing performance can be attributed to the synergistic effects of the composite nanoparticles, which minimize ice penetration and enhance the photothermal conversion capabilities of the particles. These findings underscore the potential of PM-MPCS as a viable candidate for advanced anti-icing and deicing applications across various industries.
Collapse
Affiliation(s)
- Xudong Liu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shenzhen Li
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, P. R. China
| | - Yuanlong Wu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Tengfei Guo
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Junhao Xie
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jinqiu Tao
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Hao Wu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qianping Ran
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
19
|
Tang R, Chen T, Jian W, Law WC, Chow CL, Lau D. Simulation-Guided Preparation of Copper Chalcogenide Nanoparticle-Based Transparent Photothermal Coating with Enhanced Deicing Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62581-62593. [PMID: 39288190 DOI: 10.1021/acsami.4c08401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this investigation, transparent photothermal coatings utilizing plasmonic copper chalcogenide (Cu2-xS) nanoparticles were designed and fabricated for the deicing of glass surfaces. Cu2-xS nanoparticles, chosen for their high near-infrared (NIR) absorption and efficient photothermal conversion, were analyzed via finite difference time domain (FDTD) simulations to optimize nanoparticle morphology, thus avoiding costly trial-and-error synthesis. FDTD simulations determined that Cu2-xS nanorods (Cu-NRs) with an optimal aspect ratio of 2.2 had superior NIR absorption. Guided by FDTD simulations, the composite coating composed of Cu-NRs in clear acrylic resin paint was brush-coated to glass, achieving 62.4% visual transmittance and over 95% NIR absorbance. Photothermal conversion tests exhibited a significant temperature increase, with the coating reaching 65 °C under NIR irradiation within 6 min. The dynamic deicing process of ice beads on the coating at -20 °C completed within 220s, in contrast to the frozen state on glass coated with clear acrylic resin paint. Furthermore, heat transfer simulations in COMSOL illustrated melting initiation at the ice-coating interface and subsequent progression through the ice layer. This simulation-driven synthesis method and photothermal testing offer a design framework for the fabrication of photothermal deicing coatings with applications for automobiles, buildings, and aircraft in cold environments.
Collapse
Affiliation(s)
- Rui Tang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| | - Ting Chen
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Jian
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Cheuk Lun Chow
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Shen M, Chen G, Zhang J, Zhu W, Yang M, Chen X, Song H, Li A. The Synergetic Effect of Metal-Loaded Electrospun Carbon Fibers for Photothermal Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52572-52582. [PMID: 39303292 DOI: 10.1021/acsami.4c13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
With the increasing demand for energy and worsening environmental issues, the application of photothermal materials has been widely explored due to their high energy conversion capabilities and environmental friendliness. In this work, metal-carbon fiber composites were prepared and subjected to photothermal and water evaporation performance tests alongside pure metals and pyrolytic phenolic resin materials. The results show that the addition of metals effectively improved the photothermal efficiency by narrowing the molecular energy gaps of the materials, indicating a strong synergistic enhancement effect between metals and carbon materials. This study provides a theoretical basis for the design of high-performance photothermal conversion materials.
Collapse
Affiliation(s)
- Mengxue Shen
- State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guanyu Chen
- Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, China
| | - Jiapeng Zhang
- State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wanxiong Zhu
- State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Menglan Yang
- State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaohong Chen
- State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huaihe Song
- State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ang Li
- State Key Laboratory of Chemical Resources Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
21
|
Cui T, Ang EH, Zheng Y, Cai W, Wang J, Hu Y, Zhu J. Ultrahigh Transparent Safety Film for Spectrally Selective Photo/Electrothermal Conversion via Surface-Enhanced Plasma Resonance Dynamics. NANO LETTERS 2024; 24:11904-11912. [PMID: 39265073 DOI: 10.1021/acs.nanolett.4c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Traditional deicing methods are increasingly insufficient for modern technologies like 5G infrastructure, photovoltaic systems, nearspace aerocraft, and terrestrial observatories. To address the challenge of combining anti-icing efficiency with operational performance, an innovative, spectrally selective, photo/electrothermic, ice-phobic film was prepared through a cost-effective mist deposition method. By manipulating the diameter ratio and density of nanowires, the local density of free electrons within this film is controlled to precisely dictate the position and intensity of surface plasmon resonance to achieve spectrally selective photo/electrothermal conversion. Additionally, the synthesized hydrophobic N-Boroxine-PDMS/SiO2 layer improves thermal stability and accelerates the deicing process. It achieves rapid deicing within 86 s under photothermal conditions and 65 s with Joule heating while maintaining high optical transmittance. The film improves the operational efficiency and thermal safety of equipment while preserving aesthetics and stability, thereby underscoring its broad suitability for advanced outdoor installations in cold environments.
Collapse
Affiliation(s)
- Tianyang Cui
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Yapeng Zheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Cai
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077 Hong Kong S.A.R., China
| | - Jingwen Wang
- School of Public Security and Emergency Management, Anhui University of Science and Technology, Hefei, Anhui 231131, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
22
|
Ma W, Sergeev AA, Asif MB, Pan Y, Wang H, Li K, Safari A, Yang J, Huang B, Wong KS, Li Y, Yan X, Yao S. Robust All-Day Frostphobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44174-44185. [PMID: 39115331 DOI: 10.1021/acsami.4c06425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The application of solar-thermal surfaces for antifrosting and defrosting has emerged as a passive and environmentally friendly approach to mitigate the negative consequences of frost formation, such as structural damage and reduced heat transfer efficiency. However, achieving robust all-day frostphobicity solely through interfacial modification and solar-thermal effects is challenging in practical applications: The thick frost that accumulates at night strongly scatters solar radiation, rendering the solar-thermal coatings ineffective during the daytime. Additionally, these nanostructured coatings are susceptible to wear and tear when exposed to the outdoors for extended periods of time. To address these challenges, we present an innovative frostphobic surface that incorporates V-grooved structures with superhydrophobic solar-thermal layers (VSSs). The out-of-plane gradient structures facilitate spatially regulated vapor diffusion, an enhanced photothermal effect, and robust water repellency. These features not only prevent frost from covering the entire surface overnight, enabling effective solar-thermal defrosting during the daytime, but also protect the surface from deterioration. The combined merits ensure robust all-day frostphobicity and exceptional durability, making the VSS surface promising for practical applications and extending the lifespan in extreme environments.
Collapse
Affiliation(s)
- Wei Ma
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Aleksandr A Sergeev
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Muhammad Bilal Asif
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yuming Pan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Han Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Keqiao Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ali Safari
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Kam Sing Wong
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yang Li
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao Yan
- School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518048, China
| |
Collapse
|
23
|
Chu F, Hu Z, Feng Y, Lai NC, Wu X, Wang R. Advanced Anti-Icing Strategies and Technologies by Macrostructured Photothermal Storage Superhydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402897. [PMID: 38801015 DOI: 10.1002/adma.202402897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.
Collapse
Affiliation(s)
- Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Li Z, Liu Y, Liu Y, Feng K, Li J, Wu Y, Zhou F. Robust Transparent Photothermal Omniphobic Coating for Efficient Anti/Deicing and Antifogging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35805-35814. [PMID: 38916412 DOI: 10.1021/acsami.4c06623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Icing and fogging on optical material surfaces bring various problems in daily life. Recently, some photothermal coatings have been reported to prevent the condensation or freeze of water droplets by increasing the surface temperature. However, it is a great challenge to apply them in practical conditions due to their opaqueness and poor mechanical wear-resistant property. In this work, we constructed a robust transparent photothermal omniphobic coating with a simple dip-coating technique. In the coating system, photothermal polypyrrole nanoparticles are introduced into inorganic silica networks, and then polydimethylsiloxane (PDMS) brushes were grafted on the inorganic silica layer to endow the surface with omniphobicity and stain resistance. The transparency and photothermal capacity of the coating can be regulated by the deposition times of the coating. In addition, the coating has an excellent anti/deicing property and reduces ice adhesion obviously due to the existence of "liquid-like" PDMS brushes. More importantly, the coating presents outstanding mechanical wear-resistant and self-lubricating properties that can endure several thousand friction cycles without performance loss. The mechanically robust photothermal omniphobic coating gives a feasible approach to anti-icing and antifogging of transparent substrates under sunlight irradiation.
Collapse
Affiliation(s)
- Zhengyuan Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, Gansu 730000, China
- Qingdao Centre of Resource Chemistry and New Materials, Shandong, Qingdao 266100, China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yizhe Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, Gansu 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Shandong, Yantai 264006, China
| | - Yubo Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, Gansu 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Shandong, Yantai 264006, China
| | - Kai Feng
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Shandong, Yantai 264006, China
| | - Jing Li
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Shandong, Yantai 264006, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, Gansu 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Shandong, Yantai 264006, China
- Qingdao Centre of Resource Chemistry and New Materials, Shandong, Qingdao 266100, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, Gansu 730000, China
| |
Collapse
|
25
|
Tong W, Han M, Ma C, Wu Z, Wang N, Du N, Xiang T, Zhu J. Empowering Photovoltaic Panel Anti-Icing: Superhydrophobic Organic Composite Coating with In Situ Photothermal and Transparency. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31567-31575. [PMID: 38836291 DOI: 10.1021/acsami.4c04634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Solar energy is widely used in photovoltaic power generation as a kind of clean energy. However, the liquid film, frosting, and icing on the photovoltaic module seriously limit the efficiency of photovoltaic power generation. We developed a composite coating (Y6-NanoSH) by combining an in situ photothermal and transparent Y6 organic film with a nanosuperhydrophobic material. The Y6-NanoSH coated glass exhibited excellent optical clarity both indoors and outdoors, indicating that the coating holds great promise in anti-icing applications for photovoltaic panels. The Y6-NanoSH coating absorbs very little visible light but instead absorbs in the near-infrared region, thereby emitting heat. When exposed to sunlight, the Y6-NanoSH coated photovoltaic panel raises its surface temperature, inhibiting the growth and accumulation of ice and frost on its surface. This is achieved through a combination of photothermal emission and superhydrophobic repellency, which promotes the evaporation and rolling away of water droplets. This validates our success in developing a photothermal, transparent, and superhydrophobic coating with excellent anti-icing capabilities, suitable for use on photovoltaic panels, as well as potential applications in car windscreens, transmission lines, curtain walls, and weather radomes.
Collapse
Affiliation(s)
- Wei Tong
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Mengmeng Han
- Henan Academy of Sciences, Institute of Chemistry, Zhengzhou 450002, China
| | - Chen Ma
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Zhen Wu
- Automotive Engineering Research Institute and School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nan Wang
- Automotive Engineering Research Institute and School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Du
- School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Tengfei Xiang
- Research Center of Modern Surface and Interface Engineering, Anhui University of Technology, Ma'anshan 243002, China
| | - Jingshuai Zhu
- School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
- School of Fashion and Textiles, Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| |
Collapse
|
26
|
Shi Z, Wang Z, Xiao K, Zhu B, Wang Y, Zhang X, Lin Z, Tan D, Xue L. Bioinspired Touch-Responsive Hydrogels for On-Demand Adhesion on Rough Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19819-19827. [PMID: 38564660 DOI: 10.1021/acsami.4c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Reversible adhesives are widely needed in our daily lives and industrial applications. However, robust and switchable adhesion on rough surfaces with on-demand attachment and detachment remains highly challenging. Here, we report a snail-mucus-inspired touch-responsive hydrogel (TRH), whose universal and robust adhesion is triggered by simple contact with the attaching surface. TRH is composed of a polymeric hydrogel and saturated sodium acetate (NaAc) and is prepared by one-pot synthesis. At room temperature, TRH remains in an amorphous and soft state, which allows it to conformally adapt to rough surfaces. The contact with the target surface triggers the crystallization of NaAc, which increases the modulus of TRH by an order of magnitude and interlocks with the target surfaces, achieving an adhesion of up to 204.84 ± 53.98 kPa. Upon heating, TRH returns to a soft state, facilitating easy detachment with adhesion of 5.12 ± 1.34 kPa. Meanwhile, the detached TRH is ready for the next adhesion without the need to be maintained at high temperature. TRH finds applications as a smart material for light-triggered adhesion switching, information encryption, and temperature sensors.
Collapse
Affiliation(s)
- Zhekun Shi
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
- Institute of Zhejiang University-Quzhou, Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou 324000, China
| | - Zhuo Wang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Kangjian Xiao
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Bo Zhu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Yan Wang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Xiaolong Zhang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Zhen Lin
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Di Tan
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration (Wuhan University), Wuhan University, Wuhan 430072, China
| |
Collapse
|
27
|
Wei J, Yang S, Xiao X, Wang J. Hydrophobic Solid Photothermal Slippery Surfaces with Rapid Self-repairing, Dual Anti-icing/Deicing, and Excellent Stability Based on Paraffin and Etching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7747-7759. [PMID: 38526417 DOI: 10.1021/acs.langmuir.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Ice and snow disasters have greatly affected both the global economy and human life, and the search for efficient and stable anti-icing/deicing coatings has become the main goal of much research. Currently, the development and application of anti-icing/deicing coatings are severely limited due to their complex preparation, structural fragility, and low stability. This work presents a method for preparing hydrophobic solid photothermal slippery surfaces (SPSS) that exhibit rapid self-repairing, dual anti-icing/deicing properties, and remarkable stability. A photothermal layer of copper oxide (CuO) was prepared by using chemical deposition and etching techniques. The layer was then impregnated with stearic acid and solid paraffin wax to create a hydrophobic solid photothermal slippery surface. This solves the issue of low stability on superhydrophobic surfaces caused by fragile and irretrievable micro/nanostructures. In addition, the underlying photothermal superhydrophobic surface provides good anti-icing/deicing properties even if the paraffin on the surface evaporates or is lost during operation. The findings indicate that when subjected to simulated light irradiation, the coating's surface temperature increases to 80 °C within 12 min. The self-repair process is completed rapidly in 170 s, and at -15 °C, it takes only 201 s for the ice on the surface to melt completely. The surface underneath the paraffin exhibited good superhydrophobic properties, with a contact angle (CA) of 154.1° and a sliding angle (SA) of 6.8° after the loss of paraffin. Simultaneously, the surface's mechanical stability and durability, along with its self-cleaning and antifouling properties, enhance its service life. These characteristics provide promising opportunities for practical applications that require long-term anti-icing/deicing surfaces.
Collapse
Affiliation(s)
- Jue Wei
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Siqi Yang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Xin Xiao
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Jian Wang
- Key Laboratory of Materials and Surface Technology (Ministry of Education), School of Materials Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| |
Collapse
|
28
|
Yan X, Au SCY, Chan SC, Chan YL, Leung NC, Wu WY, Sin DT, Zhao G, Chung CHY, Mei M, Yang Y, Qiu H, Yao S. Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures. Nat Commun 2024; 15:1567. [PMID: 38378825 PMCID: PMC10879204 DOI: 10.1038/s41467-024-45928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Supercooling of water complicates phase change dynamics, the understanding of which remains limited yet vital to energy-related and aerospace processes. Here, we investigate the freezing and jumping dynamics of supercooled water droplets on superhydrophobic surfaces, induced by a remarkable vaporization momentum, in a low-pressure environment. The vaporization momentum arises from the vaporization at droplet's free surface, progressed and intensified by recalescence, subsequently inducing droplet compression and finally self-jumping. By incorporating liquid-gas-solid phase changes involving vaporization, freezing recalescence, and liquid-solid interactions, we resolve the vaporization momentum and droplet dynamics, revealing a size-scaled jumping velocity and a nucleation-governed jumping direction. A droplet-size-defined regime map is established, distinguishing the vaporization-momentum-dominated self-jumping from evaporative drying and overpressure-initiated levitation, all induced by depressurization and vaporization. Our findings illuminate the role of supercooling and low-pressure mediated phase change in shaping fluid transport dynamics, with implications for passive anti-icing, advanced cooling, and climate physics.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400030, China.
- Institute of Engineering Thermophysics, Chongqing University, Chongqing, 400030, China.
| | - Samuel C Y Au
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sui Cheong Chan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ying Lung Chan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ngai Chun Leung
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wa Yat Wu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dixon T Sin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guanlei Zhao
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Casper H Y Chung
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Mei Mei
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yinchuang Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Huihe Qiu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuhuai Yao
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China.
| |
Collapse
|