1
|
Guo Z, Gao L, Yin L, Arslan M, El-Seedi HR, Zou X. Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem 2023; 403:134384. [DOI: 10.1016/j.foodchem.2022.134384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
|
2
|
Zhang J, Zhao H, Gong M, Zhang L, Yan Z, Xie K, Fei G, Zhu X, Kong M, Zhang S, Zhang L, Lei Y. Revealing the truncated conical geometry of nanochannels in anodic aluminium oxide membranes. NANOSCALE 2022; 14:5356-5368. [PMID: 35293409 DOI: 10.1039/d2nr01006b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anodic aluminium oxide (AAO) membranes with self-ordered nanochannels have become promising candidates for applications in the aspects such as structural coloration, photonic crystals, upconversion luminescence and nanofluidic transport. Also, self-ordered AAO membranes have been extensively used for the fabrication of functional nanostructures such as nanowires, nanotubes, nanoparticles, nanorods and nanopillars. Geometries of nanochannels are crucial for the applications of AAO membranes as well as controlling growth (e.g., nucleation, direction and morphology) and in applications (e.g., optics, magnetics, thermoelectrics, biology, medicine, sensing, and energy conversion and storage) of the functional nanostructures fabricated via AAO template-based methods. However, observation of whole nanochannels with nanometer-resolution in thick AAO membranes remains a fundamental challenge, and the nanochannel geometry has not yet been sufficiently elucidated. Here, for the first time, we use depth-profiling transmission electron microscopy to reveal the truncated conical geometry of whole nanochannels of 70 μm in length. Such shape nonuniformity of the nanochannels leads to different reflectance properties of the different depths of the nanochannels along their long axis for one AAO membrane, which suggests that the nonuniformity result in some effects on applications of the nanostructures. Furthermore, we introduce a shape factor to evaluate the shape nonuniformity and demonstrate that the nonuniformity can be remarkably removed by an effective etching method based on a temperature gradient regime.
Collapse
Affiliation(s)
- Junxi Zhang
- School of Instrument Science and Opto-electronics Engineering, Anhui Key Laboratory of Advanced Functional Materials and Devices, and Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China.
| | - Huaping Zhao
- Institute of Physics & IMN MacroNano, Ilmenau University of Technology, Ilmenau 98693, Germany.
| | - Ming Gong
- Laboratory of Engineering and Material Science, University of Science and Technology of China, Hefei 230027, China
| | - Lide Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhijun Yan
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kang Xie
- School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, Shandong, China
| | - Guangtao Fei
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaoguang Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Mingguang Kong
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Shuyuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lin Zhang
- Aston Institute of Photonic Technologies, School of Engineering & Applied Science, Aston University, Birmingham B4 7ET, UK
| | - Yong Lei
- Institute of Physics & IMN MacroNano, Ilmenau University of Technology, Ilmenau 98693, Germany.
| |
Collapse
|
3
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
4
|
Liu S, Yang R, Lin X, Su B. Gated thermoelectric sensation by nanochannels grafted with thermally responsive polymers. Chem Commun (Camb) 2020; 56:14291-14294. [PMID: 33130832 DOI: 10.1039/d0cc06734b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report that conical PET nanochannels grafted with thermally responsive polymers can mimic the thermosensation of protein channels in living organisms, showing an adjustable gated potential rather than current response to an ambient temperature stimulus, which is more consistent with real biochannels.
Collapse
Affiliation(s)
- Shanshan Liu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
5
|
Hoffman JR, Phillip WA. 100th Anniversary of Macromolecular Science Viewpoint: Integrated Membrane Systems. ACS Macro Lett 2020; 9:1267-1279. [PMID: 35638635 DOI: 10.1021/acsmacrolett.0c00482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Membranes fabricated from self-assembled materials are one recent example of how polymer science has been leveraged to advance membrane technology. Due to their well-defined nanostructures, the performance of membranes made from these materials is pushing the boundaries of size-selective filtration. Still, there remains a need for higher performance and more selective membranes. The advent of functional membrane platforms that rely on mechanisms beyond steric hindrance (e.g., charge-selective membranes and membrane sorbents) is one approach to realize improved solute-solute selectivity and further advance membrane technology. To date, the lab-scale demonstration of these platforms has often relied on fabrication schemes that require extended processing times. However, in order to translate lab-scale demonstrations to larger-scale implementation, it is critical that the rate of the functionalization scheme is reconciled with membrane manufacturing rates. In this viewpoint, it is postulated that substrates lined by reactive moieties that are amenable to postfabrication modification would enable the production of membranes with controlled nanostructures while providing access to a diverse array of pore wall chemistries. A comparison of reaction and manufacturing rates suggests that mechanisms that exhibit second-order reaction rate constants of at least 1 M-1 s-1 are needed for roll-to-roll processing. Furthermore, for mechanisms that exhibit rate constants greater than 300 M-1 s-1, it may be possible to integrate multiple functional domains over the membrane surface such that useful properties emerge. These multifunctional systems can expand the capabilities of membranes when the patterned chemistries interact at the heterojunctions between domains (e.g., Janus and charge-patterned mosaic membranes) or if they exhibit cooperative responses to external operating conditions (e.g., membrane pumps).
Collapse
Affiliation(s)
- John R. Hoffman
- 205 McCourtney Hall, Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William A. Phillip
- 205 McCourtney Hall, Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Liu G, Lovell JF, Zhang L, Zhang Y. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment. Int J Mol Sci 2020; 21:E6380. [PMID: 32887466 PMCID: PMC7504550 DOI: 10.3390/ijms21176380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stimulus-responsive drug delivery systems generally aim to release the active pharmaceutical ingredient (API) in response to specific conditions and have recently been explored for disease treatments. These approaches can also be extended to molecular imaging to report on disease diagnosis and management. The stimuli used for activation are based on differences between the environment of the diseased or targeted sites, and normal tissues. Endogenous stimuli include pH, redox reactions, enzymatic activity, temperature and others. Exogenous site-specific stimuli include the use of magnetic fields, light, ultrasound and others. These endogenous or exogenous stimuli lead to structural changes or cleavage of the cargo carrier, leading to release of the API. A wide variety of stimulus-responsive systems have been developed-responsive to both a single stimulus or multiple stimuli-and represent a theranostic tool for disease treatment. In this review, stimuli commonly used in the development of theranostic nanoplatforms are enumerated. An emphasis on chemical structure and property relationships is provided, aiming to focus on insights for the design of stimulus-responsive delivery systems. Several examples of theranostic applications of these stimulus-responsive nanomedicines are discussed.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA;
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Zhuang J, Zhou L, Tang W, Ma T, Li H, Wang X, Chen C, Wang P. Tumor targeting antibody-conjugated nanocarrier with pH/thermo dual-responsive macromolecular film layer for enhanced cancer chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111361. [PMID: 33254980 DOI: 10.1016/j.msec.2020.111361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
In response to changeful tumor environment, self-targeting antibody-mediated drug nanocarrier with functionalization have been broadly developed to realize specific antitumor efficacy. In this work, an antibody-conjugated drug delivery system with pH/temperature dual-responsive property was devised and fabricated based on mesoporous silica nanoparticle (MSN). Briefly, MSN was first modified with the pH/temperature dual-responsive macromolecular copolymer P(NIPAm-co-MAA) via a precipitation polymerization method, and then grafted with the anti-human epidermal growth factor receptor 2 (HER2) single chain antibody fragment (scFv) to specifically target HER2 positive breast cancer cells. With this structure, such targeting nanoparticles eventually exhibited high drug loading capacity and good biocompatibility. Meanwhile, the cumulative in vitro drug release profile displayed a low-level early leakage at neutral pH values/low temperature while remarkably enhanced release at an acidic pH value/high temperature, indicating an apparent pH/temperature-triggered drug release pattern. Moreover, tumor-targeting assay revealed that the anti-HER2 scFv-surface decoration greatly enhanced the cellular uptake of as-prepared nanoparticle through HER2-antibody-mediated endocytosis, as well as improved the uptake selectivity between normal and cancer cells. More importantly, both the in vitro and in vivo anticancer experiments indicated that such targeting dual-responsive nanoplatform could efficiently inhibit the growth of HER2 positive breast cancer with minimal side effects. Collectively, all these results promised such specific-targeted and dual-responsive nanoparticle a smart drug delivery system, and it provided a promising perspective in efficient and controllable cancer therapeutic application.
Collapse
Affiliation(s)
- Jiafeng Zhuang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lina Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wen Tang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tonghao Ma
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
8
|
Liu FF, Guo YC, Wang W, Chen YM, Wang C. In situ synthesis of a MOFs/PAA hybrid with ultrahigh ionic current rectification. NANOSCALE 2020; 12:11899-11907. [PMID: 32236224 DOI: 10.1039/d0nr01054e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent decades, the ionic current rectification (ICR) property of asymmetric nanochannels has been widely explored in applications of energy conversion, gas separation, water purification and bioanalysis/sensors. How to fabricate nanofluidic devices with a high ICR characteristic remains of critical importance to the development of nanofluidics. Herein, we fabricated an asymmetric MOFs/PAA hybrid via in situ synthesis of a zeolitic imidazole framework (ZIF-90) on porous anodic alumina (PAA) nanochannels. The introduction of asymmetric geometry and charge distribution provides the hybrid with ultrahigh ionic rectification, which can be easily measured using an electrochemical detector. This rectification mechanism is elucidated via finite element simulation, which proves that asymmetric geometry as well as the protonation and deprotonation under varied pH values dominates the ICR property. With the advantages of low cost and facile fabrication while supporting high ionic current rectification, the prepared MOFs/PAA hybrid can be considered as a significant paradigm in nanofluidic systems and has potential applications in the fields of new ionic devices and energy conversion systems.
Collapse
Affiliation(s)
- Fei-Fei Liu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ye-Chang Guo
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China. and National Key Laboratory of Science and Technology on Micro/Nano Fabrication, 100871, China
| | - Yu-Ming Chen
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chen Wang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Liu FF, Zhao XP, Kang B, Xia XH, Wang C. Non-linear mass transport in confined nanofluidic devices for label-free bioanalysis/sensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Xia X, Li H, Zhou G, Ge L, Li F. In situ growth of nano-gold on anodized aluminum oxide with tandem nanozyme activities towards sensitive electrochemical nanochannel sensing. Analyst 2020; 145:6617-6624. [DOI: 10.1039/d0an01271h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growth of nano-gold tandem nanozymes on anodized aluminum oxide is successfully developed using poly-dopamine as an in situ reducing layer for electrochemical nanochannel sensing.
Collapse
Affiliation(s)
- Xin Xia
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Hui Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Guoxing Zhou
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| |
Collapse
|
11
|
Zhang Z, Huang X, Qian Y, Chen W, Wen L, Jiang L. Engineering Smart Nanofluidic Systems for Artificial Ion Channels and Ion Pumps: From Single-Pore to Multichannel Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904351. [PMID: 31793736 DOI: 10.1002/adma.201904351] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Biological ion channels and ion pumps with intricate ion transport functions widely exist in living organisms and play irreplaceable roles in almost all physiological functions. Nanofluidics provides exciting opportunities to mimic these working processes, which not only helps understand ion transport in biological systems but also paves the way for the applications of artificial devices in many valuable areas. Recent progress in the engineering of smart nanofluidic systems for artificial ion channels and ion pumps is summarized. The artificial systems range from chemically and structurally diverse lipid-membrane-based nanopores to robust and scalable solid-state nanopores. A generic strategy of gate location design is proposed. The single-pore-based platform concept can be rationally extended into multichannel membrane systems and shows unprecedented potential in many application areas, such as single-molecule analysis, smart mass delivery, and energy conversion. Finally, some present underpinning issues that need to be addressed are discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodong Huang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weipeng Chen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Fu L, Zhai J. Biomimetic stimuli‐responsive nanochannels and their applications. Electrophoresis 2019; 40:2058-2074. [DOI: 10.1002/elps.201800536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Lulu Fu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beijing Key Laboratory of Bio‐inspired Energy Materials and Devices School of Chemistry Beihang University Beijing P. R. China
| | - Jin Zhai
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering Beijing Key Laboratory of Bio‐inspired Energy Materials and Devices School of Chemistry Beihang University Beijing P. R. China
| |
Collapse
|