1
|
Oroz-Guinea I, Rath M, Tischler I, Ditrich K, Schachtschabel D, Breuer M, Kroutil W. Biocatalytic sulfation of aromatic and aliphatic alcohols catalyzed by arylsulfate sulfotransferases. Appl Microbiol Biotechnol 2024; 108:520. [PMID: 39560778 DOI: 10.1007/s00253-024-13354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Many relevant metabolites, as well as chemical commodities, contain at least one sulfate ester group. Consequently, biocatalytic strategies to attach sulfate to a molecule under mild conditions are of high interest. In order to expand the enzymatic toolbox available, five new arylsulfate sulfotransferases (ASSTs) were identified in this study. Overexpression in Escherichia coli and enzyme purification resulted in soluble proteins which catalyzed the sulfate transfer to an acceptor substrate using p-nitrophenyl sulfate (pNPS) as sulfate donor. Optimal reaction conditions were established with respect to temperature and pH, as well as their tolerance to organic co-solvents and melting temperature. Additionally, the kinetic parameters (Vmax, KM, and kcat) were determined. The substrate scope for the acceptor showed that a structurally diverse spectrum of alcohols is accepted. The substrates included phenolic alcohols with one, two, and three hydroxy groups, linear and cyclic aliphatic alcohols, and amines. The phenolic substrates were accepted reaching activities of up to 154 U/mg purified enzyme. Additionally, also the aliphatic alcohols (both linear and cyclic) were accepted at reduced activity, showing that these enzymes are not limited to phenolic alcohols. Moreover, catalytic activity was detected when using aniline as an acceptor substrate implying their ability to sulfate also amino groups. Finally, the consecutive sulfation of di- and trihydroxy compounds was observed, resulting in the detection of the corresponding disulfated molecules. KEY POINTS: • Five novel arylsulfate sulfotransferases were identified and characterized. • Accepted substrates included aromatic and aliphatic alcohols, as well as aniline. • Disulfation of di- and trihydroxy aromatic compounds was studied and confirmed.
Collapse
Affiliation(s)
- Isabel Oroz-Guinea
- Austrian Centre of Industrial Biotechnology C/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Marko Rath
- Austrian Centre of Industrial Biotechnology C/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Isabelle Tischler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Klaus Ditrich
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Doreen Schachtschabel
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Michael Breuer
- White Biotechnology Research, BASF SE, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology C/o University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
- BioTechMed Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
2
|
Brodsky K, Petránková B, Petrásková L, Pelantová H, Křen V, Valentová K, Bojarová P. New Bacterial Aryl Sulfotransferases: Effective Tools for Sulfation of Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22208-22216. [PMID: 39351615 PMCID: PMC11468790 DOI: 10.1021/acs.jafc.4c06771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The preparation of pure metabolites of bioactive compounds, particularly (poly)phenols, is essential for the accurate determination of their pharmacological profiles in vivo. Since the extraction of these metabolites from biological material is tedious and impractical, they can be synthesized enzymatically in vitro by bacterial PAPS-independent aryl sulfotransferases (ASTs). However, only a few ASTs have been studied and used for (poly)phenol sulfation. This study introduces new fully characterized recombinant ASTs selected according to their similarity to the previously characterized ASTs. These enzymes, produced in Escherichia coli, were purified, biochemically characterized, and screened for the sulfation of nine flavonoids and two phenolic acids using p-nitrophenyl sulfate. All tested compounds were proved to be substrates for the new ASTs, with kaempferol and luteolin being the best converted acceptors. ASTs from Desulfofalx alkaliphile (DalAST) and Campylobacter fetus (CfAST) showed the highest efficiency in the sulfation of tested polyphenols. To demonstrate the efficiency of the present sulfation approach, a series of new authentic metabolite standards, regioisomers of kaempferol sulfate, were enzymatically produced, isolated, and structurally characterized.
Collapse
Affiliation(s)
- Katerina Brodsky
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology Prague, Technická 3, Prague 6 CZ-166 28, Czech Republic
| | - Barbora Petránková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
- Department
of Genetics and Microbiology, Faculty of Science, Charles University, Albertov 6, Prague 2 CZ-128
43, Czech Republic
| | - Lucie Petrásková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Helena Pelantová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Vladimír Křen
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Kateřina Valentová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 CZ-142 00, Czech Republic
| |
Collapse
|
3
|
Kurogi K, Suiko M, Sakakibara Y. Evolution and multiple functions of sulfonation and cytosolic sulfotransferases across species. Biosci Biotechnol Biochem 2024; 88:368-380. [PMID: 38271594 DOI: 10.1093/bbb/zbae008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules. Cytosolic sulfotransferases (SULTs) play a role in the metabolism of low-molecular-weight compounds in response to the host organism's living environment. This review will address the diverse functions of the SULT in evolution, including recent findings. In addition to the diversity of vertebrate sulfotransferases, the molecular aspects and recent studies on bacterial and plant sulfotransferases are also addressed.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
4
|
Brodsky K, Káňová K, Konvalinková D, Slámová K, Pelantová H, Valentová K, Bojarová P, Křen V, Petrásková L. Bacterial Aryl Sulfotransferases in Selective and Sustainable Sulfation of Biologically Active Compounds using Novel Sulfate Donors. CHEMSUSCHEM 2022; 15:e202201253. [PMID: 35832026 DOI: 10.1002/cssc.202201253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Regioselective sulfation of bioactive compounds is a vital and scarcely studied topic in enzyme-catalyzed transformations and metabolomics. The major bottleneck of enzymatic sulfation consists in finding suitable sulfate donors. In this regard, 3'-phosphoadenosine 5'-phosphosulfate (PAPS)-independent aryl sulfotransferases using aromatic sulfate donors are a favored choice due to their cost-effectiveness. This work presents a unique study of five sulfate donors differing in their leaving group pKa values with a new His-tagged construct of aryl sulfotransferase from Desulfitobacterium hafniense (DhAST-tag). DhAST-tag was purified to homogeneity and biochemically characterized. Two new donors (3-nitrophenyl sulfate and 2-nitrophenyl sulfate) were synthesized. The kinetic parameters of these and other commercial sulfates (4-nitrophenyl, 4-methylumbelliferyl, and phenyl) revealed large differences with respect to the structure of the leaving group. These donors were screened for the sulfation of selected flavonoids (myricetin, chrysin) and phenolic acids (gallate, 3,4-dihydroxyphenylacetate). The donor impact on the sulfation regioselectivity and yield was assessed. The obtained regioselectively sulfated compounds are authentic human metabolites required as standards in clinical trials.
Collapse
Affiliation(s)
- Katerina Brodsky
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, CZ 16628, Prague 6, Czech Republic
| | - Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| | - Dorota Konvalinková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20, Prague 4, Czech Republic
| |
Collapse
|
5
|
Ji Y, Islam S, Cui H, Dhoke GV, Davari MD, Mertens AM, Schwaneberg U. Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00063a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loop engineering of aryl sulfotransferase B improves catalytic performance in regioselective sulfation.
Collapse
Affiliation(s)
- Yu Ji
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Shohana Islam
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alan M. Mertens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| |
Collapse
|
6
|
Begines P, Biedermann D, Valentová K, Petrásková L, Pelantová H, Maya I, Fernández-Bolaños JG, Křen V. Chemoenzymatic Synthesis and Radical Scavenging of Sulfated Hydroxytyrosol, Tyrosol, and Acetylated Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7281-7288. [PMID: 31198027 DOI: 10.1021/acs.jafc.9b01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Potential metabolites of bioactive compounds are important for their biological activities and as authentic standards for metabolic studies. The phenolic compounds contained in olive oil are an important part of the human diet, and therefore their potential metabolites are of utmost interest. We developed a convenient, scalable, one-pot chemoenzymatic method using the arylsulfotransferase from Desulfitobacterium hafniense for the sulfation of the natural olive oil phenols tyrosol, hydroxytyrosol, and of their monoacetylated derivatives. Respective monosulfated (tentative) metabolites were fully structurally characterized using LC-MS, NMR, and HRMS. In addition, Folin-Ciocalteu reduction, 1,1-diphenyl-2-picrylhydrazyl radical scavenging, and antilipoperoxidant activity in rat liver microsomes damaged by tert-butylhydroperoxide were measured and compared to the parent compounds. As expected, the sulfation diminished the radical scavenging properties of the prepared compounds. These compounds will serve as authentic standards of phase II metabolites.
Collapse
Affiliation(s)
- Paloma Begines
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - David Biedermann
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Lucie Petrásková
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| | - Inés Maya
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry , University of Seville , Sevilla E-41012 , Spain
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , Prague CZ 142 20 , Czech Republic
| |
Collapse
|
7
|
Directed aryl sulfotransferase evolution toward improved sulfation stoichiometry on the example of catechols. Appl Microbiol Biotechnol 2019; 103:3761-3771. [PMID: 30830250 DOI: 10.1007/s00253-019-09688-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Sulfation is an important way for detoxifying xenobiotics and endobiotics including catechols. Enzymatic sulfation occurs usually with high chemo- and/or regioselectivity under mild reaction conditions. In this study, a two-step p-NPS-4-AAP screening system for laboratory evolution of aryl sulfotransferase B (ASTB) was developed in 96-well microtiter plates to improve the sulfate transfer efficiency toward catechols. Increased transfer efficiency and improved sulfation stoichiometry are achieved through the two-step screening procedure in a one-pot reaction. In the first step, the p-NPS assay is used (detection of the colorimetric by-product, p-nitrophenol) to determine the apparent ASTB activity. The sulfated product, 3-chlorocatechol-1-monosulfate, is quantified by the 4-aminoantipyrine (4-AAP) assay in the second step. Comparison of product formation to p-NPS consumption ensures successful directed evolution campaigns of ASTB. Optimization yielded a coefficient of variation below 15% for the two-step screening system (p-NPS-4-AAP). In total, 1760 clones from an ASTB-SeSaM library were screened toward the improved sulfation activity of 3-chlorocatechol. The turnover number (kcat = 41 ± 2 s-1) and catalytic efficiency (kcat/KM = 0.41 μM-1 s-1) of the final variant ASTB-M5 were improved 2.4- and 2.3-fold compared with ASTB-WT. HPLC analysis confirmed the improved sulfate stoichiometry of ASTB-M5 with a conversion of 58% (ASTB-WT 29%; two-fold improvement). Mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) confirmed the chemo- and regioselectivity, which yielded exclusively 3-chlorocatechol-1-monosulfate. For all five additionally investigated catechols, the variant ASTB-M5 achieved an improved kcat value of up to 4.5-fold and sulfate transfer efficiency was also increased (up to 2.3-fold).
Collapse
|
8
|
Islam S, Laaf D, Infanzón B, Pelantová H, Davari MD, Jakob F, Křen V, Elling L, Schwaneberg U. KnowVolution Campaign of an Aryl Sulfotransferase Increases Activity toward Cellobiose. Chemistry 2018; 24:17117-17124. [DOI: 10.1002/chem.201803729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Shohana Islam
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Dominic Laaf
- Laboratory for BiomaterialsInstitute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Belén Infanzón
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Helena Pelantová
- Institute of MicrobiologyCzech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Felix Jakob
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Vladimír Křen
- Institute of MicrobiologyCzech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
| | - Lothar Elling
- Laboratory for BiomaterialsInstitute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
9
|
Valentová K, Purchartová K, Rydlová L, Roubalová L, Biedermann D, Petrásková L, Křenková A, Pelantová H, Holečková-Moravcová V, Tesařová E, Cvačka J, Vrba J, Ulrichová J, Křen V. Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties. Int J Mol Sci 2018; 19:E2349. [PMID: 30096957 PMCID: PMC6121260 DOI: 10.3390/ijms19082349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Silymarin, an extract from milk thistle (Silybum marianum) fruits, is consumed in various food supplements. The metabolism of silymarin flavonolignans in mammals is complex, the exact structure of their metabolites still remains partly unclear and standards are not commercially available. This work is focused on the preparation of sulfated metabolites of silymarin flavonolignans. Sulfated flavonolignans were prepared using aryl sulfotransferase from Desulfitobacterium hafniense and p-nitrophenyl sulfate as a sulfate donor and characterized by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). Their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging; ferric (FRAP) and Folin⁻Ciocalteu reagent (FCR) reducing activity; anti-lipoperoxidant potential; and effect on the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway were examined. Pure silybin A 20-O-sulfate, silybin B 20-O-sulfate, 2,3-dehydrosilybin-20-O-sulfate, 2,3-dehydrosilybin-7,20-di-O-sulfate, silychristin-19-O-sulfate, 2,3-dehydrosilychristin-19-O-sulfate, and silydianin-19-O-sulfate were prepared and fully characterized. Sulfated 2,3-dehydroderivatives were more active in FCR and FRAP assays than the parent compounds, and remaining sulfates were less active chemoprotectants. The sulfated flavonolignans obtained can be now used as authentic standards for in vivo metabolic experiments and for further research on their biological activity.
Collapse
Affiliation(s)
- Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Kateřina Purchartová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
- Faculty of Science, Charles University, Department of Physical and Macromolecular Chemistry, Hlavova 2030/8, 12843 Prague, Czech Republic.
| | - Lenka Rydlová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
- Faculty of Science, Charles University, Department of Physical and Macromolecular Chemistry, Hlavova 2030/8, 12843 Prague, Czech Republic.
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Alena Křenková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | | | - Eva Tesařová
- Faculty of Science, Charles University, Department of Physical and Macromolecular Chemistry, Hlavova 2030/8, 12843 Prague, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic.
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
10
|
Islam S, Mate DM, Martínez R, Jakob F, Schwaneberg U. A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc. Biotechnol Bioeng 2018; 115:1106-1115. [PMID: 29288579 DOI: 10.1002/bit.26535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
Abstract
Bacterial aryl sulfotransferases (AST) utilize p-nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost-effective sulfuryl-donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d-glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well-known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96-well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N-acetylglucosamine (GlcNAc). The beneficial variant ASTB-V1 (Val579Asp) showed an up to 3.4-fold increased specific activity toward GlcNAc when compared to ASTB-WT. HPLC- and MS-analysis confirmed ASTB-V1's increased GlcNAc monosulfurylation (2.4-fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate.
Collapse
Affiliation(s)
- Shohana Islam
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany
| | - Diana M Mate
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany
| | - Ronny Martínez
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Valentová K, Káňová K, Di Meo F, Pelantová H, Chambers CS, Rydlová L, Petrásková L, Křenková A, Cvačka J, Trouillas P, Křen V. Chemoenzymatic Preparation and Biophysical Properties of Sulfated Quercetin Metabolites. Int J Mol Sci 2017; 18:ijms18112231. [PMID: 29068411 PMCID: PMC5713201 DOI: 10.3390/ijms18112231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/20/2017] [Indexed: 11/28/2022] Open
Abstract
Sulfated quercetin derivatives are important authentic standards for metabolic studies. Quercetin-3′-O-sulfate, quercetin-4′-O-sulfate, and quercetin-3-O-sulfate as well as quercetin-di-O-sulfate mixture (quercetin-7,3′-di-O-sulfate, quercetin-7,4′-di-O-sulfate, and quercetin-3′,4′-di-O-sulfate) were synthetized by arylsulfotransferase from Desulfitobacterium hafniense. Purified monosulfates and disulfates were fully characterized using MS and NMR and tested for their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging, Folin-Ciocalteau reduction (FCR), ferric reducing antioxidant power (FRAP), and anti-lipoperoxidant activities in rat liver microsomes damaged by tert-butylhydroperoxide. Although, as expected, the sulfated metabolites were usually less active than quercetin, they remained still effective antiradical and reducing agents. Quercetin-3′-O-sulfate was more efficient than quercetin-4′-O-sulfate in DPPH and FCR assays. In contrast, quercetin-4′-O-sulfate was the best ferric reductant and lipoperoxidation inhibitor. The capacity to scavenge ABTS+• and DMPD was comparable for all substances, except for disulfates, which were the most efficient. Quantum calculations and molecular dynamics simulations on membrane models supported rationalization of free radical scavenging and lipid peroxidation inhibition. These results clearly showed that individual metabolites of food bioactives can markedly differ in their biological activity. Therefore, a systematic and thorough investigation of all bioavailable metabolites with respect to native compounds is needed when evaluating food health benefits.
Collapse
Affiliation(s)
- Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Florent Di Meo
- INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France.
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | | | - Lenka Rydlová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Lucie Petrásková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Alena Křenková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czech Republic.
| | - Patrick Trouillas
- INSERM U850, Univ. Limoges, School of Pharmacy, 2 rue du Docteur Marcland, F-87025 Limoges, France.
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 12, CZ-77146 Olomouc, Czech Republic.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| |
Collapse
|
12
|
Almeida AF, Santos CN, Ventura MR. Synthesis of New Sulfated and Glucuronated Metabolites of Dietary Phenolic Compounds Identified in Human Biological Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6460-6466. [PMID: 28198187 DOI: 10.1021/acs.jafc.6b05629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
(Poly)phenols are a large group of dietary compounds present in fruits and vegetables; their consumption is associated with health beneficial effects. After ingestion, (poly)phenols suffer extensive metabolization, and the identification of their metabolites is an emerging area, because these metabolites are considered the effective bioactive molecules in the human organism. However, a lack of commercially available standards has hampered the study of metabolite bioactivity and the exact structural confirmation in biological samples. New (poly)phenol metabolites previously identified in human samples after the intake of berry juice were chemically synthesized. Efficient chemical reactions were performed with moderate to excellent yields and selectivities. These new compounds could be used as standard chemicals for confirmation of the structure of metabolites in biological samples and will also allow mechanistic studies in cellular models.
Collapse
Affiliation(s)
- A Filipa Almeida
- Instituto de Biologia Experimental e Tecnológica, Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica , Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Quı́mica e Biológica António Xavier, NOVA-Universidade Nova de Lisboa , Av. da República, 2781-901 Oeiras, Portugal
| | - Cláudia N Santos
- Instituto de Biologia Experimental e Tecnológica, Universidade Nova de Lisboa Instituto de Tecnologia Quimica e Biologica , Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Quı́mica e Biológica António Xavier, NOVA-Universidade Nova de Lisboa , Av. da República, 2781-901 Oeiras, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Quı́mica e Biológica António Xavier, NOVA-Universidade Nova de Lisboa , Av. da República, 2781-901 Oeiras, Portugal
| |
Collapse
|
13
|
Prinsen P, Narani A, Hartog AF, Wever R, Rothenberg G. Dissolving Lignin in Water through Enzymatic Sulfation with Aryl Sulfotransferase. CHEMSUSCHEM 2017; 10:2267-2273. [PMID: 28425669 DOI: 10.1002/cssc.201700376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/06/2017] [Indexed: 06/07/2023]
Abstract
We introduce the concept of using site-specific sulfation of various lignins for increasing their aqueous solubility and thereby their processability. Using p-nitrophenylsulfate as a sulfate source and an aryl sulfotransferase enzyme as catalyst, lignins are easily sulfated at ambient conditions. We demonstrate the specific sulfation of phenolic hydroxyl groups on five different lignins: Indulin AT (Kraft softwood), Protobind 1000 (mixed wheat straw/Sarkanda grass soda) and three organosolv lignins. The reaction proceeds smoothly and the increase in solubility is visible to the naked eye. We then examine the reaction kinetics, and show that these are easily monitored qualitatively and quantitatively using UV/Vis spectroscopy. The UV/Vis results are validated with 31 P NMR spectroscopy of the lignin phenol groups after derivatization with phosphorylation reagent II. In general, the results are more significant with organosolv lignins, as Kraft and soda lignins are produced from aqueous lignocellulose extraction processes.
Collapse
Affiliation(s)
- Pepijn Prinsen
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090GD, Amsterdam, The Netherlands
| | - Anand Narani
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090GD, Amsterdam, The Netherlands
| | - Aloysius F Hartog
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090GD, Amsterdam, The Netherlands
| | - Ron Wever
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090GD, Amsterdam, The Netherlands
| | - Gadi Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090GD, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Sulfation made easy: A new versatile donor for enzymatic sulfation by a bacterial arylsulfotransferase. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Tasnádi G, Lukesch M, Zechner M, Jud W, Hall M, Ditrich K, Baldenius K, Hartog AF, Wever R, Faber K. Exploiting Acid Phosphatases in the Synthesis of Phosphorylated Monoalcohols and Diols. European J Org Chem 2015. [PMCID: PMC4736442 DOI: 10.1002/ejoc.201501306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A set of phosphatases was evaluated for their potential to catalyze the regio‐ and stereoselective phosphorylation of alcohols using a high‐energy inorganic phosphate donor, such as di‐, tri‐ and polyphosphate. Parameters such as type and amount of phosphate donor and pH of the reaction were investigated in order to minimize the thermodynamically favored hydrolysis of the phosphate donor and the formed phosphate ester. Diols were monophosphorylated with high selectivities. This biocatalytic phosphorylation method provides selectively activated and/or protected synthetic intermediates for further chemical and/or enzymatic transformations and is applicable to a large scale (6.86 g) in a flow setup with immobilized phosphatase.
Collapse
Affiliation(s)
- Gábor Tasnádi
- Austrian Centre of Industrial Biotechnology, c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Michael Lukesch
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Michaela Zechner
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Wolfgang Jud
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Mélanie Hall
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| | - Klaus Ditrich
- White Biotechnology Research Biocatalysis, BASF SE, Carl‐Bosch‐Strasse 38, 67056 Ludwigshafen, Germany
| | - Kai Baldenius
- White Biotechnology Research Biocatalysis, BASF SE, Carl‐Bosch‐Strasse 38, 67056 Ludwigshafen, Germany
| | - Aloysius F. Hartog
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ron Wever
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Kurt Faber
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria, http://biocatalysis.uni‐graz.at
| |
Collapse
|
16
|
Hartog AF, Wever R. Substrate Engineering and its Synthetic Utility in the Sulfation of Primary Aliphatic Alcohol Groups by a Bacterial Arylsulfotransferase. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Roubalová L, Purchartová K, Papoušková B, Vacek J, Křen V, Ulrichová J, Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg Med Chem 2015; 23:5402-9. [PMID: 26260337 DOI: 10.1016/j.bmc.2015.07.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Quercetin 3'-O-sulfate is one of the main metabolites of the natural flavonoid quercetin in humans. This study was designed to prepare quercetin 3'-O-sulfate (1), isoquercitrin 4'-O-sulfate (2) and taxifolin 4'-O-sulfate (3) by the sulfation of quercetin, isoquercitrin (quercetin 3-O-glucoside) and taxifolin (2,3-dihydroquercetin) using the arylsulfate sulfotransferase from Desulfitobacterium hafniense, and to examine the effect of sulfation on selected biological properties of the flavonoids tested. We found that flavonoid sulfates 1-3 were weaker DPPH radical scavengers than the corresponding nonsulfated flavonoids, and that 1-3, unlike quercetin, did not induce the expression of either heme oxygenase-1 in RAW264.7 cells or cytochrome P450 1A1 in HepG2 cells. In both cell types, the cell uptake of compounds 1-3 was much lower than that of quercetin, but comparable to that of the glycoside isoquercitrin. Moreover, HPLC/MS metabolic profiling in HepG2 cells showed that flavonoid sulfates 1-3 were metabolized to a limited extent compared to the nonsulfated compounds. We conclude that sulfation of the tested flavonoids reduces their antiradical activity, and affects their cell uptake and biological activity in vitro.
Collapse
Affiliation(s)
- Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Kateřina Purchartová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 14220, Czech Republic
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17 listopadu 12, Olomouc 77146, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
18
|
Purchartová K, Valentová K, Pelantová H, Marhol P, Cvačka J, Havlíček L, Křenková A, Vavříková E, Biedermann D, Chambers CS, Křen V. Prokaryotic and Eukaryotic Aryl Sulfotransferases: Sulfation of Quercetin and Its Derivatives. ChemCatChem 2015. [DOI: 10.1002/cctc.201500298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kateřina Purchartová
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Albertov 6 12843 Prague Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Helena Pelantová
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Petr Marhol
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague Czech Republic
| | - Libor Havlíček
- Institute of Experimental Botany; Isotope Laboratory; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Alena Křenková
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Eva Vavříková
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - David Biedermann
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Christopher S. Chambers
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Vladimír Křen
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| |
Collapse
|
19
|
Chen X, Casas ME, Nielsen JL, Wimmer R, Bester K. Identification of Triclosan-O-Sulfate and other transformation products of Triclosan formed by activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:39-46. [PMID: 25306094 DOI: 10.1016/j.scitotenv.2014.09.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Aerobic degradation experiments of Triclosan were performed in activated sludge to identify possible transformation products for this compound. During 7 days, the formation of biotransformation products such as 2,4-Dichlorophenol, 4-Chlorocatechol, 5-Hydroxy-Triclosan and other Monohydroxy-Triclosan derivatives as well as Dihydroxy-Triclosan-derivatives were observed. The structure of 5-Hydroxy-Triclosan was elucidated by NMR data for the first time in sludge degradation experiments. Additionally the production of a hitherto unknown transformation product in sludge, i.e., Triclosan-O-Sulfate was detected. During the incubations, the concentrations of this transformation product changed from zero to 330 μg L(-1). Based on the analysis of the biodegradation products, three types of reactions were identified: 1) chemical scission of ether bond to form phenols and catechols, 2) addition of OH moieties to the aromatic ring, and 3) adding of methyl or sulfate groups to the original hydroxyl group.
Collapse
Affiliation(s)
- Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China; Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Mònica Escolà Casas
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Jeppe Lund Nielsen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
20
|
van der Horst MA, Hartog AF, El Morabet R, Marais A, Kircz M, Wever R. Enzymatic Sulfation of Phenolic Hydroxy Groups of Various Plant Metabolites by an Arylsulfotransferase. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Ayuso-Fernández I, Galmés MA, Bastida A, García-Junceda E. Aryl Sulfotransferase from Haliangium ochraceum
: A Versatile Tool for the Sulfation of Small Molecules. ChemCatChem 2014. [DOI: 10.1002/cctc.201300853] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Malojčić G, Owen RL, Glockshuber R. Structural and Mechanistic Insights into the PAPS-Independent Sulfotransfer Catalyzed by Bacterial Aryl Sulfotransferase and the Role of the DsbL/DsbI System in Its Folding. Biochemistry 2014; 53:1870-7. [DOI: 10.1021/bi401725j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Goran Malojčić
- Institute
of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Robin L. Owen
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K
| | - Rudi Glockshuber
- Institute
of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
23
|
Marhol P, Hartog AF, van der Horst MA, Wever R, Purchartová K, Fuksová K, Kuzma M, Cvačka J, Křen V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
|