1
|
Li M, Xu G, Gong Z, Wu Q, Jiang L, Li C. Simultaneous measurement of multiple fluorine labelling effect on GB1 stability by 19F NMR. Talanta 2025; 292:127959. [PMID: 40112587 DOI: 10.1016/j.talanta.2025.127959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025]
Abstract
The incorporation of fluorinated amino acids into proteins through natural biosynthesis in E. coli often leads to the production of heterogeneous fluorinated proteins. The stabilities of proteins with different 19F labelling states can vary, but these differences are challenging to measure due to the difficulty in separating the fluorinated protein mixtures that differ by only a few 19F atoms. Here, we simultaneously incorporated both fluoro-phenylalanines (3-fluoro-phenylalanine, 3FF; or 4-fluoro-phenylalanine, 4FF) and 5-fluoro-tryptophan (5FW) into GB1 protein. We are able to measure the stability of GB1 protein with different 19F labelling states without the need for sample separation by taking the advantage of 19F NMR. The results showed that 4FF-5FW-GB1 with varying 19F labelling states exhibited significantly different protein stability, with higher 4FF labeling efficiency correlating with decreased stability. Furthermore, residues F30 and F52 show synergistic effects on GB1 stability. In contrast, the 3FF and 5FW substitution exhibits a slightly stabilizing effect on GB1 stability. The present research provides a convenient 19F NMR method to simultaneously measure fluorine labelling effects on protein stability, favouring precise understanding and analysis of fluorine labelling effects.
Collapse
Affiliation(s)
- Manman Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guohua Xu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiong Wu
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Ling Jiang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Pandurangan S, Easwaramoorthi S, Ayyadurai N. Engineering proteins with catechol chemistry for biotechnological applications. Crit Rev Biotechnol 2025; 45:606-624. [PMID: 39198031 DOI: 10.1080/07388551.2024.2387165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2024]
Abstract
Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions via a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Department of Inorganic and Physical Chemistry, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
3
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
5
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
6
|
Liu F, He L, Dong S, Xuan J, Cui Q, Feng Y. Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges. Molecules 2023; 28:5850. [PMID: 37570818 PMCID: PMC10421094 DOI: 10.3390/molecules28155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Enzymes are essential catalysts for various chemical reactions in biological systems and often rely on metal ions or cofactors to stabilize their structure or perform functions. Improving enzyme performance has always been an important direction of protein engineering. In recent years, various artificial small molecules have been successfully used in enzyme engineering. The types of enzymatic reactions and metabolic pathways in cells can be expanded by the incorporation of these artificial small molecules either as cofactors or as building blocks of proteins and nucleic acids, which greatly promotes the development and application of biotechnology. In this review, we summarized research on artificial small molecules including biological metal cluster mimics, coenzyme analogs (mNADs), designer cofactors, non-natural nucleotides (XNAs), and non-natural amino acids (nnAAs), focusing on their design, synthesis, and applications as well as the current challenges in synthetic biology.
Collapse
Affiliation(s)
- Fenghua Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lugtenburg T, Gran-Scheuch A, Drienovská I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes. Protein Eng Des Sel 2023; 36:gzad003. [PMID: 36897290 PMCID: PMC10064326 DOI: 10.1093/protein/gzad003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes. Methods to achieve this end, such as the use of halogenated ncAAs, selective immobilization and rational design, will be discussed. Additionally, specific enzyme design considerations using ncAAs are discussed along with the benefits and limitations of the various approaches available to enhance the thermal stability of enzymes.
Collapse
Affiliation(s)
- Tim Lugtenburg
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Alejandro Gran-Scheuch
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ivana Drienovská
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
9
|
Haernvall K, Fladischer P, Schoeffmann H, Zitzenbacher S, Pavkov-Keller T, Gruber K, Schick M, Yamamoto M, Kuenkel A, Ribitsch D, Guebitz GM, Wiltschi B. Residue-Specific Incorporation of the Non-Canonical Amino Acid Norleucine Improves Lipase Activity on Synthetic Polyesters. Front Bioeng Biotechnol 2022; 10:769830. [PMID: 35155387 PMCID: PMC8826565 DOI: 10.3389/fbioe.2022.769830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Environmentally friendly functionalization and recycling processes for synthetic polymers have recently gained momentum, and enzymes play a central role in these procedures. However, natural enzymes must be engineered to accept synthetic polymers as substrates. To enhance the activity on synthetic polyesters, the canonical amino acid methionine in Thermoanaerobacter thermohydrosulfuricus lipase (TTL) was exchanged by the residue-specific incorporation method for the more hydrophobic non-canonical norleucine (Nle). Strutural modelling of TTL revealed that residues Met-114 and Met-142 are in close vicinity of the active site and their replacement by the norleucine could modulate the catalytic activity of the enzyme. Indeed, hydrolysis of the polyethylene terephthalate model substrate by the Nle variant resulted in significantly higher amounts of release products than the Met variant. A similar trend was observed for an ionic phthalic polyester containing a short alkyl diol (C5). Interestingly, a 50% increased activity was found for TTL [Nle] towards ionic phthalic polyesters containing different ether diols compared to the parent enzyme TTL [Met]. These findings clearly demonstrate the high potential of non-canonical amino acids for enzyme engineering.
Collapse
Affiliation(s)
| | - Patrik Fladischer
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | - Tea Pavkov-Keller
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | | | | | | | - Doris Ribitsch
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Doris Ribitsch,
| | - Georg M. Guebitz
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute for Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Birgit Wiltschi
- Acib–Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
10
|
Adhikari A, Bhattarai BR, Aryal A, Thapa N, Kc P, Adhikari A, Maharjan S, Chanda PB, Regmi BP, Parajuli N. Reprogramming natural proteins using unnatural amino acids. RSC Adv 2021; 11:38126-38145. [PMID: 35498070 PMCID: PMC9044140 DOI: 10.1039/d1ra07028b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Unnatural amino acids have gained significant attention in protein engineering and drug discovery as they allow the evolution of proteins with enhanced stability and activity. The incorporation of unnatural amino acids into proteins offers a rational approach to engineer enzymes for designing efficient biocatalysts that exhibit versatile physicochemical properties and biological functions. This review highlights the biological and synthetic routes of unnatural amino acids to yield a modified protein with altered functionality and their incorporation methods. Unnatural amino acids offer a wide array of applications such as antibody-drug conjugates, probes for change in protein conformation and structure-activity relationships, peptide-based imaging, antimicrobial activities, etc. Besides their emerging applications in fundamental and applied science, systemic research is necessary to explore unnatural amino acids with novel side chains that can address the limitations of natural amino acids.
Collapse
Affiliation(s)
- Anup Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Bibek Raj Bhattarai
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashika Aryal
- Department of Chemistry, Birendra Multiple Campus, Tribhuvan University Bharatpur Chitwan Nepal
| | - Niru Thapa
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Puja Kc
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Ashma Adhikari
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Sushila Maharjan
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| | - Prem B Chanda
- Department of Chemistry and Physics, Southeastern Louisiana University Hammond Louisiana 70402 USA
| | - Bishnu P Regmi
- Department of Chemistry, Florida Agricultural and Mechanical University Tallahassee Florida 32307 USA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kritipur 44618 Kathmandu Nepal
| |
Collapse
|
11
|
Giri P, Pagar AD, Patil MD, Yun H. Chemical modification of enzymes to improve biocatalytic performance. Biotechnol Adv 2021; 53:107868. [PMID: 34774927 DOI: 10.1016/j.biotechadv.2021.107868] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/23/2022]
Abstract
Improvement in intrinsic enzymatic features is in many instances a prerequisite for the scalable applicability of many industrially important biocatalysts. To this end, various strategies of chemical modification of enzymes are maturing and now considered as a distinct way to improve biocatalytic properties. Traditional chemical modification methods utilize reactivities of amine, carboxylic, thiol and other side chains originating from canonical amino acids. On the other hand, noncanonical amino acid- mediated 'click' (bioorthogoal) chemistry and dehydroalanine (Dha)-mediated modifications have emerged as an alternate and promising ways to modify enzymes for functional enhancement. This review discusses the applications of various chemical modification tools that have been directed towards the improvement of functional properties and/or stability of diverse array of biocatalysts.
Collapse
Affiliation(s)
- Pritam Giri
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Mahesh D Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, PO Manauli, S.A.S. Nagar, Mohali 140306, Punjab, India
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Zhu HQ, Tang XL, Zheng RC, Zheng YG. Recent advancements in enzyme engineering via site-specific incorporation of unnatural amino acids. World J Microbiol Biotechnol 2021; 37:213. [PMID: 34741210 DOI: 10.1007/s11274-021-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
With increased attention to excellent biocatalysts, evolving methods based on nature or unnatural amino acid (UAAs) mutagenesis have become an important part of enzyme engineering. The emergence of powerful method through expanding the genetic code allows to incorporate UAAs with unique chemical functionalities into proteins, endowing proteins with more structural and functional features. To date, over 200 diverse UAAs have been incorporated site-specifically into proteins via this methodology and many of them have been widely exploited in the field of enzyme engineering, making this genetic code expansion approach possible to be a promising tool for modulating the properties of enzymes. In this context, we focus on how this robust method to specifically incorporate UAAs into proteins and summarize their applications in enzyme engineering for tuning and expanding the functional properties of enzymes. Meanwhile, we aim to discuss how the benefits can be achieved by using the genetically encoded UAAs. We hope that this method will become an integral part of the field of enzyme engineering in the future.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
13
|
Cárdenas-Fernández M, Sinclair O, Ward JM. Novel transaminases from thermophiles: from discovery to application. Microb Biotechnol 2021; 15:305-317. [PMID: 34713952 PMCID: PMC8719814 DOI: 10.1111/1751-7915.13940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/26/2023] Open
Abstract
Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d‐sorbitol. Kinetic and end‐point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non‐stereoselective serine‐TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non‐stereoselective serine‐TAs, whilst two stereoselective serine‐TAs showed significantly higher yields. Coupling serine‐TA reactions to a transketolase to yield l‐erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine‐TAs and transketolase using the inexpensive racemic D/L‐serine led to high Ery yield (82%). Thermal characterization of stereoselective serine‐TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK.,School of Biosciences, University of Kent, CT2 7NJ, Kent, UK
| | - Oliver Sinclair
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| |
Collapse
|
14
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
15
|
Drienovská I, Gajdoš M, Kindler A, Takhtehchian M, Darnhofer B, Birner-Gruenberger R, Dörr M, Bornscheuer UT, Kourist R. Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional-Group Diversity for Enzyme Engineering. Chemistry 2020; 26:12338-12342. [PMID: 32347609 PMCID: PMC7590180 DOI: 10.1002/chem.202002077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/31/2022]
Abstract
Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate.
Collapse
Affiliation(s)
- Ivana Drienovská
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Matúš Gajdoš
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Alexia Kindler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Mahsa Takhtehchian
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Patholoy, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Patholoy, Diagnostic and Research Center of Molecular Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.,Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060, Wien, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Mark Dörr
- Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
16
|
Sisila V, Puhazhselvan P, Aarthy M, Sakkeeshyaa G, Saravanan P, Kamini NR, Ayyadurai N. Esterification of Polymeric Carbohydrate Through Congener Cutinase-Like Biocatalyst. Appl Biochem Biotechnol 2020; 193:19-32. [PMID: 32808247 DOI: 10.1007/s12010-020-03415-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
Cutinase-like enzymes (CLEs) are bi-functional hydrolases, which share the conserved catalytic site of lipase and consensus pentapeptide sequence of cutinase. Here, we have genetically replaced the canonical amino acids (CAA) by their non-canonical fluorinated surrogates to biosynthesize a novel class of congener biocatalyst for esterification of polymeric carbohydrate with long-chain fatty acid. It is a new enzyme-engineering approach used to manipulate industrially relevant biocatalyst through genetic incorporation of new functionally encoded non-canonical amino acids (NCAA). Global fluorination of CLE improved its catalytic, functional, and structural stability. Molecular docking studies confirmed that the fluorinated CLE (FCLE) had developed a binding affinity towards different fatty acids compared with the parent CLE. Importantly, FCLE could catalyze starch oleate synthesis in 24 h with a degree of substitution of 0.3 ± 0.001. Biophysical and microscopic analysis substantiated the efficient synthesis of the ester by FCLE. Our data represent the first step in the generation of an industrially relevant fluorous multifunctional enzyme for facile synthesis of high fatty acid starch esters.
Collapse
Affiliation(s)
- Valappil Sisila
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Puhazhendi Puhazhselvan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India
| | | | - Perisamy Saravanan
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Numbi Ramudu Kamini
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Chennai, India. .,Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
17
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
19
|
Drienovská I, Roelfes G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat Catal 2020. [DOI: 10.1038/s41929-019-0410-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Won Y, Pagar AD, Patil MD, Dawson PE, Yun H. Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0163-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Structural basis of substrate recognition by a novel thermostable (S)-enantioselective ω-transaminase from Thermomicrobium roseum. Sci Rep 2019; 9:6958. [PMID: 31061438 PMCID: PMC6502798 DOI: 10.1038/s41598-019-43490-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
Transaminases catalyze the reversible transfer reaction of an amino group between a primary amine and an α-keto acid, utilizing pyridoxal 5'-phosphate as a cofactor. ω-transaminases (ωTAs) recognize an amino group linked to a non-α carbon of amine substrates. Recently, a novel (S)-enantioselective ωTA from Thermomicrobium roseum (Tr-ωTA) was identified and its enzymatic activity reported. However, the detailed mechanism of (S)-enantioselective substrate recognition remained unclear. In this study, we determined the crystal structure of Tr-ωTA at 1.8 Å resolution to elucidate the mechanism underlying Tr-ωTA substrate (S)-enantioselectivity. A structural analysis of Tr-ωTA along with molecular docking simulations revealed that two pockets at the active site tightly restrict the size and orientation of functional groups of substrate candidates. Based on the structural information and docking simulation results, we propose a comprehensive catalytic mechanism of Tr-ωTA. The present study thus provides structural and functional insights into the (S)-enantioselectivity of Tr-ωTA.
Collapse
|
22
|
Yoon S, Patil MD, Sarak S, Jeon H, Kim G, Khobragade TP, Sung S, Yun H. Deracemization of Racemic Amines to Enantiopure (
R
)‐ and (
S
)‐amines by Biocatalytic Cascade Employing ω‐Transaminase and Amine Dehydrogenase. ChemCatChem 2019. [DOI: 10.1002/cctc.201900080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sanghan Yoon
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| | - Mahesh D. Patil
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| | - Sharad Sarak
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| | - Hyunwoo Jeon
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| | - Geon‐Hee Kim
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| | - Taresh P. Khobragade
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| | - Sihyong Sung
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| | - Hyungdon Yun
- Department of Systems BiotechnologyKonkuk University 120 Neungdong-ro, Gwanjin-gu Seoul 050-29 South Korea
| |
Collapse
|
23
|
Won Y, Jeon H, Pagar AD, Patil MD, Nadarajan SP, Flood DT, Dawson PE, Yun H. In vivo biosynthesis of tyrosine analogs and their concurrent incorporation into a residue-specific manner for enzyme engineering. Chem Commun (Camb) 2019; 55:15133-15136. [DOI: 10.1039/c9cc08503c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A cellular system for the in vivo biosynthesis of Tyr-analogs and their concurrent incorporation into target proteins is reported.
Collapse
Affiliation(s)
- Yumi Won
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | - Mahesh D. Patil
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| | | | - Dillon T. Flood
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Philip E. Dawson
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - Hyungdon Yun
- Department of Systems Biotechnology
- Konkuk University
- Gwangjin-gu
- Korea
| |
Collapse
|
24
|
Recent Advances in ω-Transaminase-Mediated Biocatalysis for the Enantioselective Synthesis of Chiral Amines. Catalysts 2018. [DOI: 10.3390/catal8070254] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Chen S, Campillo-Brocal JC, Berglund P, Humble MS. Characterization of the stability of Vibrio fluvialis JS17 amine transaminase. J Biotechnol 2018; 282:10-17. [PMID: 29906477 DOI: 10.1016/j.jbiotec.2018.06.309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
The amine transaminase from Vibrio fluvialis (Vf-ATA) is an attractive enzyme with applications within Biocatalysis for the preparation of chiral amines. Various catalytic properties of Vf-ATA have been investigated, but a biophysical characterization of its stability has been lacking. Today, the industrial application of Vf-ATA is limited by its low operational stability. In order to enhance the knowledge regarding the structural stability of ATAs, general characterizations of different ATAs are required. In this work, the stability of Vf-ATA was explored. First, the affinity between enzyme and pyridoxal-5'-phosphate (PLP) (KD value of 7.9 μM) was determined. Addition of PLP to enzyme preparations significantly improved the enzyme thermal stability by preventing enzyme unfolding. With the aim to understand if this was due to the PLP phosphate group coordination into the phosphate group binding cup, the effect of phosphate buffer on the enzyme stability was compared to HEPES buffer. Low concentrations of phosphate buffer showed a positive effect on the enzyme initial activity, while higher phosphate buffer concentrations prevented cofactor dissociation. Additionally, the effects of various amine or ketone substrates on the enzyme stability were explored. All tested amines caused a concentration dependent enzyme inactivation, while the corresponding ketones showed no or stabilizing effects. The enzyme inactivation due to the presence of amine can be connected to the formation of PMP, which forms in the presence of amines in the absence of ketone. Since PMP is not covalently bound to the enzyme, it could readily leave the enzyme upon formation. Exploring the different stability effects of cofactor, substrates, additives and buffer system on ATAs seems to be important in order to understand and improve the general performance of ATAs.
Collapse
Affiliation(s)
- Shan Chen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Jonatan C Campillo-Brocal
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Per Berglund
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden
| | - Maria Svedendahl Humble
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Industrial Biotechnology, AlbaNova University Center, SE-106 91, Stockholm, Sweden; Pharem Biotech AB, Biovation Park, Forskargatan 20 J, SE-151 36, Södertälje, Sweden.
| |
Collapse
|
26
|
Buß O, Muller D, Jager S, Rudat J, Rabe KS. Improvement in the Thermostability of a β-Amino Acid Converting ω-Transaminase by Using FoldX. Chembiochem 2017; 19:379-387. [PMID: 29120530 DOI: 10.1002/cbic.201700467] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 12/19/2022]
Abstract
ω-Transaminases (ω-TAs) are important biocatalysts for the synthesis of active, chiral pharmaceutical ingredients containing amino groups, such as β-amino acids, which are important in peptidomimetics and as building blocks for drugs. However, the application of ω-TAs is limited by the availability and stability of enzymes with high conversion rates. One strategy for the synthesis and optical resolution of β-phenylalanine and other important aromatic β-amino acids is biotransformation by utilizing an ω-transaminase from Variovorax paradoxus. We designed variants of this ω-TA to gain higher process stability on the basis of predictions calculated by using the FoldX software. We herein report the first thermostabilization of a nonthermostable S-selective ω-TA by FoldX-guided site-directed mutagenesis. The melting point (Tm ) of our best-performing mutant was increased to 59.3 °C, an increase of 4.0 °C relative to the Tm value of the wild-type enzyme, whereas the mutant fully retained its specific activity.
Collapse
Affiliation(s)
- Oliver Buß
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131, Karlsruhe, Germany
| | - Delphine Muller
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131, Karlsruhe, Germany
| | - Sven Jager
- Computational Biology, Technische Universität Darmstadt, Schnittspahnstrasse 2, 64287, Darmstadt, Germany
| | - Jens Rudat
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 3, 76131, Karlsruhe, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces I, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
27
|
Völler JS, Thi To TM, Biava H, Koksch B, Budisa N. Global substitution of hemeproteins with noncanonical amino acids in Escherichia coli with intact cofactor maturation machinery. Enzyme Microb Technol 2017; 106:55-59. [PMID: 28859810 DOI: 10.1016/j.enzmictec.2017.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Global substitution of canonical amino acids (cAAs) with noncanonical (ncAAs) counterparts in proteins whose function is dependent on post-translational events such as cofactor binding is still a methodically challenging and difficult task as ncAA insertion generally interferes with the cofactor biosynthesis machinery. Here, we report a technology for the expression of fully substituted and functionally active cofactor-containing hemeproteins. The maturation process which yields an intact cofactor is timely separated from cAA→ncAA substitutions. This is achieved by an optimised expression and fermentation procedure which includes pre-induction of the heme cofactor biosynthesis followed by an incorporation experiment at multiple positions in the protein sequence. This simple strategy can be potentially applied for engineering of other cofactor-containing enzymes.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Tuyet Mai Thi To
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany; Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry - Organic Chemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, 10623 Berlin, Germany.
| |
Collapse
|
28
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
29
|
Deepankumar K, Prabhu NS, Kim JH, Yun H. Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0127-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Biokatalyse mit nicht‐natürlichen Aminosäuren: Enzymologie trifft Xenobiologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Anderhuber N, Fladischer P, Gruber-Khadjawi M, Mairhofer J, Striedner G, Wiltschi B. High-level biosynthesis of norleucine in E. coli for the economic labeling of proteins. J Biotechnol 2016; 235:100-11. [PMID: 27107466 DOI: 10.1016/j.jbiotec.2016.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
The residue-specific labeling of proteins with non-canonical amino acids (ncAA) is well established in shake flask cultures. A key aspect for the transfer of the methodology to larger scales for biotechnological applications is the cost of the supplemented ncAAs. Therefore, we established a scalable bioprocess using an engineered host strain for the biosynthesis of the methionine analog norleucine at titers appropriate for the efficient and economic labeling of proteins. To enhance the biosynthesis of norleucine, which is a side-product of the branched chain amino acid pathway, we deleted all three acetolactate synthase isoforms of the methionine auxotrophic Escherichia coli expression strain B834(DE3). Additionally, we overexpressed leuABCD to boost the biosynthesis of norleucine. We systematically analyzed the production of norleucine under the conditions for its residue-specific incorporation in bioreactor cultures that had a 30-fold higher cell density than shake flask cultures. Under optimized conditions, 5g/L norleucine was biosynthesized. This titer is two times higher than the standard supplementation with norleucine of a culture with comparable cell density. We expect that our metabolically engineered strain for the improved biosynthesis of norleucine in combination with the proposed bioprocess will facilitate the efficient residue-specific labeling of proteins at a reasonable price in scales beyond the shake flask.
Collapse
Affiliation(s)
- Niklaus Anderhuber
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| | - Patrik Fladischer
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Mandana Gruber-Khadjawi
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria; Department of Organic Chemistry, Graz University of Technology, Stremayrgasse 9/4, A-8010 Graz, Austria
| | - Juergen Mairhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, and Department of Biotechnology, Muthgasse 18, A-1190 Vienna, Austria; enGenes Biotech GmbH, Mooslackengasse 17, A-1190 Vienna, Austria
| | - Gerald Striedner
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, and Department of Biotechnology, Muthgasse 18, A-1190 Vienna, Austria
| | - Birgit Wiltschi
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
32
|
Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β- and γ-amino acids. Enzyme Microb Technol 2016; 87-88:52-60. [DOI: 10.1016/j.enzmictec.2016.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/01/2016] [Accepted: 02/24/2016] [Indexed: 11/17/2022]
|
33
|
Chen S, Land H, Berglund P, Humble MS. Stabilization of an amine transaminase for biocatalysis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Mathew S, Deepankumar K, Shin G, Hong EY, Kim BG, Chung T, Yun H. Identification of novel thermostable ω-transaminase and its application for enzymatic synthesis of chiral amines at high temperature. RSC Adv 2016. [DOI: 10.1039/c6ra15110h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel thermostable ω-transaminase from Thermomicrobium roseum showing broad substrate specificity and high enantioselectivity was identified, expressed and biochemically characterized and it could produce chiral amines at high temperature.
Collapse
Affiliation(s)
- Sam Mathew
- Department of Bioscience & Biotechnology
- Konkuk University
- Seoul
- South Korea
| | - Kanagavel Deepankumar
- School of Materials Science and Engineering
- Biological & Biomimetic Material Laboratory
- Nanyang Technological University
- Singapore
| | - Giyoung Shin
- School of Interdisciplinary Bioscience and Bioengineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Eun Young Hong
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering
- Seoul National University
- Seoul
- South Korea
| | - Taeowan Chung
- School of Biotechnology
- Yeungnam University
- Gyeongsan
- South Korea
| | - Hyungdon Yun
- Department of Bioscience & Biotechnology
- Konkuk University
- Seoul
- South Korea
| |
Collapse
|
35
|
|
36
|
Odar C, Winkler M, Wiltschi B. Fluoro amino acids: A rarity in nature, yet a prospect for protein engineering. Biotechnol J 2015; 10:427-46. [DOI: 10.1002/biot.201400587] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
|
37
|
Shin G, Mathew S, Yun H. Kinetic resolution of amines by (R)-selective omega-transaminase from Mycobacterium vanbaalenii. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Deepankumar K, Nadarajan SP, Mathew S, Lee SG, Yoo TH, Hong EY, Kim BG, Yun H. Engineering Transaminase for Stability Enhancement and Site-Specific Immobilization through Multiple Noncanonical Amino Acids Incorporation. ChemCatChem 2014. [DOI: 10.1002/cctc.201402882] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|