1
|
Abstract
Organoboron acids are stable, organic-soluble Lewis acids with potential application as catalysts for a wide variety of chemical reactions. In this review, we summarize the utility of boronic and borinic acids, as well as boric acid, as catalysts for organic transformations. Typically, the catalytic processes exploit the Lewis acidity of trivalent boron, enabling the reversible formation of a covalent bond with oxygen. Our focus is on recent developments in the catalysis of dehydration, carbonyl condensation, acylation, alkylation, and cycloaddition reactions. We conclude that organoboron acids have a highly favorable prospectus as the source of new catalysts.
Collapse
Affiliation(s)
- Brian J Graham
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Reddy GS, Corey EJ. Synthetically Useful Transformations of Olefins via Cationic 1,2-Oxazetium Intermediates. Org Lett 2023; 25:7160-7164. [PMID: 37734041 DOI: 10.1021/acs.orglett.3c02700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Nitrosyl triflate serves as a NO+ donor in reactions with many olefinic substrates to form reactive, cationic 1,2-oxazetium cycloadducts that can be converted selectively into a wide range of useful products depending on reagents and conditions.
Collapse
Affiliation(s)
- G Sudhakar Reddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - E J Corey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
4
|
Yamamoto K, Kuriyama M, Onomura O. Shono-Type Oxidation for Functionalization of N-Heterocycles. CHEM REC 2021; 21:2239-2253. [PMID: 33656281 DOI: 10.1002/tcr.202100031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023]
Abstract
The development of facile synthetic methods for stereodefined aliphatic cyclic amines is an important research field in synthetic organic chemistry since such scaffolds constitute a variety of natural products and biologically active compounds. N-Acyl cyclic N,O-acetals which prepared by electrochemical oxidation of the corresponding cyclic amines have proven to be useful and versatile precursors for the synthesis of such skeletons. In this Personal Account, we introduce our efforts toward the development of synthetic strategies for the diastereo- and/or enantioselective synthesis of cyclic amines by using electrochemically prepared cyclic N,O-acetals. In addition, the investigation of the "memory of chirality" in the electrooxidative methoxylation of N-acyl amino acid derivatives, the strategy for the synthesis of chiral azabicyclic compounds by utilizing electrochemical oxidation, and halogen cation-mediated synthesis of nitrogen-containing heterocycles are also described.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
5
|
Yamamoto K, Kuriyama M, Onomura O. Anodic Oxidation for the Stereoselective Synthesis of Heterocycles. Acc Chem Res 2020; 53:105-120. [PMID: 31872753 DOI: 10.1021/acs.accounts.9b00513] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stereodefined aliphatic heterocycles are one of the fundamental structural motifs observed in natural products and biologically active compounds. Various strategies for the synthesis of these building blocks based on transition metal catalysis, organocatalysis, and noncatalytic conditions have been developed. Although electrosynthesis has also been utilized for the functionalization of aliphatic heterocycles, stereoselective transformations under electrochemical conditions are still a challenging field in electroorganic chemistry. This Account consists of four main topics related to our recent efforts on the diastereo- and/or enantioselective synthesis of aliphatic heterocycles, especially N-heterocycles, using anodic oxidations as key steps. The first topic is the development of stereoselective synthetic methods for multisubstituted piperidines and pyrrolidines from anodically prepared α-methoxy cyclic amines. Our strategies were based primarily on N-acyliminium ion chemistry, and the key electrochemical transformations were diastereoselective anodic methoxylation, diastereoselective arylation, and anodic deallylative methoxylation. Furthermore, we found a unique property of the N-cyano protecting group that enabled the electrochemical α-methoxylation of α-substituted cyclic amines. The second topic of investigation is memory of chirality in electrochemical decarboxylative methoxylation. We observed that the electrochemical decarboxylative methoxylation of oxazolidine and thiazolidine derivatives with the appropriate N-protecting group occurred in a stereospecific manner even though the reaction proceeded through an sp2 planar carbon center. Our findings demonstrated the first example of memory of chirality in N-acyliminium ion chemistry. The third topic is the synthesis of chiral azabicyclo-N-oxyls and their application to chiral organocatalysis in the electrochemical oxidative kinetic resolution of secondary alcohols. The final topic is stereoselective transformations utilizing anodically generated halogen cations. We investigated the oxidative kinetic resolution of amino alcohol derivatives using anodically generated bromo cations. We also developed an intramolecular C-C bond formation of keto amides, a diastereoselective bromoiminolactonization of α-allyl malonamides, and an oxidative ring expansion reaction of allyl alcohols. It is noteworthy that most of the electrochemical reactions were performed in undivided cells under constant-current conditions, which avoided a complicated reaction setup and was beneficial for a large-scale reaction. In addition, we developed some enantioselective electrochemical transformations that are still challenges in electroorganic chemistry. We hope that our research will contribute to the further development of diastereo- and/or enantioselective transformations and the construction of valuable heterocyclic compounds using an electrochemical approach.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Dimakos V, Su HY, Garrett GE, Taylor MS. Site-Selective and Stereoselective C–H Alkylations of Carbohydrates via Combined Diarylborinic Acid and Photoredox Catalysis. J Am Chem Soc 2019; 141:5149-5153. [DOI: 10.1021/jacs.9b01531] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Hsin Y. Su
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Graham E. Garrett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Abstract
Although boronic acids are recognized primarily for their utility as reagents in transition metal-catalyzed transformations, other applications are emerging, including their use as reaction catalysts.
Collapse
Affiliation(s)
- Dennis G. Hall
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
8
|
Yang J, Xie D, Zhou H, Chen S, Huo C, Li Z. Visible-light-mediated iodine-catalyzed α-hydroxylation of α-methylene ketones under aerobic conditions. Org Chem Front 2018. [DOI: 10.1039/c8qo00056e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A visible-light-mediated α-hydroxylation of α-methylene ketones using atmospheric oxygen as a green oxidant has been developed with novel substrate selectivity.
Collapse
Affiliation(s)
- Jingya Yang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- China
| | - Dongtai Xie
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- China
| | - Hongyan Zhou
- College of Science
- Gansu Agricultural University
- Lanzhou 730070
- China
| | - Shuwen Chen
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- China
| | - Congde Huo
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- China
| | - Zheng Li
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- China
| |
Collapse
|
9
|
Mecozzi F, Dong JJ, Saisaha P, Browne WR. Oxidation of Vicinal Diols to α-Hydroxy Ketones with H 2O 2 and a Simple Manganese Catalyst. European J Org Chem 2017; 2017:6919-6925. [PMID: 29398954 PMCID: PMC5767754 DOI: 10.1002/ejoc.201701314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/07/2022]
Abstract
α-Hydroxy ketones are valuable synthons in organic chemistry. Here we show that oxidation of vic-diols to α-hydroxy ketones with H2O2 can be achieved with an in situ prepared catalyst based on manganese salts and pyridine-2-carboxylic acid. Furthermore the same catalyst is effective in alkene epoxidation, and it is shown that alkene oxidation with the MnII catalyst and H2O2 followed by Lewis acid ring opening of the epoxide and subsequent oxidation of the alkene to α-hydroxy ketones can be achieved under mild (ambient) conditions.
Collapse
Affiliation(s)
- Francesco Mecozzi
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| | - Jia Jia Dong
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| | - Pattama Saisaha
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| | - Wesley R Browne
- Molecular Inorganic Chemistry Stratingh Institute for Chemistry Faculty of Mathematics and Natural Sciences Nijenborgh 49747 AG Groningen The Netherlands
| |
Collapse
|
10
|
Lybaert J, Tehrani KA, De Wael K. Mediated electrolysis of vicinal diols by neocuproine palladium catalysts. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
|
12
|
Kopylovich MN, Ribeiro AP, Alegria EC, Martins NM, Martins LM, Pombeiro AJ. Catalytic Oxidation of Alcohols. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2015. [DOI: 10.1016/bs.adomc.2015.02.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Cao KS, Bian HX, Zheng WH. Mild arylboronic acid catalyzed selective [4 + 3] cycloadditions: access to cyclohepta[b]benzofurans and cyclohepta[b]indoles. Org Biomol Chem 2015; 13:6449-52. [DOI: 10.1039/c5ob00653h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first example of arylboronic acid catalyzed [4 + 3] cycloaddition reaction is reported.
Collapse
Affiliation(s)
- Kou-Sen Cao
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Hong-Xu Bian
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| |
Collapse
|
14
|
William JM, Kuriyama M, Onomura O. Simple method for selective oxidation of 1,2-diols in water with KBrO3/KHSO4. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|