1
|
Hayashi Y, Xu Q, Koshino S. Switch of Five Contiguous Chiral Centers in the Synthesis of Both Enantiomers of Hajos-Parrish Ketone Analogs via Diphenylprolinol Silyl Ether-Mediated Domino Reaction. Chemistry 2025; 31:e202403580. [PMID: 39535455 DOI: 10.1002/chem.202403580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Both enantiomers of functionalized Hajos-Parrish ketone (HPK) analogs were prepared with excellent diastereoselectivities and enantioselectivities using the same chiral catalyst under two slightly different conditions. In condition A, dioxane was used as the solvent with 3 equivalents of water. In condition B, acetonitrile was used as the solvent with 30 equivalents of water, followed by epimerization with a base in a one-pot. The reaction consisted of a domino reaction including a diphenylprolinol silyl ether-mediated asymmetric Michael reaction and an intramolecular Henry reaction. In the Michael reaction, depending on the solvent and water amounts, syn- and anti-isomers were selectively synthesized with excellent enantioselectivity, in which the absolute configuration at C5 (indanone numbering) was opposite. The subsequent Henry reaction was diastereoselective, in which the C5 substituent controlled the three chiral centers in a highly diastereoselective manner. The final base treatment in condition B caused epimerization, changing the configuration at C6. Switching more than two chiral centers with high enantioselectivity is extremely difficult using the same chiral catalyst; the present reaction is a very rare enantiodivergent reaction that switches five continuous chiral centers with high enantioselectivity.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Qianqian Xu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Seitaro Koshino
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
2
|
Heinicke JW. o-Hydroxyarylphosphanes: Strategies for Syntheses of Configurationally Stable, Electronically and Sterically Tunable Ambiphiles with Multiple Applications. Chemistry 2024; 30:e202302740. [PMID: 37905970 DOI: 10.1002/chem.202302740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
o-Hydroxyarylphosphanes are fascinating compounds by their multiple-reactivity features, attributed to the ambident hard and soft Lewis- and also Brønstedt acid-base properties, wide tuning opportunities via backbone substituents with ±mesomeric and inductive, at P and in o-position to P and O also steric effects, and in addition, the configurational stability at three-valent phosphorus. Air sensitivity may be overcome by reversible protection with BH3 , but the easy oxidation to P(V)-compounds may also be used. Since the first reports on the title compounds ca. 50 years ago the multiple reactivity has led to versatile applications. This includes various P-E-O and P=C-O heterocycles, a multitude of O-substituted derivatives including acyl derivatives for traceless Staudinger couplings of biomolecules with labels or functional substituents, phosphane-phosphite ligands, which like the o-phosphanylphenols itself form a range of transition metal complexes and catalysts. Also main group metal complexes and (bi)arylphosphonium-organocatalysts are derived. Within this review the various strategies for the access of the starting materials are illuminated, including few hints to selected applications.
Collapse
Affiliation(s)
- Joachim W Heinicke
- Emeritus Inorganic Chemistry, Institute of Biochemistry, University Greifswald, 17487, Greifswald, Germany
| |
Collapse
|
3
|
Yamashita K, Tabata Y, Yamakawa K, Mochizuki T, Matsui K, Hatano M, Ishihara K. Chiral Macrocyclic Catalysts for the Enantioselective Addition of Lithium Acetylides to Ketones. J Am Chem Soc 2023; 145:26238-26248. [PMID: 37924326 DOI: 10.1021/jacs.3c08905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Alkynyl addition to carbonyl compounds is a valuable synthetic method for the preparation of versatile chiral alcohols that are widely found in pharmaceuticals and natural products. Although a variety of enantioselective variations have been reported, alkynyl addition to simple ketones remains an unmet challenge due to their low reactivity and difficult enantiofacial discrimination. Here, we report a method for the catalytic enantioselective addition of lithium acetylide to a variety of ketones using macrocyclic lithium binaphtholates as catalysts. These reactions generally suffer from facile aggregation of lithium species, which leads to less active and selective catalysts. The macrocyclic structure designed in this study prevents such aggregation, affording a monomeric and highly active catalyst that can furnish enantioenriched tertiary alcohols from a variety of ketones within 5-30 min. Moreover, the confined cavity and lipophilicity of the macrocycle confer substrate specificity on the system, demonstrating a multiselectivity similar to that of enzymatic reactions. Thus, these findings offer new insights into the rational design of small-molecule artificial enzymes that exhibit high levels of reactivity and multiselectivity.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuji Tabata
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Katsuya Yamakawa
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takuya Mochizuki
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kai Matsui
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Manabu Hatano
- Faculty of Pharmaceutical Sciences, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada, Kobe 658-8558, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, B2-3(611) Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Bai XF, Cui YM, Cao J, Xu LW. Atropisomers with Axial and Point Chirality: Synthesis and Applications. Acc Chem Res 2022; 55:2545-2561. [PMID: 36083117 DOI: 10.1021/acs.accounts.2c00417] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enantiopure atropisomers have become increasingly important in asymmetric synthesis and catalysis, pharmaceutical science, and material science since the discovery of inherent features of axial chirality originating from rotational restriction. Despite the advances made in this field to date, it remains highly desirable to construct structurally diverse atropisomers with potentially useful functions. We propose superposition to match axial and point chirality as a potentially useful strategy to access structurally complex and diverse building blocks for organic synthesis and pharmaceutical science because merging atropisomeric backbones with one or more extra chiral elements can topologically broaden three-dimensional environments to create complex scaffolds with multiple tunable parameters. Over the past decade, we have successfully implemented a strategic design for the superposition of axial and point chirality to develop a series of enantiopure atropisomers and have utilized the synergistic functions of these molecules to enhance chirality transfer in various catalytic asymmetric transformations.In this Account, we present several novel atropisomers with superposed axial and point chirality developed in our laboratory. In our studies, this superposition strategy was used to design and synthesize both biaryl and non-biaryl atropisomers from commercially available chiral sources. Consequently, these atropisomers were used to demonstrate the importance of the synergetic functions of axial and point chirality in specific enantioselective reactions. For example, aromatic amide-derived atropisomers, simplified as Xing-Phos arrays, were broadly employed in Ag-catalyzed [3 + 2] cycloaddition by a series of reactions of aldiminoesters with activated alkenes and imines, as well as being used as chiral solvating agents for the discrimination of optically active mandelic acid derivatives. Considering the powerful potential of non-biaryl atropisomers for asymmetric catalysis, we also explored the transition-metal-catalyzed enantioselective construction of a novel backbone of non-biaryl atropisomers (Ar-alkene, Ar-N axis) bearing both axial and point chirality for the design and synthesis of chiral ligands and functional molecules.The studies presented herein are expected to stimulate further research efforts on the development of functional atropisomers by superposition of matching axial and point chirality. In addition to tunable electron and stereohindrance effects, the synergy between matching chiral elements of axial/point chirality and functional groups is proven to be a special function that cannot be ignored for promoting reactivity and chirality-transfer efficiency in enantioselective synthesis. Consequently, our novel types of scaffolds with superposed axial and point chirality that are capable of versatile coordination with various metal catalysts in asymmetric catalysis highlight the power of the superposition of matching axial and point chirality for the construction of synthetically useful atropisomers.
Collapse
Affiliation(s)
- Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| |
Collapse
|
5
|
Aitken RA, Harper AD, Inwood RA, Slawin AMZ. Access to Diarylmethanols by Wittig Rearrangement of ortho-, meta-, and para-Benzyloxy- N-Butylbenzamides. J Org Chem 2022; 87:4692-4701. [PMID: 35286089 PMCID: PMC9007461 DOI: 10.1021/acs.joc.1c03160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The N-butyl amide
group, CONHBu, has been found
to be an effective promoter of the [1,2]-Wittig rearrangement of aryl
benzyl ethers and thus allow the two-step synthesis of isomerically
pure substituted diarylmethanols starting from simple hydroxybenzoic
acid derivatives. The method is compatible with a wide range of functional
groups including methyl, methoxy, and fluoro, although not with nitro
and, unexpectedly, is applicable to meta as well
as ortho and para isomeric series.
Collapse
Affiliation(s)
- R Alan Aitken
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Andrew D Harper
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Ryan A Inwood
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| | - Alexandra M Z Slawin
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, U.K
| |
Collapse
|
6
|
Li H, Huang W, Yang K, Ye F, Yin G, Xu Z, Xu L. Asymmetric Disilylation of Spirocyclic Palladacyclopentanes via Tandem Heck/C−H Activation of Aryl Iodides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Wei‐Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Ke‐Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Guan‐Wu Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| | - Li‐Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 P. R. China
| |
Collapse
|
7
|
Ye F, Xu Z, Xu LW. The Discovery of Multifunctional Chiral P Ligands for the Catalytic Construction of Quaternary Carbon/Silicon and Multiple Stereogenic Centers. Acc Chem Res 2021; 54:452-470. [PMID: 33375791 DOI: 10.1021/acs.accounts.0c00740] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of highly effective chiral ligands is a key topic in enhancing the catalytic activity and selectivity in metal-catalyzed asymmetric synthesis. Traditionally, the difficulty of ligand synthesis, insufficient accuracy in controlling the stereoselectivity, and poor universality of the systems often become obstacles in this field. Using the concept of nonequivalent coordination to the metal, our group has designed and synthesized a series of new chiral catalysts to access various carbon/silicon and/or multiple stereogenic centers containing products with excellent chemo-, diastereo-, and enantioselectivity.In this Account, we summarize a series of new phosphine ligands with multiple stereogenic centers that have been developed in our laboratory. These ligands exhibited good to excellent performance in the transition-metal-catalyzed enantioselective construction of quaternary carbon/silicon and multiple stereogenic centers. In the first section, notable examples of the design and synthesis of new chiral ligands by non-covalent interaction-based multisite activation are described. The integrations of axial chirality, atom-centered chirality, and chiral anions and multifunctional groups into a single scaffold are individually highlighted, as represented by Ar-BINMOLs and their derivative ligands, HZNU-Phos, Fei-Phos, and Xing-Phos. In the second, third, and fourth sections, the enantioselective construction of quaternary carbon stereocenters, multiple stereogenic centers, and silicon stereogenic centers using our newly developed chiral ligands is summarized. These sections refer to detailed reaction information in the chiral-ligand-controlled asymmetric catalysis based on the concept of nonequivalent coordination with multisite activation. Accordingly, a wide array of transition metal and main-group metal catalysts has been applied to the enantioselective synthesis of chiral heterocycles, amino acid derivatives, cyclic ketones, alkenes, and organosilicon compounds bearing one to five stereocenters.This Account shows that this new model of multifunctional ligand-controlled catalysts exhibits excellent stereocontrol and catalytic efficiency, especially in a stereodivergent and atom-economical fashion. Furthermore, a brief mechanistic understanding of the origin of enantioselectivity from our newly developed chiral catalyst systems could inspire further development of new ligands and enhancement of enantioselective synthesis by asymmetric metal catalysis.
Collapse
Affiliation(s)
- Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
8
|
Wang X, Huang SS, Zhang FJ, Xie JL, Li Z, Xu Z, Ye F, Xu LW. Multifunctional P-ligand-controlled “silicon-centered” selectivity in Rh/Cu-catalyzed Si–C bond cleavage of silacyclobutanes. Org Chem Front 2021. [DOI: 10.1039/d1qo01386f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A newly developed Ar-BINMOL-Phos-controlled Rh/Cu-catalyzed (4+2) annulation of silacylcobutanes with arylpropiolate-type internal alkynes gave silicon-stereogenic 1-sila-2-cyclohexene derivatives with good ee and excellent chemoselectivity.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Shuai-Shuai Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Feng-Jiao Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jia-Le Xie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Zhao Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
9
|
Tang RH, Xu Z, Nie YX, Xiao XQ, Yang KF, Xie JL, Guo B, Yin GW, Yang XM, Xu LW. Catalytic Asymmetric trans-Selective Hydrosilylation of Bisalkynes to Access AIE and CPL-Active Silicon-Stereogenic Benzosiloles. iScience 2020; 23:101268. [PMID: 32599559 PMCID: PMC7326740 DOI: 10.1016/j.isci.2020.101268] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023] Open
Abstract
Chirality widely exists in a diverse array of biologically active molecules and life forms, and the catalytic constructions of chiral molecules have triggered a heightened interest in the fields of chemistry and materials and pharmaceutical sciences. However, the synthesis of silicon-stereogenic organosilicon compounds is generally recognized as a much more difficult task than that of carbon-stereogenic centers because of no abundant organosilicon-based chiral sources in nature. Herein, we reported a highly enantioselective rhodium-catalyzed trans-selective hydrosilylation of silicon-tethered bisalkynes to access chiral benzosiloles bearing a silicon-stereogenic center. This protocol featured with chiral Ar-BINMOL-Phos bearing hydrogen-bond donors as a privileged P-ligand for catalytic asymmetric hydrosilylation that is operationally simple and has 100% atom-economy with good functional group tolerability as well as high enantioselectivity (up to >99:1 er). Benefiting from the trans-selective hydrosilylation with the aid of Rh/Ar-BINMOL-Phos-based asymmetric catalysis, the Si-stereogenic benzosiloles exhibited pronounced aggregation-induced emission (AIE) and circularly polarized luminescence (CPL) activity.
Collapse
Affiliation(s)
- Ren-He Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yi-Xue Nie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xu-Qiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jia-Le Xie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Bin Guo
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Guan-Wu Yin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xue-Min Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China; State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
10
|
Park D, Jette CI, Kim J, Jung W, Lee Y, Park J, Kang S, Han MS, Stoltz BM, Hong S. Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation‐Binding Salen Nickel Complexes. Angew Chem Int Ed Engl 2020; 59:775-779. [DOI: 10.1002/anie.201913057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/06/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Dongseong Park
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Carina I. Jette
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Jiyun Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Woo‐Ok Jung
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Yongmin Lee
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Jongwoo Park
- Department of ChemistryUniversity of Florida P.O.Box 117200 Gainesville FL 32611-7200 USA
- Current address: Process R&D CenterSK biotek 325 Exporo Yuseong-gu Daejeon 34124 Republic of Korea
| | - Seungyoon Kang
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Min Su Han
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Brian M. Stoltz
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Sukwon Hong
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| |
Collapse
|
11
|
Park D, Jette CI, Kim J, Jung W, Lee Y, Park J, Kang S, Han MS, Stoltz BM, Hong S. Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation‐Binding Salen Nickel Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dongseong Park
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Carina I. Jette
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Jiyun Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Woo‐Ok Jung
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Yongmin Lee
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Jongwoo Park
- Department of ChemistryUniversity of Florida P.O.Box 117200 Gainesville FL 32611-7200 USA
- Current address: Process R&D CenterSK biotek 325 Exporo Yuseong-gu Daejeon 34124 Republic of Korea
| | - Seungyoon Kang
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Min Su Han
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Brian M. Stoltz
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Sukwon Hong
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| |
Collapse
|
12
|
Cao W, Feng X, Liu X. Reversal of enantioselectivity in chiral metal complex-catalyzed asymmetric reactions. Org Biomol Chem 2019; 17:6538-6550. [PMID: 31219126 DOI: 10.1039/c9ob01027k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric catalysis represents an efficient approach to prepare optically active compounds. Commonly, both enantiomers of a chiral catalyst are used to synthesize two enantiomers of a chiral compound, however, it is quite difficult to obtain the catalysts with opposite configurations in most cases. Thus, chemists pay much attention to look for new strategies. Enantiodivergent synthesis demonstrates cost effectiveness and practicability to solve this issue by tuning the reaction parameters with the use of ligands derived from a single chiral source. In 2003 and 2008, two reviews have commendably summarized the enantiodivergent reactions, and some representative examples were illustrated. In this review, reversal of enantioselectivity in metal complex-mediated asymmetric catalysis from 2008 to present was updated. Several factors of delivering enantiodivergence are introduced, including metal salts, ligands, additives, solvents, temperature and so on.
Collapse
Affiliation(s)
- Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
13
|
Pizzolato S, Štacko P, Kistemaker JCM, van Leeuwen T, Otten E, Feringa BL. Central-to-Helical-to-Axial-to-Central Transfer of Chirality with a Photoresponsive Catalyst. J Am Chem Soc 2018; 140:17278-17289. [PMID: 30458108 PMCID: PMC6326533 DOI: 10.1021/jacs.8b10816] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 12/26/2022]
Abstract
Recent advances in molecular design have displayed striking examples of dynamic chirality transfer between various elements of chirality, e.g., from central to either helical or axial chirality and vice versa. While considerable progress in atroposelective synthesis has been made, it is intriguing to design chiral molecular switches able to provide selective and dynamic control of axial chirality with an external stimulus to modulate stereochemical functions. Here, we report the synthesis and characterization of a photoresponsive bis(2-phenol)-substituted molecular switch 1. The unique design exhibits a dynamic hybrid central-helical-axial transfer of chirality. The change of preferential axial chirality in the biaryl motif is coupled to the reversible switching of helicity of the overcrowded alkene core, dictated by the fixed stereogenic center. The potential for dynamic control of axial chirality was demonstrated by using ( R)-1 as switchable catalyst to direct the stereochemical outcome of the catalytic enantioselective addition of diethylzinc to aromatic aldehydes, with successful reversal of enantioselectivity for several substrates.
Collapse
Affiliation(s)
- Stefano
F. Pizzolato
- Center for Systems Chemistry, Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials,
Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter Štacko
- Center for Systems Chemistry, Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials,
Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jos C. M. Kistemaker
- Center for Systems Chemistry, Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials,
Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas van Leeuwen
- Center for Systems Chemistry, Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials,
Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Edwin Otten
- Center for Systems Chemistry, Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials,
Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Center for Systems Chemistry, Stratingh
Institute for Chemistry and Zernike Institute for Advanced Materials,
Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Long PW, Bai XF, Ye F, Li L, Xu Z, Yang KF, Cui YM, Zheng ZJ, Xu LW. Construction of Six-Membered Silacyclic Skeletons via Platinum-Catalyzed Tandem Hydrosilylation/Cyclization with Dihydrosilanes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800456] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Peng-Wei Long
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
- Suzhou Research Institute and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou People's Republic of China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 People's Republic of China
- Suzhou Research Institute and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou People's Republic of China
| |
Collapse
|
15
|
Abstract
This review covers diastereo- and enantiodivergent catalyzed reactions in acyclic and cyclic systems using metal complexes or organocatalysts. Among them, nucleophilic addition to carbon-carbon and carbon-nitrogen double bonds, α-functionalization of carbonyl compounds, allylic substitutions, and ring opening of oxiranes and aziridines are considered. The diastereodivergent synthesis of alkenes from alkynes is also included. Finally, stereodivergent intramolecular and intermolecular cycloadditions and other cyclizations are also reported.
Collapse
Affiliation(s)
- Irina P Beletskaya
- Chemistry Department , M. V. Lomonosov Moscow State University , Leninskie Gory 1 , 119992 Moscow , Russia
| | - Carmen Nájera
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universidad de Alicante , Apdo. 99 , E-03080 Alicante , Spain
| | - Miguel Yus
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universidad de Alicante , Apdo. 99 , E-03080 Alicante , Spain
| |
Collapse
|
16
|
Vyas VK, Knighton RC, Bhanage BM, Wills M. Combining Electronic and Steric Effects To Generate Hindered Propargylic Alcohols in High Enantiomeric Excess. Org Lett 2018; 20:975-978. [DOI: 10.1021/acs.orglett.7b03884] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Vijyesh K. Vyas
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400019, India
| | - Richard C. Knighton
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Martin Wills
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
17
|
Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Copper-catalyzed oxidative coupling of quinoxalin-2(1H)-ones with alcohols: access to hydroxyalkylation of quinoxalin-2(1H)-ones. Org Chem Front 2018. [DOI: 10.1039/c8qo00979a] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient protocol for the synthesis of hydroxyl-containing quinoxalin-2(1H)-ones has been developed via the copper-catalyzed cross-coupling reaction of quinoxalin-2(1H)-ones with alcohols with moderate to good yields.
Collapse
Affiliation(s)
- Junhao Fu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Yue Zhang
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Pu Mao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| | - Lingbo Qu
- School of Chemistry & Chemical Engineering
- Henan University of Technology
- Academician Workstation for Natural Medicinal Chemistry of Henan Province
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
18
|
Long PW, Xu JX, Bai XF, Xu Z, Zheng ZJ, Yang KF, Li L, Xu LW. Palladium-catalyzed tandem allylic substitution/cyclization and cascade hydrosilylated reduction: the influence of reaction parameters and hydrosilanes on the stereoselectivity. RSC Adv 2018; 8:22944-22951. [PMID: 35540169 PMCID: PMC9081657 DOI: 10.1039/c8ra02995d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
Pd-catalyzed AAA of 1,2-bifunctional nucleophiles and one-pot tandem allylic cyclization/reduction gave corresponding heterocycle products with promising enantioselectivity in good yields.
Collapse
Affiliation(s)
- Peng-Wei Long
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Jian-Xing Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
19
|
Dong C, Yuan Y, Cui Y, Zheng Z, Cao J, Xu Z, Xu L. A pronounced ligand effect on platinum‐catalyzed Hydrosilylation of terminal alkynes. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cheng Dong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No 1378, Wenyi West Road, Science Park of HZNU Hangzhou China
| | - Yang Yuan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No 1378, Wenyi West Road, Science Park of HZNU Hangzhou China
| | - Yu‐Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No 1378, Wenyi West Road, Science Park of HZNU Hangzhou China
| | - Zhan‐Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No 1378, Wenyi West Road, Science Park of HZNU Hangzhou China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No 1378, Wenyi West Road, Science Park of HZNU Hangzhou China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No 1378, Wenyi West Road, Science Park of HZNU Hangzhou China
| | - Li‐Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationHangzhou Normal University No 1378, Wenyi West Road, Science Park of HZNU Hangzhou China
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences China
| |
Collapse
|
20
|
Xu JX, Chen MY, Zheng ZJ, Cao J, Xu Z, Cui YM, Xu LW. Platinum-Catalyzed Multicomponent Alcoholysis/Hydrosilylation and Bis-hydrosilylation of Alkynes with Dihydrosilanes. ChemCatChem 2017. [DOI: 10.1002/cctc.201700390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian-Xing Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P.R. China
| | - Mu-Yi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P.R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P.R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P.R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P.R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P.R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Chinese Academy of Sciences; Lanzhou Institute of Chemical Physics; P.R. China
| |
Collapse
|
21
|
Bai XF, Zou JF, Chen MY, Xu Z, Li L, Cui YM, Zheng ZJ, Xu LW. Lewis-Base-Mediated Diastereoselective Silylations of Alcohols: Synthesis of Silicon-Stereogenic Dialkoxysilanes Controlled by Chiral Aryl BINMOLs. Chem Asian J 2017; 12:1730-1735. [DOI: 10.1002/asia.201700640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
- Suzhou Research Institute and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| | - Jin-Feng Zou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Mu-Yi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; Hangzhou 311121 P.R. China
- Suzhou Research Institute and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; Lanzhou 730000 P.R. China
| |
Collapse
|
22
|
Dong XY, Gao LX, Zhang WQ, Cui YM, Yang KF, Gao ZW, Xu LW. Evolution of Cobalt Catalysis for Catalytic Construction of Si-H -Containing Semi-Penetrating Networks: Updated Application in Nanosilver-Catalyzed Alkynylation of Paraformaldehyde. ChemistrySelect 2016. [DOI: 10.1002/slct.201600952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Yun Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University, No 1378; Wenyi West Road, Science Park of HZNU Hangzhou
| | - Ling-Xiang Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P. R. China
| | - Wei-Qiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University, No 1378; Wenyi West Road, Science Park of HZNU Hangzhou
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University, No 1378; Wenyi West Road, Science Park of HZNU Hangzhou
| | - Zi-Wei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P. R. China
| | - Li-Wen Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University, No 1378; Wenyi West Road, Science Park of HZNU Hangzhou
| |
Collapse
|
23
|
Bai XF, Li L, Xu Z, Zheng ZJ, Xia CG, Cui YM, Xu LW. Asymmetric Michael Addition of Aldimino Esters with Chalcones Catalyzed by Silver/Xing-Phos: Mechanism-Oriented Divergent Synthesis of Chiral Pyrrolines. Chemistry 2016; 22:10399-404. [DOI: 10.1002/chem.201601945] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Xing-Feng Bai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (CAS) and; University of the Chinese Academy of Sciences; P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P. R. China
| | - Chun-Gu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (CAS) and; University of the Chinese Academy of Sciences; P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P. R. China
| | - Li-Wen Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics (CAS) and; University of the Chinese Academy of Sciences; P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; P. R. China
| |
Collapse
|
24
|
Affiliation(s)
- William D. G. Brittain
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom
| | - Benjamin R. Buckley
- Department
of Chemistry, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - John S. Fossey
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, United Kingdom
| |
Collapse
|
25
|
Chen MY, Song T, Zheng ZJ, Xu Z, Cui YM, Xu LW. Tao-Phos-controlled desymmetrization of succinimide-based bisalkynes via asymmetric copper-catalyzed Huisgen alkyne–azide click cycloaddition: substrate scope and mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra13687g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
26
|
Chen D, Xing G, Yao J, Zhou H. Construction of highly functionalized naphthalenes using an in situ ene–allene strategy. RSC Adv 2016. [DOI: 10.1039/c6ra21889j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Construction of highly functionalized naphthalene derivatives remains a challenging task for organic chemists because of the effect of the substituent.
Collapse
Affiliation(s)
- Dianpeng Chen
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| | - Gangdong Xing
- Department of Chemistry
- Zhejiang University (Campus Xixi)
- Hangzhou 310028
- People's Republic of China
| | - Jinzhong Yao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| | - Hongwei Zhou
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| |
Collapse
|
27
|
Chen L, Huang JB, Xu Z, Zheng ZJ, Yang KF, Cui YM, Cao J, Xu LW. Palladium-catalyzed Si–C bond-forming silylation of aryl iodides with hydrosilanes: an enhanced enantioselective synthesis of silicon-stereogenic silanes by desymmetrization. RSC Adv 2016. [DOI: 10.1039/c6ra12873d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An enantioselective Pd-catalyzed silicon–carbon bond-forming silylation reaction of aryl iodides with hydrosilanes for the synthesis of silicon-stereogenic silanes has been developed with good enantioselectivity under mild conditions.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Jiang-Bo Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
28
|
Xu JX, Ye F, Bai XF, Cui YM, Xu Z, Zheng ZJ, Xu LW. A mechanistic study on multifunctional Fei-Phos ligand-controlled asymmetric palladium-catalyzed allylic substitutions. RSC Adv 2016. [DOI: 10.1039/c6ra15665g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mechanistic studies were performed for the clarification of the role of multifunctional Fei-Phos in allylic substitution reactions, in which it is proved to be a diphosphine-controlled catalytic asymmetric allylic alkylation.
Collapse
Affiliation(s)
- Jian-Xing Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
29
|
Xu Z, Xu LW. Development of Ar-BINMOL-Derived Atropisomeric Ligands with Matched Axial and sp3Central Chirality for Catalytic Asymmetric Transformations. CHEM REC 2015; 15:925-48. [PMID: 26400411 DOI: 10.1002/tcr.201500208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of the Ministry of Education; Hangzhou Normal University; No. 1378, Wenyi West Road Hangzhou P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of the Ministry of Education; Hangzhou Normal University; No. 1378, Wenyi West Road Hangzhou P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences (CAS); No. 18, Tianshui Road Lanzhou P. R. China
| |
Collapse
|
30
|
Barozzino-Consiglio G, Yuan Y, Fressigné C, Harrison-Marchand A, Oulyadi H, Maddaluno J. Enantioselective Alkynylation of Aldehydes by Mixed Aggregates of 3-Aminopyrrolidine Lithium Amides and Lithium Acetylides. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gabriella Barozzino-Consiglio
- Normandie Université, Laboratoire COBRA, UMR 6014 & FR 3038 CNRS, Université de Rouen, INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | - Yi Yuan
- Normandie Université, Laboratoire COBRA, UMR 6014 & FR 3038 CNRS, Université de Rouen, INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | - Catherine Fressigné
- Normandie Université, Laboratoire COBRA, UMR 6014 & FR 3038 CNRS, Université de Rouen, INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | - Anne Harrison-Marchand
- Normandie Université, Laboratoire COBRA, UMR 6014 & FR 3038 CNRS, Université de Rouen, INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | - Hassan Oulyadi
- Normandie Université, Laboratoire COBRA, UMR 6014 & FR 3038 CNRS, Université de Rouen, INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| | - Jacques Maddaluno
- Normandie Université, Laboratoire COBRA, UMR 6014 & FR 3038 CNRS, Université de Rouen, INSA de Rouen, 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
31
|
Bauer T. Enantioselective dialkylzinc-mediated alkynylation, arylation and alkenylation of carbonyl groups. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Total synthesis of each enantiomer of falcarinol and panaxjapyne A via asymmetric catalytic alkynylation of an aldehyde. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Huang WS, Xu Z, Yang KF, Chen L, Zheng ZJ, Xu LW. Modular construction of multifunctional ligands for the enantioselective ruthenium-catalyzed carbenoid N–H insertion reaction: an enzyme-like and substrate-sensitive catalyst system. RSC Adv 2015. [DOI: 10.1039/c5ra05804j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It was found for the first time that BINOL-derived multifunctional ligands bearing a silicon-based bulky group exhibited promising enantioselective control in the ruthenium-catalysed carbenoid N–H insertion reaction.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
| | - Li Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
| |
Collapse
|
34
|
Gao PS, Ye F, Dong XY, Chen Y, Gao ZW, Zhang WQ, Xu LW. Base-promoted [1,4]-Wittig rearrangement of chalcone-derived allylic ethers leading to aromatic β-benzyl ketones. RSC Adv 2015. [DOI: 10.1039/c5ra03846d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Strong base promoted [1,4]-Wittig rearrangement of allylic ethers was developed in this work, in which the reaction provided a facile approach to the synthesis of aromatic β-benzyl ketones under controllable radical reaction conditions.
Collapse
Affiliation(s)
- Pei-Sen Gao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry
- Material Technology of Ministry of Education
- Hangzhou Normal University
- Hangzhou 310012
- P. R. China
| | - Xiao-Yun Dong
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Yun Chen
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Zi-Wei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Wei-Qiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Li-Wen Xu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
35
|
Wang CY, Dong C, Zheng ZJ, Xu Z, Yang KF, Xu LW. Construction of an all-substituted pyrrolidine derivative with multiple stereogenic centers and Betti-base-derived γ-amino alcohols by [1,2]-Wittig rearrangement. RSC Adv 2015. [DOI: 10.1039/c5ra09145d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The construction of Betti base-derived γ-amino alcohols and all-substituted pyrrolidine derivative with multiple stereogenic centers has been developed successfully through neighboring lithium-assisted [1,2]-Wittig rearrangement (NLAWR).
Collapse
Affiliation(s)
- Cai-Yun Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Cheng Dong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
36
|
Dong C, Song T, Bai XF, Cui YM, Xu Z, Xu LW. Enantioselective conjugate addition of cyanide to chalcones catalyzed by a magnesium-Py-BINMOL complex. Catal Sci Technol 2015. [DOI: 10.1039/c5cy01056j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient asymmetric conjugate addition of trimethylsilyl cyanide (TMSCN) to chalcones, catalyzed by bifunctional Py-BINMOL-Mg complex, with moderate to good enantioselectivities and in good yields, has been realized in this work.
Collapse
Affiliation(s)
- Cheng Dong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
- PR China
| | - Tao Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
- PR China
| | - Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
- PR China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
- PR China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
- PR China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012
- PR China
| |
Collapse
|
37
|
Wei YL, Huang WS, Cui YM, Yang KF, Xu Z, Xu LW. Enantioselective cyanosilylation of aldehydes catalyzed by a multistereogenic salen–Mn(iii) complex with a rotatable benzylic group as a helping hand. RSC Adv 2015. [DOI: 10.1039/c4ra12884b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A multistereogenic salen–Mn(iii) complex bearing an aromatic pocket and two benzylic groups as helping hands was found to be efficient in the catalysis of asymmetric cyanosilylation.
Collapse
Affiliation(s)
- Yun-Long Wei
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Ke-Fang Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE)
- Hangzhou Normal University
- Hangzhou 311121
- P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
38
|
Cheng JK, Loh TP. Copper- and Cobalt-Catalyzed Direct Coupling of sp3 α-Carbon of Alcohols with Alkenes and Hydroperoxides. J Am Chem Soc 2014; 137:42-5. [DOI: 10.1021/ja510635k] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jun-Kee Cheng
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Teck-Peng Loh
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
39
|
Song T, Li L, Zhou W, Zheng ZJ, Deng Y, Xu Z, Xu LW. Enantioselective copper-catalyzed azide-alkyne click cycloaddition to desymmetrization of maleimide-based bis(alkynes). Chemistry 2014; 21:554-8. [PMID: 25388524 DOI: 10.1002/chem.201405420] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 12/25/2022]
Abstract
A copper catalyst system derived from TaoPhos and CuF2 was used successfully for catalytic asymmetric Huisgen [3+2] cycloaddition of azides and alkynes to give optically pure products containing succinimide- and triazole-substituted quaternary carbon stereogenic centers. The desired products were obtained in good yields (60-80 %) and 85:15 to >99:1 enantiomeric ratio (e.r.) in this click cycloaddition reaction.
Collapse
Affiliation(s)
- Tao Song
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No 1378, Wenyi West Road, Science Park of HZNU, Hangzhou (P. R. China)
| | | | | | | | | | | | | |
Collapse
|
40
|
Deng WH, Ye F, Bai XF, Zheng ZJ, Cui YM, Xu LW. Multistereogenic Phosphine Ligand-promoted Palladium-Catalyzed Allylic Alkylation of Cyanoesters. ChemCatChem 2014. [DOI: 10.1002/cctc.201402733] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Wei YL, Yang KF, Li F, Zheng ZJ, Xu Z, Xu LW. Probing the evolution of an Ar-BINMOL-derived salen–Co(iii) complex for asymmetric Henry reactions of aromatic aldehydes: salan–Cu(ii) versus salen–Co(iii) catalysis. RSC Adv 2014. [DOI: 10.1039/c4ra06056c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|