1
|
Qu Y, Liu Z, Zhou Y, Feng X, Liu X. Asymmetric Catalytic Aziridination to Synthesize Spiro-aziridine Oxindoles. Chemistry 2025; 31:e202500302. [PMID: 39979234 DOI: 10.1002/chem.202500302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Asymmetric catalytic aza-Michael-initiated ring closure of methyleneindolinones with N-tosyloxycarbamates has been established. The reaction using a chiral nickel complex catalyst enabled the formation of a series of spiro-aziridine oxindoles in good yields (up to 99 %) with high stereoselectivity (up to 97 % ee, >19 : 1 dr) under mild reaction conditions. Ring-opening of spiro-aziridine oxindole leads to formation of glycinate-bearing oxindoles with retention of configuration.
Collapse
Affiliation(s)
- Yinhe Qu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, P. R. China
| |
Collapse
|
2
|
Murphy BA, Lin S, VanNieuwenhze MS. Synthesis of the tris-Amino Acid Labionin through a Contrasteric Aziridination and Ring-Opening Sequence. Org Lett 2025; 27:1696-1699. [PMID: 39929605 DOI: 10.1021/acs.orglett.5c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The non-proteinogenic tris-amino acid labionin was discovered in 2010 and since has been described in many natural products, defining an entire family of lanthipeptides. The unusual amino acid is biosynthetically produced by the sequential condensation of a cysteine onto two dehydroalanines. An attempt in 2011 to synthesize the amino acid monomeric unit was unsuccessful yet served as a valuable foundation and guide to the present work. A recently disclosed methodology for the selective opening of aziridines by mercaptan nucleophiles was applied to another methodology for contrasteric aziridination, thus enabling a short synthesis of challenging and elusive labionin.
Collapse
Affiliation(s)
- Brennan A Murphy
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Sheng Lin
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Michael S VanNieuwenhze
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
3
|
O’Shaughnessy C, Mondal M, Kerrigan NJ. Recent Developments in Stereoselective Reactions of Sulfoxonium Ylides. Molecules 2025; 30:655. [PMID: 39942761 PMCID: PMC11820446 DOI: 10.3390/molecules30030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
This review probes the recent developments in stereoselective reactions within the area of sulfoxonium ylide chemistry since the early 2000s. An abundance of research has been applied to sulfoxonium ylide chemistry since its emergence in the early 1960s. There has been a continued effort since then with work in traditional areas, such as epoxidation, aziridination and cyclopropanation. Efforts have also been applied in novel areas, such as olefination and insertion reactions, to develop stereoselective methodologies using organocatalysis and transition metal catalysis. The growing research area of interrupted Johnson-Corey-Chaykovsky reactions is also described, whereby unexpected stereoselective cyclopropanation and epoxidation methodologies have been developed. In general, the most observed mechanistic pathway of sulfoxonium ylides is the formal cycloaddition: (2 + 1) (e.g., epoxides, cyclopropanes, aziridines), (3 + 1) (e.g., oxetanes, azetidines), (4 + 1) (e.g., indanones, indolines). This pathway involves the formation of a zwitterionic intermediate through nucleophilic addition of the carbanion to an electrophilic site. An intramolecular cyclization occurs, constructing the cyclic product. Insertion reactions of sulfoxonium ylides to X-H bonds (e.g., X = S, N or P) are also observed, whereby protonation of the carbanion is followed by a nucleophilic addition of X, to form the inserted product.
Collapse
Affiliation(s)
- Ciarán O’Shaughnessy
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland;
| | - Mukulesh Mondal
- Department of Chemistry, Oakland University, Rochester, MI 40309, USA;
| | - Nessan J. Kerrigan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland;
| |
Collapse
|
4
|
Ni C, Ramspoth TF, Reis MC, Harutyunyan SR. Manganese(I)-Catalyzed Access to Enantioenriched Chiral Aziridine Phosphines. Angew Chem Int Ed Engl 2025; 64:e202415623. [PMID: 39552509 DOI: 10.1002/anie.202415623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Herein, we present the first catalytic asymmetric nucleophilic addition of diarylphosphines to 2H-azirines, facilitated by a chiral Mn(I) complex. This method not only provides access to novel class of derivatives of the aziridine core - a structural motif recognized for its antitumor and antibacterial properties - but also introduces a phosphine moiety alongside the generation of an NH moiety within a strained three-membered ring. The discovery of this new Mn(I) complex that both enables the reaction and induces stereoselectivity is pivotal, as it underscores the significant potential of this earth-abundant metal in advancing asymmetric catalysis.
Collapse
Affiliation(s)
- Chuang Ni
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tizian-Frank Ramspoth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), C/ Jenaro de la Fuente s, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
5
|
Tan H, Thai P, Sengupta U, Deavenport IR, Kucifer CM, Powers DC. Metal-Free Aziridination of Unactivated Olefins via Transient N-Pyridinium Iminoiodinanes. JACS AU 2024; 4:4187-4193. [PMID: 39610755 PMCID: PMC11600189 DOI: 10.1021/jacsau.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
We describe a metal-free aziridination of unactivated olefins to generate N-pyridinium aziridines. Subsequent cross-coupling affords N-aryl aziridines, and reductive depyridylation affords N-H aziridines. Kinetics experiments, based on a variable time normalization analysis (VTNA), indicate that aziridination proceeds via a highly electrophilic N-pyridinium iminoiodinane intermediate. These studies expand build-and-couple aziridine synthesis to unactivated olefins and introduce charge-enhanced electrophilicity into the chemistry of iminoiodinanes.
Collapse
Affiliation(s)
- Hao Tan
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Phong Thai
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Uddalak Sengupta
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Isaac R. Deavenport
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Cali M. Kucifer
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
6
|
Xu N, Holmgren JL, Morken JP. Site-Selective Activation and Stereospecific Functionalization of Bis(boronic Esters) Derived from 2-Alkenes: Construction of Propionates and Other 1,2-Difunctional Motifs. Angew Chem Int Ed Engl 2024; 63:e202408436. [PMID: 38924653 PMCID: PMC11881804 DOI: 10.1002/anie.202408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Non-directed regioselective activation of bis(boronic esters), followed by functionalization, is reported. A bulky activator is shown to selectively activate the less hindered boronic ester enabling it to undergo stereospecific cross-coupling to a variety of electrophiles. This steric-based regioselectivity provides a simple and efficient method to prepare highly functionalized, enantiomerically enriched products starting from simple alkenes.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - John L. Holmgren
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - James P. Morken
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
7
|
Lan Y, Han Q, Liao P, Chen R, Fan F, Zhao X, Liu W. Nickel-Catalyzed Enantioselective C(sp 3)-C(sp 3) Cross-Electrophile Coupling of N-Sulfonyl Styrenyl Aziridines with Alkyl Bromides. J Am Chem Soc 2024; 146:25426-25432. [PMID: 39231321 DOI: 10.1021/jacs.4c08435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Herein, we report the first example of a highly enantioselective alkylative aziridine ring opening. Under the catalysis of a chiral nickel/pyridine-imidazoline complex, asymmetric C(sp3)-C(sp3) cross-electrophile coupling between racemic N-sulfonyl styrenyl aziridines and readily available primary alkyl bromides furnishes a variety of highly enantioenriched phenethylamine derivatives with complete regiocontrol and good functional group tolerance. Preliminary mechanistic studies support a reaction pathway consisting of regioselective iodolysis of aziridines in situ and subsequent enantioconvergent coupling of the generated β-amino benzyl iodides with alkyl bromides.
Collapse
Affiliation(s)
- Yun Lan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Qiaoying Han
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Pingyong Liao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Ruijia Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Fei Fan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Xuejun Zhao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, 1188 Wanrong Road, Shanghai 200072, People's Republic of China
- Shanghai Yuansi Standard Science and Technology Co., Ltd., 1188 Wanrong Road, Shanghai 200072, People's Republic of China
| |
Collapse
|
8
|
Wu L, Li L, Zhao Y, Rui J, Zhan Y, Zhang L, Chen R, Zhou JS, Zhu C, Wu X. Nonactivated Aziridine Synthesis by Intermolecular Polarity-Mismatched Carboamination of Unactivated Alkenes with Unactivated Alkyl Halides. Org Lett 2024; 26:5609-5613. [PMID: 38949378 DOI: 10.1021/acs.orglett.4c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A general intermolecular polarity-mismatched carboamination reaction of unactivated alkenes with unactivated alkyl halides has been developed. A series of nonactivated alkyl-substituted aziridines were constructed in exclusive regioselectivity. The dual polarity-mismatched mechanism might be involved.
Collapse
Affiliation(s)
- Linlin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Zhao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiacheng Rui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Zhan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaojin Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Sahoo S, Harfmann B, Bhatia H, Singh H, Balijapelly S, Choudhury A, Stavropoulos P. A Comparative Study of Cationic Copper(I) Reagents Supported by Bipodal Tetramethylguanidinyl-Containing Ligands as Nitrene-Transfer Catalysts. ACS OMEGA 2024; 9:15697-15708. [PMID: 38585072 PMCID: PMC10993379 DOI: 10.1021/acsomega.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
The bipodal compounds [(TMG2biphenN-R)CuI-NCMe](PF6) (R = Me, Ar (4-CF3Ph-)) and [(TMG2biphenN-Me)CuI-I] have been synthesized with ligands that feature a diarylmethyl- and triaryl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The cationic Cu(I) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI = NTs (Ts = tosyl) and a panel of styrenes in MeCN, to afford aziridines, demonstrating comparable reactivity profiles. The copper reagents have been further explored to execute C-H amination reactions with a variety of aliphatic and aromatic hydrocarbons and two distinct nitrene sources PhI = NTs and PhI = NTces (Tces = 2,2,2-trichloroethylsulfamate) in benzene/HFIP (10:2 v/v). Good yields have been obtained for sec-benzylic and tert-C-H bonds of various substrates, especially with the more electron-deficient catalyst [(TMG2biphenN-Ar)CuI-NCMe](PF6). In conjunction with earlier studies, the order of reactivity of these bipodal cationic reagents as a function of the metal employed is established as Cu > Fe > Co ≥ Mn. However, as opposed to the base-metal analogues, the bipodal Cu reagents are less reactive than a similar tripodal Cu catalyst. The observed fluorophilicity of the bipodal Cu compounds may provide a deactivation pathway.
Collapse
Affiliation(s)
- Suraj
Kumar Sahoo
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Himanshu Bhatia
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Harish Singh
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Srikanth Balijapelly
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
10
|
Wang J, Luo MP, Gu YJ, Liu YY, Yin Q, Wang SG. Chiral Cp x Rhodium(III)-Catalyzed Enantioselective Aziridination of Unactivated Terminal Alkenes. Angew Chem Int Ed Engl 2024; 63:e202400502. [PMID: 38279683 DOI: 10.1002/anie.202400502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Chiral cyclopentadienyl-rhodium(III) Cpx Rh(III) catalysis has been demonstrated to be competent for catalyzing highly enantioselective aziridination of challenging unactivated terminal alkenes and nitrene sources. The chiral Cpx Rh(III) catalysis system exhibited outstanding catalytic performance and wide functional group tolerance, yielding synthetically important and highly valuable chiral aziridines with good to excellent yields and enantioselectivities (up to 99 % yield, 93 % ee). This protocol presents a novel and effective strategy for synthesizing enantioenriched aziridines from simple alkenes. Various transformations were performed on the aziridine products, illustrating the versatility and synthetic potential of this protocol for constructing highly functionalized compounds.
Collapse
Affiliation(s)
- Juanjuan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mu-Peng Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi-Jie Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Ying Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Baris N, Dračínský M, Tarábek J, Filgas J, Slavíček P, Ludvíková L, Boháčová S, Slanina T, Klepetářová B, Beier P. Photocatalytic Generation of Trifluoromethyl Nitrene for Alkene Aziridination. Angew Chem Int Ed Engl 2024; 63:e202315162. [PMID: 38081132 DOI: 10.1002/anie.202315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 01/06/2024]
Abstract
N-Trifluoromethylated organics may be applied in drug design, agrochemical synthesis, and materials science, among other areas. Yet, despite recent advances in the synthesis of aliphatic, cyclic and heterocyclic N-trifluoromethyl compounds, no strategy based on trifluoromethyl nitrene has hitherto been explored. Here we describe the formation of triplet trifluoromethyl nitrene from azidotrifluoromethane, a stable and safe-to-use precursor, by visible light photocatalysis. The addition of CF3 N to alkenes via biradical intermediates afforded previously unknown aziridines substituted with trifluoromethyl group on the nitrogen atom. The obtained aziridines were converted into either N-trifluoromethylimidazolines, via formal [3+2] cycloaddition with nitriles, mediated by a Lewis acid, or into N-trifluoromethylaldimines, via ring opening and aryl group migration mediated by a strong Brønsted acid. Our findings open new opportunities for the development of novel classes of N-CF3 compounds with possible applications in the life sciences.
Collapse
Affiliation(s)
- Norbert Baris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Lucie Ludvíková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| |
Collapse
|
12
|
Fanourakis A, Phipps RJ. Catalytic, asymmetric carbon-nitrogen bond formation using metal nitrenoids: from metal-ligand complexes via metalloporphyrins to enzymes. Chem Sci 2023; 14:12447-12476. [PMID: 38020383 PMCID: PMC10646976 DOI: 10.1039/d3sc04661c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023] Open
Abstract
The introduction of nitrogen atoms into small molecules is of fundamental importance and it is vital that ever more efficient and selective methods for achieving this are developed. With this aim, the potential of nitrene chemistry has long been appreciated but its application has been constrained by the extreme reactivity of these labile species. This liability however can be attenuated by complexation with a transition metal and the resulting metal nitrenoids have unique and highly versatile reactivity which includes the amination of certain types of aliphatic C-H bonds as well as reactions with alkenes to afford aziridines. At least one new chiral centre is typically formed in these processes and the development of catalysts to exert control over enantioselectivity in nitrenoid-mediated amination has become a growing area of research, particularly over the past two decades. Compared with some synthetic methods, metal nitrenoid chemistry is notable in that chemists can draw from a diverse array of metals and catalysts , ranging from metal-ligand complexes, bearing a variety of ligand types, via bio-inspired metalloporphyrins, all the way through to, very recently, engineered enzymes themselves. In the latter category in particular, rapid progress is being made, the rate of which suggests that this approach may be instrumental in addressing some of the outstanding challenges in the field. This review covers key developments and strategies that have shaped the field, in addition to the latest advances, up until September 2023.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
13
|
Dequina HJ, Jones CL, Schomaker JM. Recent updates and future perspectives in aziridine synthesis and reactivity. Chem 2023; 9:1658-1701. [PMID: 37681216 PMCID: PMC10482075 DOI: 10.1016/j.chempr.2023.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In this review, selected recent advances in the preparation and reactivity of aziridines using modern synthetic approaches are highlighted, while comparing these new strategies with more classical approaches. This critical analysis is designed to help identify current gaps in the field and is showcasing new and exciting opportunities to move the chemistry of aziridines forward in the future.
Collapse
Affiliation(s)
- Hillary J. Dequina
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| | - Corey L. Jones
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| | - Jennifer M. Schomaker
- Department of Chemistry, University of Wisconsin, 1101 N. University Avenue, Madison, WI 53706, USA
| |
Collapse
|
14
|
Sahoo SK, Harfmann B, Ai L, Wang Q, Mohapatra S, Choudhury A, Stavropoulos P. Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating as Both Nitrene-Transfer Agents and Lewis Acids toward Mediating the Synthesis of Three- and Five-Membered N-Heterocycles. Inorg Chem 2023; 62:10743-10761. [PMID: 37352838 PMCID: PMC11531761 DOI: 10.1021/acs.inorgchem.3c01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
The tripodal compounds [(TMG3trphen)MII-solv](PF6)2 (M = Mn, Fe, Co; solv = MeCN, DMF) and bipodal analogues [(TMG2biphen)MII(NCMe)x](PF6)2 (x = 3 for Mn, Fe; x = 2 for Co) and [(TMG2biphen)MIICl2] have been synthesized with ligands that feature a triaryl- or diarylmethyl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The dicationic M(II) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI═NTs (Ts = tosyl) and a panel of styrenes in MeCN to afford aziridines and low yields of imidazolines (upon MeCN insertion) with an order of productivity that favors the bipodal over the tripodal reagents and a metal preference of Fe > Co ≥ Mn. In CH2Cl2, the more acidic Fe(II) sites favor formation of 2,4-diaryl-N-tosylpyrrolidines by means of an in situ (3 + 2) cycloaddition of the initially generated 2-aryl-N-tosylaziridine with residual styrene. In the presence of ketone, 1,3-oxazolidines can be formed in practicable yields, involving a single-pot cycloaddition reaction of alkene, nitrene, and ketone (2 + 1 + 2). Mechanistic studies indicate that the most productive bipodal Fe(II) site mediates stepwise addition of nitrene to olefins to generate aziridines with good retention of stereochemistry and further enables aziridine ring opening to unmask a 1,3-zwitterion that can undergo cycloaddition with dipolarophiles (MeCN, alkene, ketone) to afford five-membered N-heterocycles.
Collapse
Affiliation(s)
- Suraj Kumar Sahoo
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Medicinal Chemistry, BeiGene (Beijing) Company, Limited, Changping District, Beijing 102206, People's Republic of China
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Chemistry, Kurseong College (affiliated under North Bengal University), Kurseong, Darjeeling, West Bengal PIN-734203, India
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
15
|
Makino K, Kumagai Y, Yoshino T, Kojima M, Matsunaga S. Catalytic Enantioselective Amination of Enol Silyl Ethers Using a Chiral Paddle-Wheel Diruthenium Complex. Org Lett 2023; 25:3234-3238. [PMID: 37140361 DOI: 10.1021/acs.orglett.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A chiral paddle-wheel dinuclear ruthenium catalyst was applied to a catalytic asymmetric nitrene-transfer reaction with enol silyl ethers. The ruthenium catalyst was applicable to aliphatic enol silyl ethers as well as aryl-containing enol silyl ethers. The substrate scope of the ruthenium catalyst was superior to that of analogous chiral paddle-wheel rhodium catalysts. α-Amino ketones derived from aliphatic substrates were obtained in up to 97% ee with the ruthenium catalyst, while analogous rhodium catalysts resulted in only moderate enantioselectivity.
Collapse
Affiliation(s)
- Kotoko Makino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuhei Kumagai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
16
|
Fanourakis A, Hodson NJ, Lit AR, Phipps RJ. Substrate-Directed Enantioselective Aziridination of Alkenyl Alcohols Controlled by a Chiral Cation. J Am Chem Soc 2023; 145:7516-7527. [PMID: 36961353 PMCID: PMC10080694 DOI: 10.1021/jacs.3c00693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 03/25/2023]
Abstract
Alkene aziridination is a highly versatile transformation for the construction of chiral nitrogen-containing compounds. Inspired by the success of analogous substrate-directed epoxidations, we report an enantioselective aziridination of alkenyl alcohols, which enables asymmetric nitrene transfer to alkenes with varied substitution patterns, including those not covered by the current protocols. We believe that our method is effective because it is substrate-directed, exploiting a network of attractive non-covalent interactions between the substrate, an achiral dianionic rhodium(II,II) tetracarboxylate dimer, and its two associated cinchona alkaloid-derived cations. It is these cations that provide a defined chiral pocket in which the aziridination can occur. In addition to a thorough evaluation of compatible alkene classes, we advance a practical mnemonic to predict reaction outcome and disclose a range of post-functionalization protocols that highlight the unique synthetic potential of the enantioenriched aziridine-alcohol products.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nicholas J. Hodson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arthur R. Lit
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Robert J. Phipps
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
17
|
Zhao ZY, Cui M, Irran E, Oestreich M. Copper-Catalyzed Highly Enantioselective Addition of a Silicon Nucleophile to 3-Substituted 2H-Azirines Using an Si-B Reagent. Angew Chem Int Ed Engl 2023; 62:e202215032. [PMID: 36507717 PMCID: PMC10108078 DOI: 10.1002/anie.202215032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
3-Substituted 2H-azirines can be considered strained cyclic ketimines, and highly enantioselective addition reactions of silicon nucleophiles to either acyclic or cyclic ketimines have been elusive so far. The present work closes this gap for those azirines by means of a copper-catalyzed silylation using a silyl boronic ester as a latent silicon nucleophile. The resulting C-silylated, unprotected (N-H) aziridines are obtained in high yields and with excellent enantioselectivities and can be further converted into valuable compounds with hardly any erosion of the enantiomeric excess.
Collapse
Affiliation(s)
- Zhi-Yuan Zhao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Ming Cui
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
18
|
Recent Developments in Stereoselective Reactions of Sulfonium Ylides. ORGANICS 2022. [DOI: 10.3390/org3030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review describes advances in the literature since the mid-1990s in the area of reactions of sulfonium ylide chemistry, with particular attention paid to stereoselective examples. Although the chemistry of sulfonium ylides was first popularized and applied in a substantial way in the 1960s, there has been sustained interest in the chemistry of sulfonium ylides since then. Many new ways of exploiting sulfonium ylides in productive stereoselective methodologies have emerged, often taking advantage of advances in organocatalysis and transition metal catalysis, to access stereodefined structurally complex motifs. The development of many different chiral sulfides over the last 20–30 years has also played a role in accelerating their study in a variety of reaction settings. In general, formal cycloaddition reactions ([2 + 1] and [4 + 1]) of sulfonium ylides follow a similar mechanistic pathway: initial addition of the nucleophilic ylide carbanion to an electrophile to form a zwitterionic betaine intermediate, followed by cyclization of the zwitterionic intermediate to afford the desired three-membered cyclic product (e.g., epoxide, cyclopropane, or aziridine), five-membered monocyclic (e.g., oxazolidinone), or fused bicyclic product (e.g., benzofuran, indoline).
Collapse
|
19
|
Zhao Q, Yao QY, Zhang YJ, Xu T, Zhang J, Chen X. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Jianshe Road 453007 Xinxiang CHINA
| | - Qiu-Yue Yao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Yan-Jiao Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Ting Xu
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Jie Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Xuenian Chen
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| |
Collapse
|
20
|
Roose TR, Verdoorn DS, Mampuys P, Ruijter E, Maes BUW, Orru RVA. Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocyanides. Chem Soc Rev 2022; 51:5842-5877. [PMID: 35748338 PMCID: PMC9580617 DOI: 10.1039/d1cs00305d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/21/2022]
Abstract
Transition metal-catalysed carbene- and nitrene transfer to the C1-building blocks carbon monoxide and isocyanides provides heteroallenes (i.e. ketenes, isocyanates, ketenimines and carbodiimides). These are versatile and reactive compounds allowing in situ transformation towards numerous functional groups and organic compounds, including heterocycles. Both one-pot and tandem processes have been developed providing valuable synthetic methods for the organic chemistry toolbox. This review discusses all known transition metal-catalysed carbene- and nitrene transfer reactions towards carbon monoxide and isocyanides and in situ transformation of the heteroallenes hereby obtained, with a special focus on the general mechanistic considerations.
Collapse
Affiliation(s)
- T R Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - D S Verdoorn
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - P Mampuys
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - E Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| | - B U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - R V A Orru
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167RD Geleen, The Netherlands.
| |
Collapse
|
21
|
Blatchford KM, Mize CJ, Roy S, Jenkins DM. Toward asymmetric aziridination with an iron complex supported by a D2-symmetric tetra-NHC. Dalton Trans 2022; 51:6153-6156. [PMID: 35380151 PMCID: PMC9019631 DOI: 10.1039/d2dt00772j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 02/02/2023]
Abstract
A neutral D2-symmetric macrocyclic tetra-N-heterocyclic carbene ligand was synthesized. The macrocycle was ligated to iron(II) via transmetalation from an isolated silver complex that has two conformers. The iron complex catalyzed the first stereospecific aziridination between aryl azides and aliphatic alkenes, albeit with low ee's.
Collapse
Affiliation(s)
- Kevin M Blatchford
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Carson J Mize
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Sharani Roy
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
22
|
Pinarci AA, Daniecki N, TenHoeve TM, Dellosso B, Madiu R, Mejia L, Bektas SE, Moura-Letts G. Synthesis of N-tosylaziridines from substituted alkenes via zirconooxaziridine catalysis. Chem Commun (Camb) 2022; 58:4909-4912. [PMID: 35355045 DOI: 10.1039/d2cc00686c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the zirconooxaziridine promoted aziridination of alkenes using chloramine T as the quantitative source of N. The reaction works with high yields, diastereoselectivities and stereospecificity for a wide variety of substituted alkenes. A potential mechanism involving the formation of a zirconooxaziridine complex as the active catalyst has been proposed and initial mechanistic data would indicate that a highly associative mechanism is the predominant pathway for this transformation.
Collapse
Affiliation(s)
- Ali A Pinarci
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Noah Daniecki
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Tyler M TenHoeve
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Brandon Dellosso
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Rufai Madiu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Liliana Mejia
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Seda E Bektas
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Gustavo Moura-Letts
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| |
Collapse
|
23
|
Jat JL, Yadav AK, Pandey CB, Chandra D, Tiwari B. Direct N-Me Aziridination of Enones. J Org Chem 2022; 87:3751-3757. [PMID: 35171590 DOI: 10.1021/acs.joc.1c02785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first direct general method for N-Me aziridination of electron-deficient olefins, enones, is described using N-methyl-O-tosylhydroxylamine as the aminating agent in the presence of a Cu(OTf)2 catalyst. The aziridination of vinyl ketones, hitherto unknown for N-Me as well as N-H, has been achieved efficiently. The open-flask reaction is stereospecific, operationally simple, and additive-free. It also efficiently affords N-H aziridinated products under a similar reaction condition.
Collapse
Affiliation(s)
- Jawahar L Jat
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Ajay K Yadav
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Chandra Bhan Pandey
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Chandra
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Center of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
24
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
25
|
Chloramine-T (N-chloro-p-toluenesulfonamide sodium salt), a versatile reagent in organic synthesis and analytical chemistry: An up to date review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Chen WL, Liu ZW, Wang YC, Ma XP, Mo DL. MnSO4-Promoted S-O Bond Cleavage to Synthesize Functionalized Sulfonium Ylides from Activated Alkynes and Sulfoxides. Org Biomol Chem 2022; 20:1656-1661. [DOI: 10.1039/d1ob02491d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of functionalized sulfonium ylides were prepared in good yields through MnSO4-promoted S-O bond cleavage from activated alkynes and sulfoxides. Experimental results showed that MnSO4-catalyst played important roles to...
Collapse
|
27
|
An Easy Route to Aziridine Ketones and Carbinols. Int J Mol Sci 2021; 22:ijms222313145. [PMID: 34884949 PMCID: PMC8658269 DOI: 10.3390/ijms222313145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
N,N-Dimethylaziridine-2-carboxamides react with organolithium reagents yielding 2-aziridinylketones. The reaction with one equivalent of organolithium compound is selective to amide carbonyl at a low (−78 °C) temperature. These ketones, in reaction with organolithium reagents, give symmetrical and unsymmetrical aziridinyl carbinols. The usage of excess phenyllithium may serve as a special N-Boc-protecting group cleavage method for acid-sensitive substrates.
Collapse
|
28
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
29
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
30
|
Caballero-García G, Goodman JM. N-Triflylphosphoramides: highly acidic catalysts for asymmetric transformations. Org Biomol Chem 2021; 19:9565-9618. [PMID: 34723293 DOI: 10.1039/d1ob01708j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
N-Triflylphosphoramides (NTPA), have become increasingly popular catalysts in the development of enantioselective transformations as they are stronger Brønsted acids than the corresponding phosphoric acids (PA). Their highly acidic, asymmetric active site can activate difficult, unreactive substrates. In this review, we present an account of asymmetric transformations using this type of catalyst that have been reported in the past ten years and we classify these reactions using the enantio-determining step as the key criterion. This compendium of NTPA-catalysed reactions is organised into the following categories: (1) cycloadditions, (2) electrocyclisations, polyene and related cyclisations, (3) addition reactions to imines, (4) electrophilic aromatic substitutions, (5) addition reactions to carbocations, (6) aldol and related reactions, (7) addition reactions to double bonds, and (8) rearrangements and desymmetrisations. We highlight the use of NTPA in total synthesis and suggest mnemonics which account for their enantioselectivity.
Collapse
Affiliation(s)
| | - Jonathan M Goodman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
31
|
Deng T, Mazumdar W, Yoshinaga Y, Patel PB, Malo D, Malo T, Wink DJ, Driver TG. Rh 2(II)-Catalyzed Intermolecular N-Aryl Aziridination of Olefins Using Nonactivated N Atom Precursors. J Am Chem Soc 2021; 143:19149-19159. [PMID: 34748699 DOI: 10.1021/jacs.1c09229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of the first intermolecular Rh2(II)-catalyzed aziridination of olefins using anilines as nonactivated N atom precursors and an iodine(III) reagent as the stoichiometric oxidant is reported. This reaction requires the transfer of an N-aryl nitrene fragment from the iminoiodinane intermediate to a Rh2(II) carboxylate catalyst; in the absence of a catalyst only diaryldiazene formation was observed. This N-aryl aziridination is general and can be successfully realized by using as little as 1 equiv of the olefin. Di-, tri-, and tetrasubstituted cyclic or acylic olefins can be employed as substrates, and a range of aniline and heteroarylamine N atom precursors are tolerated. The Rh2(II)-catalyzed N atom transfer to the olefin is stereospecific as well as chemo- and diastereoselective to produce the N-aryl aziridine as the only amination product. Because the chemistry of nonactivated N-aryl aziridines is underexplored, the reactivity of N-aryl aziridines was explored toward a range of nucleophiles to stereoselectively access privileged 1,2-stereodiads unavailable from epoxides, and removal of the N-2,4-dinitrophenyl group was demonstrated to show that functionalized primary amines can be constructed.
Collapse
Affiliation(s)
- Tianning Deng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Wrickban Mazumdar
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Yuki Yoshinaga
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Pooja B Patel
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Dana Malo
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States.,Hinsdale South High School, 7401 Clarendon Hills Road, Darien, Illinois 60561, United States
| | - Tala Malo
- Hinsdale South High School, 7401 Clarendon Hills Road, Darien, Illinois 60561, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| |
Collapse
|
32
|
Chandra D, Yadav AK, Singh V, Tiwari B, Jat JL. Fe(II)‐Catalyzed Synthesis of Unactivated Aziridines (N‐H/N‐Me) from Olefins Using
O
‐Arylsulfonyl Hydroxylamines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dinesh Chandra
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Ajay K. Yadav
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Vikram Singh
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| |
Collapse
|
33
|
Kalra A, Bagchi V, Paraskevopoulou P, Das P, Ai L, Sanakis Y, Raptopoulos G, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021; 40:1974-1996. [PMID: 35095166 PMCID: PMC8797515 DOI: 10.1021/acs.organomet.1c00267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent research has highlighted the key role played by the electron affinity of the active metal-nitrene/imido oxidant as the driving force in nitrene additions to olefins to afford valuable aziridines. The present work showcases a library of Co(II) reagents that, unlike the previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity trends in olefin aziridinations that cannot be solely explained by the electron affinity criterion. A family of Co(II) catalysts (17 members) has been synthesized with the assistance of a trisphenylamido-amine scaffold decorated by various alkyl, aryl, and acyl groups attached to the equatorial amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal [N3N] coordination and span a range of 1.4 V in redox potentials. Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates reactivity patterns that deviate from those anticipated by the relevant electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (-COCMe3 arm) is operating faster than the L8Co analogue (-COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the C b atom of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps. DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force.
Collapse
Affiliation(s)
- Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yiannis Sanakis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
34
|
Davies J, Janssen-Müller D, Zimin DP, Day CS, Yanagi T, Elfert J, Martin R. Ni-Catalyzed Carboxylation of Aziridines en Route to β-Amino Acids. J Am Chem Soc 2021; 143:4949-4954. [PMID: 33724815 DOI: 10.1021/jacs.1c01916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Ni-catalyzed reductive carboxylation of N-substituted aziridines with CO2 at atmospheric pressure is disclosed. The protocol is characterized by its mild conditions, experimental ease, and exquisite chemo- and regioselectivity pattern, thus unlocking a new catalytic blueprint to access β-amino acids, important building blocks with considerable potential as peptidomimetics.
Collapse
Affiliation(s)
- Jacob Davies
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Daniel Janssen-Müller
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Dmitry P Zimin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Craig S Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Universitat Rovira i Virgili, Departament de Química Analítica i Química Orgànica, c/Marcel·lí Domingo 1, 43007, Tarragona, Spain
| | - Tomoyuki Yanagi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jonas Elfert
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
35
|
Synthetic Applications of Aziridinium Ions. Molecules 2021; 26:molecules26061774. [PMID: 33809951 PMCID: PMC8004105 DOI: 10.3390/molecules26061774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Nonactivated aziridine with an electron-donating group at the ring nitrogen should be activated to an aziridinium ion prior to being converted to cyclic and acyclic nitrogen-containing molecules. This review describes ways to generate aziridinium ions and their utilization for synthetic purposes. Specifically, the intra- and intermolecular formation of aziridinium ions with proper electrophiles are classified, and their regio- and stereoselective transformations with nucleophiles are described on the basis of recent developments.
Collapse
|
36
|
Qiu Y, Lu K, Wei B, Qian Z, He Z. P III-Mediated Intramolecular Cyclopropanation and Synthesis of Cyclopropa[ c]coumarins. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Minakata S, Kiyokawa K, Nakamura S. Transition-Metal-Free Aziridination of Alkenes with Sulfamate Esters Using tert-Butyl Hypoiodite. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Trost BM, Zhu C. Zn-ProPhenol Catalyzed Enantioselective Mannich Reaction of 2 H-Azirines with Alkynyl Ketones. Org Lett 2020; 22:9683-9687. [PMID: 33269592 DOI: 10.1021/acs.orglett.0c03737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The enantioselective Mannich reaction of 2H-azirines with alkynyl ketones is achieved under Zn-ProPhenol catalysis, delivering various aziridines with vicinal tetrasubstituted stereocenters in high yields with excellent enantioselectivities. The bimetallic Zn-ProPhenol complexes activate both the nucleophile and the electrophile in the same chiral pocket. A unique intramolecular hydrogen bond is observed in the obtained Mannich adducts, which lowers the basicity of the product's aziridine nitrogen thus favoring enantioselective control and allowing catalyst turnover.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Chuanle Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
39
|
Haider V, Kreuzer V, Tiffner M, Spingler B, Waser M. Ammonium Salt-Catalyzed Ring-Opening of Aryl-Aziridines with β-Keto Esters. European J Org Chem 2020; 2020:5173-5177. [PMID: 32982577 PMCID: PMC7508174 DOI: 10.1002/ejoc.202000916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 02/03/2023]
Abstract
We herein report an ammonium salt-catalyzed protocol for the regioselective ring opening of aryl-aziridines with β-keto esters. The reaction gives access to a variety of highly functionalized target molecules with two consecutive stereo-genic centers and can be rendered enantioselective (up to e.r. = 91:9) by using bifunctional chiral ammonium salt catalysts.
Collapse
Affiliation(s)
- Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Viktoria Kreuzer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Maximilian Tiffner
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
40
|
Pandey CB, Azaz T, Verma RS, Mishra M, Jat JL, Tiwari B. Stereoselective Oxidative Rearrangement of Disubstituted Unactivated Alkenes Using Hypervalent Iodine(III) Reagent. J Org Chem 2020; 85:10175-10181. [DOI: 10.1021/acs.joc.0c00347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chandra Bhan Pandey
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Tazeen Azaz
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Ram Subhawan Verma
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Monika Mishra
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Jawahar L. Jat
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
41
|
Ha TM, Guo W, Wang Q, Zhu J. Copper‐Catalyzed Cyanoalkylative Aziridination of
N
‐Sulfonyl Allylamines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tu M. Ha
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Weisi Guo
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural ProductsInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL-SB-ISIC-LSPN, BCH 5304 1015 Lausanne Switzerland
| |
Collapse
|
42
|
Tan XF, Zhang FG, Ma JA. Asymmetric synthesis of CF 2-functionalized aziridines by combined strong Brønsted acid catalysis. Beilstein J Org Chem 2020; 16:638-644. [PMID: 32318120 PMCID: PMC7155912 DOI: 10.3762/bjoc.16.60] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
A diastereo- and enantioselective approach to access chiral CF2-functionalized aziridines from difluorodiazoethyl phenyl sulfone (PhSO2CF2CHN2) and in situ-formed aldimines is described. This multicomponent reaction is enabled by a combined strong Brønsted acid catalytic platform consisting of a chiral disulfonimide and 2-carboxyphenylboronic acid. The optical purity of the obtained CF2-substituted aziridines could be further improved by a practical dissolution-filtration procedure.
Collapse
Affiliation(s)
- Xing-Fa Tan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, China
- Joint School of NUS & TJU, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
43
|
Amiri A, Emamian S, Hosseini SJ, Ali‐Asgari S. Hexamethylphosphanetriamine‐mediated aziridination of imines with alpha‐ketoesters: A molecular electron density theory study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arash Amiri
- Chemistry Department, Shahrood BranchIslamic Azad University Shahrood Iran
| | - Saeedreza Emamian
- Chemistry Department, Shahrood BranchIslamic Azad University Shahrood Iran
| | | | - Safa Ali‐Asgari
- Chemistry Department, Shahrood BranchIslamic Azad University Shahrood Iran
| |
Collapse
|
44
|
DeJesus JF, Jenkins DM. A Chiral Macrocyclic Tetra-N-Heterocyclic Carbene Yields an "All Carbene" Iron Alkylidene Complex. Chemistry 2020; 26:1429-1435. [PMID: 31788868 PMCID: PMC7024548 DOI: 10.1002/chem.201905360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 01/12/2023]
Abstract
The first chiral macrocyclic tetra-N-heterocyclic carbene (NHC) ligand has been synthesized. The macrocycle, prepared in high yield and large scale, was ligated onto palladium and iron to give divalent C2 -symmetric square planar complexes. Multinuclear NMR and single crystal X-ray diffraction demonstrated that there are two distinct NHCs on each ligand, due to the bridging chiral cyclohexane. Oxidation of the iron(II) complex with trimethylamine N-oxide yielded a bridging oxo complex. Diazodiphenylmethane reacted with the iron(II) complex at room temperature to give a paramagnetic diazoalkane complex; the same reaction yielded the "all carbene" complex at elevated temperature. Electrochemical measurements support the assignment of the "all carbene" complex being an alkylidene. Notably, the diazoalkane complex can be directly transformed into the alkylidene complex, which had not been previously demonstrated on iron. Finally, a test catalytic reaction with a diazoalkane on the iron(II) complex does not yield the expected cyclopropane, but actually the azine compound.
Collapse
Affiliation(s)
- Joseph F DeJesus
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
45
|
Ashitha KT, Vinaya PP, Krishna A, Vincent DC, Jalaja R, Varughese S, Balappa Somappa S. I2/TBHP mediated diastereoselective synthesis of spiroaziridines. Org Biomol Chem 2020; 18:1588-1593. [DOI: 10.1039/c9ob02711d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple metal free protocol for the diastereoselective synthesis of spiroaziridines using easily accessible substrates is disclosed.
Collapse
Affiliation(s)
- Kizhakkan Thiruthi Ashitha
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST)
- Thiruvananthapuram-695019
- India
| | - Puthiya Purayil Vinaya
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST)
- Thiruvananthapuram-695019
- India
| | - Ajay Krishna
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST)
- Thiruvananthapuram-695019
- India
| | - Deepthy Cheeran Vincent
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST)
- Thiruvananthapuram-695019
- India
| | - Renjitha Jalaja
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST)
- Thiruvananthapuram-695019
- India
| | - Sunil Varughese
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST)
- Thiruvananthapuram-695019
- India
| | - Sasidhar Balappa Somappa
- Organic Chemistry Section
- Chemical Sciences and Technology Division
- Council of Scientific and Industrial Research (CSIR)-National Institute for Interdisciplinary Science and Technology (NIIST)
- Thiruvananthapuram-695019
- India
| |
Collapse
|
46
|
Delany PK, Hodgson DM. Synthesis and Homologation of an Azetidin-2-yl Boronic Ester with α-Lithioalkyl Triisopropylbenzoates. Org Lett 2019; 21:9981-9984. [PMID: 31800252 DOI: 10.1021/acs.orglett.9b03901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An α-boryl azetidine, obtained by α-lithiation-borylation of N-Botc azetidine, undergoes reaction with α-triisopropylbenzoyloxy organolithiums to give homologated boronic esters that can be further oxidized, homologated, arylated, and deprotected to give a range of α-substituted azetidines. Scalemic α-boryl azetidine-α-triisopropylbenzoyloxy organolithium pairings show stereospecific reagent control, providing access to either diastereomeric series of homologated boronic esters with very high er's.
Collapse
Affiliation(s)
- Pascal K Delany
- Department of Chemistry, Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| | - David M Hodgson
- Department of Chemistry, Chemistry Research Laboratory , University of Oxford , Mansfield Road , Oxford OX1 3TA , U.K
| |
Collapse
|
47
|
Liu J, Wang C. Zinc-Catalyzed Hydroxyl-Directed Regioselective Ring Opening of Aziridines in SN2 Reaction Pathway. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiawei Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
48
|
Polat‐Cakir S, Beksultanova N, Dogan Ö. Synthesis of Functionalized Novel
α
‐Amino‐
β
‐alkoxyphosphonates through Regioselective Ring Opening of Aziridine‐2‐phosphonates. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sidika Polat‐Cakir
- Department of Chemical EngineeringÇanakkale Onsekiz Mart University TR-17100 Çanakkale Turkey
| | | | - Özdemir Dogan
- Department of ChemistryMiddle East Technical University TR-06800 Ankara Turkey
| |
Collapse
|
49
|
Peng Y, Fan YH, Li SY, Li B, Xue J, Deng QH. Iron-Catalyzed Nitrene Transfer Reaction of 4-Hydroxystilbenes with Aryl Azides: Synthesis of Imines via C═C Bond Cleavage. Org Lett 2019; 21:8389-8394. [PMID: 31588751 DOI: 10.1021/acs.orglett.9b03160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
C═C bond breaking to access the C═N bond remains an underdeveloped area. A new protocol for C═C bond cleavage of alkenes under nonoxidative conditions to produce imines via an iron-catalyzed nitrene transfer reaction of 4-hydroxystilbenes with aryl azides is reported. The success of various sequential one-pot reactions reveals that the good compatibility of this method makes it very attractive for synthetic applications. On the basis of experimental observations, a plausible reaction mechanism is also proposed.
Collapse
Affiliation(s)
- Yi Peng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Yan-Hui Fan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Si-Yuan Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Bin Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Jing Xue
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|
50
|
Giménez‐Nueno I, Guasch J, Funes‐Ardoiz I, Maseras F, Matheu MI, Castillón S, Díaz Y. Enantioselective Synthesis of 3‐Heterosubstituted‐2‐amino‐1‐ols by Sequential Metal‐Free Diene Aziridination/Kinetic Resolution. Chemistry 2019; 25:12628-12635. [DOI: 10.1002/chem.201902734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Irene Giménez‐Nueno
- Department de Química Analítica i Química OrgànicaUniversitat Rovira I Virgili C/ Marcel⋅lí Domingo no. 1 43007 Tarragona Spain
| | - Joan Guasch
- Department de Química Analítica i Química OrgànicaUniversitat Rovira I Virgili C/ Marcel⋅lí Domingo no. 1 43007 Tarragona Spain
| | - Ignacio Funes‐Ardoiz
- Institut Català de Investigació Química (ICIQ)The Barcelona Institut of Science and Technology C/Paisos Catalans 16 43007 Tarragona Spain
| | - Feliu Maseras
- Institut Català de Investigació Química (ICIQ)The Barcelona Institut of Science and Technology C/Paisos Catalans 16 43007 Tarragona Spain
- Departament de QuímicaUniversitat Autònoma de Barcelona 08913 Bellatera Spain
| | - M. Isabel Matheu
- Department de Química Analítica i Química OrgànicaUniversitat Rovira I Virgili C/ Marcel⋅lí Domingo no. 1 43007 Tarragona Spain
| | - Sergio Castillón
- Department de Química Analítica i Química OrgànicaUniversitat Rovira I Virgili C/ Marcel⋅lí Domingo no. 1 43007 Tarragona Spain
| | - Yolanda Díaz
- Department de Química Analítica i Química OrgànicaUniversitat Rovira I Virgili C/ Marcel⋅lí Domingo no. 1 43007 Tarragona Spain
| |
Collapse
|