1
|
Ford G, Swanson CR, Bradshaw Allen RT, Marshall JR, Mattey AP, Turner NJ, Clapés P, Flitsch SL. Three-Component Stereoselective Enzymatic Synthesis of Amino-Diols and Amino-Polyols. JACS AU 2022; 2:2251-2258. [PMID: 36311836 PMCID: PMC9597598 DOI: 10.1021/jacsau.2c00374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Amino-polyols represent attractive chemical building blocks but can be challenging to synthesize because of the high density of asymmetric functionalities and the need for extensive protecting-group strategies. Here we present a three-component strategy for the stereoselective enzymatic synthesis of amino-diols and amino-polyols using a diverse set of prochiral aldehydes, hydroxy ketones, and amines as starting materials. We were able to combine biocatalytic aldol reactions, using variants of d-fructose-6-phosphate aldolase (FSA), with reductive aminations catalyzed by IRED-259, identified from a metagenomic library. A two-step process, without the need for intermediate isolation, was developed to avoid cross-reactivity of the carbonyl components. Stereoselective formation of the 2R,3R,4R enantiomers of amino-polyols was observed and confirmed by X-ray crystallography.
Collapse
Affiliation(s)
- Grayson
J. Ford
- Manchester
Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Christopher R. Swanson
- Manchester
Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Ruth T. Bradshaw Allen
- Manchester
Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - James R. Marshall
- Manchester
Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Ashley P. Mattey
- Manchester
Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nicholas J. Turner
- Manchester
Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Pere Clapés
- Biological
Chemistry Department, Institute for Advanced
Chemistry of Catalonia, IQAC−CSIC, 08034 Barcelona, Spain
| | - Sabine L. Flitsch
- Manchester
Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
2
|
Mesa JM, Comini MA, Dibello E, Gamenara D. Organocatalytic synthesis and anti‐trypanosomal activity evaluation of L‐pentofuranose‐mimetic iminosugars. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juan Manuel Mesa
- Universidad de la Republica Uruguay Organic chemistry department Gral. Flores 2124 11800 Montevideo URUGUAY
| | - Marcelo Alberto Comini
- Institut Pasteur Montevideo Group Redox Biology of Trypanosomes Mataojo 2020 11400 Montevideo URUGUAY
| | - Estefania Dibello
- Universidad de la República Uruguay Departamento de Química Orgánica Gral. Flores 21 24 11800 Montevideo URUGUAY
| | - Daniela Gamenara
- Universidad de la Republica Facultad de Quimica Organic Chemistry Department Gral. Flores 2124 11800 Montevideo URUGUAY
| |
Collapse
|
3
|
Nastke A, Gröger H. Biocatalytic Synthesis of Heterocycles. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
5
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
6
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
7
|
Cuffaro D, Landi M, D'Andrea F, Guazzelli L. Preparation of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives by aminocyclization of a 1,5-dicarbonyl derivative. Carbohydr Res 2019; 482:107744. [PMID: 31306898 DOI: 10.1016/j.carres.2019.107744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022]
Abstract
Iminosugars are known glycosidase inhibitors which are the subject of drug development efforts against several diseases. The access to structurally-related families of iminosugars is of primary importance for running structure-activity relationship studies. In this work, the double reductive amination (aminocyclization) reaction of a dicarbonyl derivative of the l-arabino series, in turn obtained from lactose, is reported. Different ratios of 1,6-di-deoxy-d-galacto and 1,6-di-deoxy-l-altro nojirimycin derivatives were obtained depending on the amine employed in this transformation which provided an insight into the effects of their structure on the outcome of the reaction. Of particular interest were the results obtained when two enantiomeric amino acids (d-Phe-OMe and l-Phe-OMe) were used, which resulted in the inversion of the reaction stereoselectivity.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Martina Landi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy
| | - Felicia D'Andrea
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| | - Lorenzo Guazzelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6/33, 56126, Pisa, Italy.
| |
Collapse
|
8
|
Roldán R, Hernández K, Joglar J, Bujons J, Parella T, Fessner W, Clapés P. Aldolase-Catalyzed Asymmetric Synthesis of N-Heterocycles by Addition of Simple Aliphatic Nucleophiles to Aminoaldehydes. Adv Synth Catal 2019; 361:2673-2687. [PMID: 31680790 PMCID: PMC6813633 DOI: 10.1002/adsc.201801530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/22/2019] [Indexed: 11/08/2022]
Abstract
Nitrogen heterocycles are structural motifs found in many bioactive natural products and of utmost importance in pharmaceutical drug development. In this work, a stereoselective synthesis of functionalized N-heterocycles was accomplished in two steps, comprising the biocatalytic aldol addition of ethanal and simple aliphatic ketones such as propanone, butanone, 3-pentanone, cyclobutanone, and cyclopentanone to N-Cbz-protected aminoaldehydes using engineered variants of d-fructose-6-phosphate aldolase from Escherichia coli (FSA) or 2-deoxy-d-ribose-5-phosphate aldolase from Thermotoga maritima (DERA Tma ) as catalysts. FSA catalyzed most of the additions of ketones while DERA Tma was restricted to ethanal and propanone. Subsequent treatment with hydrogen in the presence of palladium over charcoal, yielded low-level oxygenated N-heterocyclic derivatives of piperidine, pyrrolidine and N-bicyclic structures bearing fused cyclobutane and cyclopentane rings, with stereoselectivities of 96-98 ee and 97:3 dr in isolated yields ranging from 35 to 79%.
Collapse
Affiliation(s)
- Raquel Roldán
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Karel Hernández
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jesús Joglar
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jordi Bujons
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear.Universitat Autònoma de BarcelonaBellaterraSpain
| | - Wolf‐Dieter Fessner
- Institut für Organische Chemie und BiochemieTechnische Universität DarmstadtPetersenstraße 22D-64287DarmstadtGermany
| | - Pere Clapés
- Dept. Biological Chemistry. Instituto de Química Avanzada de Cataluña IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| |
Collapse
|
9
|
Sudar M, Findrik Z, Szekrenyi A, Clapés P, Vasić-Rački Đ. Reactor and microreactor performance and kinetics of the aldol addition of dihydroxyacetone to benzyloxycarbonyl-N-3-aminopropanal catalyzed by D-fructose-6-phosphate aldolase variant A129G. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2018.1538975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Zvjezdana Findrik
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Anna Szekrenyi
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia Biotransformation and Bioactive Molecules Group, Barcelona, Spain
| | - Pere Clapés
- IQAC-CSIC, Institute of Advanced Chemistry of Catalonia Biotransformation and Bioactive Molecules Group, Barcelona, Spain
| | - Đurđa Vasić-Rački
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Roldán R, Hernandez K, Joglar J, Bujons J, Parella T, Sánchez-Moreno I, Hélaine V, Lemaire M, Guérard-Hélaine C, Fessner WD, Clapés P. Biocatalytic Aldol Addition of Simple Aliphatic Nucleophiles to Hydroxyaldehydes. ACS Catal 2018; 8:8804-8809. [PMID: 30221031 PMCID: PMC6135579 DOI: 10.1021/acscatal.8b02486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Indexed: 01/06/2023]
Abstract
Asymmetric aldol addition of simple aldehydes and ketones to electrophiles is a cornerstone reaction for the synthesis of unusual sugars and chiral building blocks. We investigated d-fructose-6-phosphate aldolase from E. coli (FSA) D6X variants as catalysts for the aldol additions of ethanal and nonfunctionalized linear and cyclic aliphatic ketones as nucleophiles to nonphosphorylated hydroxyaldehydes. Thus, addition of propanone, cyclobutanone, cyclopentanone, or ethanal to 3-hydroxypropanal or (S)- or (R)-3-hydroxybutanal catalyzed by FSA D6H and D6Q variants furnished rare deoxysugars in 8-77% isolated yields with high stereoselectivity (97:3 dr and >95% ee).
Collapse
Affiliation(s)
- Raquel Roldán
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Karel Hernandez
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jesús Joglar
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Israel Sánchez-Moreno
- University Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Virgil Hélaine
- University Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Marielle Lemaire
- University Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Christine Guérard-Hélaine
- University Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Pere Clapés
- Biological Chemistry Department, Instituto de Química Avanzada de Cataluña IQAC−CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
11
|
Hernández K, Joglar J, Bujons J, Parella T, Clapés P. Nucleophile Promiscuity of Engineered Class II Pyruvate Aldolase YfaU from E. Coli. Angew Chem Int Ed Engl 2018; 57:3583-3587. [PMID: 29363239 DOI: 10.1002/anie.201711289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/09/2018] [Indexed: 11/08/2022]
Abstract
Pyruvate-dependent aldolases exhibit a stringent selectivity for pyruvate, limiting application of their synthetic potential, which is a drawback shared with other existing aldolases. Structure-guided rational protein engineering rendered a 2-keto-3-deoxy-l-rhamnonate aldolase variant, fused with a maltose-binding protein (MBP-YfaU W23V/L216A), capable of efficiently converting larger pyruvate analogues, for example, those with linear and branched aliphatic chains, in aldol addition reactions. Combination of these nucleophiles with N-Cbz-alaninal (Cbz=benzyloxycarbonyl) and N-Cbz-prolinal electrophiles gave access to chiral building blocks, for example, derivatives of (2S,3S,4R)-4-amino-3-hydroxy-2-methylpentanoic acid (68 %, d.r. 90:10) and the enantiomer of dolaproine (33 %, d.r. 94:6) as well as a collection of unprecedented α-amino acid derivatives of the proline and pyrrolizidine type. Conversions varied between 6-93 % and diastereomeric ratios from 50:50 to 95:5 depending on the nucleophilic and electrophilic components.
Collapse
Affiliation(s)
- Karel Hernández
- Chemical Biology and Molecular Modelling, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Jesús Joglar
- Chemical Biology and Molecular Modelling, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Jordi Bujons
- Chemical Biology and Molecular Modelling, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pere Clapés
- Chemical Biology and Molecular Modelling, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
12
|
Hernández K, Joglar J, Bujons J, Parella T, Clapés P. Nucleophile Promiscuity of Engineered Class II Pyruvate Aldolase YfaU from E. Coli. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karel Hernández
- Chemical Biology and Molecular Modelling; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC); Jordi Girona 18-26 08034 Barcelona Spain
| | - Jesús Joglar
- Chemical Biology and Molecular Modelling; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC); Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Bujons
- Chemical Biology and Molecular Modelling; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC); Jordi Girona 18-26 08034 Barcelona Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - Pere Clapés
- Chemical Biology and Molecular Modelling; Institute for Advanced Chemistry of Catalonia (IQAC-CSIC); Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
13
|
Baś S, Kusy R, Pasternak-Suder M, Nicolas C, Mlynarski J, Martin OR. Total synthesis of pipecolic acid and 1-C-alkyl 1,5-iminopentitol derivatives by way of stereoselective aldol reactions from (S)-isoserinal. Org Biomol Chem 2018; 16:1118-1125. [PMID: 29362764 DOI: 10.1039/c7ob02797d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A short synthesis of iminosugars and pipecolic acid derivatives has been realized through aldol addition of a pyruvate, a range of ketones and (S)-isoserinal, followed by catalytic reductive intramolecular amination. The stereoselective aldol reaction was achieved successfully by using tertiary amines or di-zinc aldol catalysts, thus constituting two parallel routes to optically pure products with good yields and high diastereoselectivities. These carbohydrate analogues may be the inhibitors of potent glycosidases and glycosyltransferases.
Collapse
Affiliation(s)
- Sebastian Baś
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
14
|
Hernández K, Gómez A, Joglar J, Bujons J, Parella T, Clapés P. 2-Keto-3-Deoxy-l-Rhamnonate Aldolase (YfaU) as Catalyst in Aldol Additions of Pyruvate to Amino Aldehyde Derivatives. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Karel Hernández
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Ariadna Gómez
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jesús Joglar
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Bujons
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear; Facultat de Ciències; Universitat Autònoma de Barcelona; 08193 Cerdanyola del Vallès Barcelona Spain
| | - Pere Clapés
- Catalonia Institute for Advanced Chemistry - IQAC-CSIC; Department of Chemical Biology and Molecular Modelling; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
15
|
Chen Q, Chen X, Cui Y, Ren J, Lu W, Feng J, Wu Q, Zhu D. A newd-threonine aldolase as a promising biocatalyst for highly stereoselective preparation of chiral aromatic β-hydroxy-α-amino acids. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01774j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newd-threonine aldolase was identified to tackle the “Cβ-stereoselectivity problem” in the enzymatic production of chiral aromatic β-hydroxy-α-amino acids.
Collapse
Affiliation(s)
- Qijia Chen
- University of Chinese Academy of Sciences
- Beijing
- China
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- Tianjin
- China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- Tianjin
- China
| | - Jie Ren
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- Tianjin
- China
| | - Wei Lu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- Tianjin
- China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
- Tianjin
- China
| | - Qiaqing Wu
- University of Chinese Academy of Sciences
- Beijing
- China
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| | - Dunming Zhu
- University of Chinese Academy of Sciences
- Beijing
- China
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
| |
Collapse
|
16
|
Busto E. Recent Developments in the Preparation of Carbohydrate Derivatives from Achiral Building Blocks by using Aldolases. ChemCatChem 2016. [DOI: 10.1002/cctc.201600366] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eduardo Busto
- Organic Chemistry I Department; Complutense University of Madrid; 28040 Madrid Spain
| |
Collapse
|
17
|
Schmidt NG, Eger E, Kroutil W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. ACS Catal 2016; 6:4286-4311. [PMID: 27398261 PMCID: PMC4936090 DOI: 10.1021/acscatal.6b00758] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
18
|
Threonine aldolases: perspectives in engineering and screening the enzymes with enhanced substrate and stereo specificities. Appl Microbiol Biotechnol 2016; 100:2579-90. [PMID: 26810201 PMCID: PMC4761611 DOI: 10.1007/s00253-015-7218-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022]
Abstract
Threonine aldolases have emerged as a powerful tool for asymmetric carbon-carbon bond formation. These enzymes catalyse the unnatural aldol condensation of different aldehydes and glycine to produce highly valuable β-hydroxy-α-amino acids with complete stereocontrol at the α-carbon and moderate specificity at the β-carbon. A range of microbial threonine aldolases has been recently recombinantly produced by several groups and their biochemical properties were characterized. Numerous studies have been conducted to improve the reaction protocols to enable higher conversions and investigate the substrate scope of enzymes. However, the application of threonine aldolases in organic synthesis is still limited due to often moderate yields and low diastereoselectivities obtained in the aldol reaction. This review briefly summarizes the screening techniques recently applied to discover novel threonine aldolases as well as enzyme engineering and mutagenesis studies which were accomplished to improve the catalytic activity and substrate specificity. Additionally, the results from new investigations on threonine aldolases including crystal structure determinations and structural-functional characterization are reviewed.
Collapse
|
19
|
Righi G, Mandic' E, Tirotta I, Naponiello GCM, Sappino C, Marucci C, Tomei M, Bovicelli P. Stereoselective synthesis of (+)-1-deoxyaltronojirimycin. Nat Prod Res 2016; 30:1655-60. [PMID: 26765952 DOI: 10.1080/14786419.2015.1131983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A stereocontrolled, facile and high-yield approach for producing (+)-altroDNJ, has been developed starting from the inexpensive commercial cis 2-butene-1,4-diol. Sharpless epoxidation and a subsequent dihydroxylation were used for the introduction of all stereocentres; finally, the ring closure under basic conditions afforded the piperidine heterocycle.
Collapse
Affiliation(s)
- Giuliana Righi
- a Department of Chemistry, CNR-IBPM , Sapienza University of Rome , Rome , Italy
| | - Emanuela Mandic'
- b Department of Chemistry , Sapienza University of Rome , Rome , Italy
| | - Ilaria Tirotta
- b Department of Chemistry , Sapienza University of Rome , Rome , Italy
| | | | - Carla Sappino
- b Department of Chemistry , Sapienza University of Rome , Rome , Italy
| | - Cristina Marucci
- b Department of Chemistry , Sapienza University of Rome , Rome , Italy
| | - Michela Tomei
- b Department of Chemistry , Sapienza University of Rome , Rome , Italy
| | - Paolo Bovicelli
- a Department of Chemistry, CNR-IBPM , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
20
|
Szekrenyi A, Garrabou X, Parella T, Joglar J, Bujons J, Clapés P. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions. Nat Chem 2015; 7:724-9. [DOI: 10.1038/nchem.2321] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/08/2015] [Indexed: 01/11/2023]
|
21
|
Soler A, Gutiérrez ML, Bujons J, Parella T, Minguillon C, Joglar J, Clapés P. Structure-Guided Engineering of D
-Fructose-6-Phosphate Aldolase for Improved Acceptor Tolerance in Biocatalytic Aldol Additions. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Hernandez K, Zelen I, Petrillo G, Usón I, Wandtke CM, Bujons J, Joglar J, Parella T, Clapés P. EngineeredL-Serine Hydroxymethyltransferase fromStreptococcus thermophilusfor the Synthesis of α,α-Dialkyl-α-Amino Acids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Hernandez K, Zelen I, Petrillo G, Usón I, Wandtke CM, Bujons J, Joglar J, Parella T, Clapés P. EngineeredL-Serine Hydroxymethyltransferase fromStreptococcus thermophilusfor the Synthesis of α,α-Dialkyl-α-Amino Acids. Angew Chem Int Ed Engl 2015; 54:3013-7. [DOI: 10.1002/anie.201411484] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/18/2014] [Indexed: 11/12/2022]
|
24
|
Hernández K, Parella T, Joglar J, Bujons J, Pohl M, Clapés P. Expedient Synthesis of
C
‐Aryl Carbohydrates by Consecutive Biocatalytic Benzoin and Aldol Reactions. Chemistry 2015; 21:3335-46. [DOI: 10.1002/chem.201406156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Karel Hernández
- Biotransformation and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC‐CSIC. Jordi Girona 18‐26, 08034 Barcelona (Spain), Fax: (+34) 932045904
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear. Dept Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès (Spain)
| | - Jesús Joglar
- Biotransformation and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC‐CSIC. Jordi Girona 18‐26, 08034 Barcelona (Spain), Fax: (+34) 932045904
| | - Jordi Bujons
- Biotransformation and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC‐CSIC. Jordi Girona 18‐26, 08034 Barcelona (Spain), Fax: (+34) 932045904
| | - Martina Pohl
- IBG‐1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)
| | - Pere Clapés
- Biotransformation and Bioactive Molecules Group, Instituto de Química Avanzada de Cataluña, IQAC‐CSIC. Jordi Girona 18‐26, 08034 Barcelona (Spain), Fax: (+34) 932045904
| |
Collapse
|
25
|
Arena G, Cini E, Petricci E, Randino R, Taddei M. A highly stereo-controlled protocol to prepare pipecolic acids based on Heck and cyclohydrocarbonylation reactions. Org Chem Front 2015. [DOI: 10.1039/c5qo00025d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A consecutive series of metal-catalyzed reactions for the preparation of enantiomerically pure piperidine derivatives.
Collapse
Affiliation(s)
- Giada Arena
- Dipartimento di Biotecnologie
- Chimica e Farmacia
- Università di Siena
- 53100 Siena
- Italy
| | - Elena Cini
- Dipartimento di Biotecnologie
- Chimica e Farmacia
- Università di Siena
- 53100 Siena
- Italy
| | - Elena Petricci
- Dipartimento di Biotecnologie
- Chimica e Farmacia
- Università di Siena
- 53100 Siena
- Italy
| | - Rosario Randino
- Dipartimento di Farmacia
- Università di Salerno
- 84084 Fisciano
- Italy
| | - Maurizio Taddei
- Dipartimento di Biotecnologie
- Chimica e Farmacia
- Università di Siena
- 53100 Siena
- Italy
| |
Collapse
|