1
|
Zhao L, Ma Z, Zhang L, Shen Y, Chen L, Li Y, Xu S, Shi G, Fan D, Ding Z. Synthesis of value-added uridine 5'-diphosphate-glucose from sucrose applying an engineered sucrose synthase counteracts the activity-stability trade-off. Food Chem 2025; 464:141765. [PMID: 39503094 DOI: 10.1016/j.foodchem.2024.141765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
The one-step deconstruction of sucrose into uridine 5'-diphosphate-glucose (UDP-Glc), an important sugar donor for transglycosylation, employing sucrose synthase (Susy) is emerging as a valuable sucrose utilization process. The insufficient activity and stability of Susy limit the productivity of UDP-Glc from sucrose. Here, an engineered Susy (SusyM6) that counteracted the activity-stability trade-off was developed with the half-life time and activity being 43-fold and 1.4-fold of wild-type, respectively. Tighter hydrophobic patches and stabilization of the SSN2 domain contributed to greater activity and stability. The use of SusyM6 in UDP-Glc production resulted in a satisfactory space-time yield of 73 g/L/h within 1 h. The cascade of different biocatalysts with SusyM6, focusing on utilizing two products of sucrose decomposition, fructose and UDP-Glc, expanded sucrose utilization, efficiently promoting the UDP-Glc productivity and giving a cost-effective method for UDP-galactose (UDP-Gal) synthesis. This study demonstrated promising green pathways for producing multiple value-added products from sucrose using Susy.
Collapse
Affiliation(s)
- Liting Zhao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Shen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhongyang Ding
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Liu H, Borg AJE, Nidetzky B. Expanding the high-pH range of the sucrose synthase reaction by enzyme immobilization. J Biotechnol 2024; 396:150-157. [PMID: 39522733 DOI: 10.1016/j.jbiotec.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The glycosylation of an alcohol group from a sugar nucleotide substrate involves proton release, so the reaction is favored thermodynamically at high pH. Here, we explored expansion of the alkaline pH range of sucrose synthase (SuSy; EC 2.4.1.13) to facilitate enzymatic glycosylation from uridine 5'-diphosphate (UDP)-glucose. The apparent equilibrium constant of the SuSy reaction (UDP-glucose + fructose ↔ sucrose + UDP) at 30 °C increases by ∼4 orders of magnitude as the pH is raised from 5.5 to 9.0. However, the SuSy in solution loses ≥80 % of its maximum productivity at pH ∼7 when alkaline reaction conditions (pH 9.0) are used. We therefore immobilized the SuSy on nanocellulose-based biocomposite carriers (∼48 U/g carrier; ≥ 50 % effectiveness) and reveal in the carrier-bound enzyme a substantial broadening of the pH-productivity profile to high pH, with up to 80 % of maximum capacity retained at pH 9.5. Using reaction by the immobilized SuSy with automated pH control at pH ∼9.0, we demonstrate near-complete conversion (≥ 96 %) of UDP-glucose and fructose (each 100 mM) into sucrose, as expected from the equilibrium constant (Keq = ∼7 × 102) under these conditions. Collectively, our results support the idea of glycosyltransferase-catalyzed synthetic glycosylation from sugar nucleotide donor driven by high pH; and they showcase a marked adaptation to high pH of the operational activity of the soybean SuSy by immobilization.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria.
| |
Collapse
|
3
|
Sun C, Lou M, Li Z, Cheng F, Li Z. Combining an Enhanced Polyphosphate Kinase-Driven UDP-Glucose Regeneration System with the Screening of Key Glycosyltransferases for Efficient In Vitro Synthesis of Nucleoside Disaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20557-20567. [PMID: 39250657 DOI: 10.1021/acs.jafc.4c05329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Nucleoside disaccharides are essential glycosides that naturally occur in specific living organisms. This study developed an enhanced UDP-glucose regeneration system to facilitate the in vitro multienzyme synthesis of nucleoside disaccharides by integrating it with nucleoside-specific glycosyltransferases. The system utilizes maltodextrin and polyphosphate as cost-effective substrates for UDP-glucose supply, catalyzed by α-glucan phosphorylase (αGP) and UDP-glucose pyrophosphorylase (UGP). To address the low activity of known polyphosphate kinases (PPKs) in the UDP phosphorylation reaction, a sequence-driven screening identified RhPPK with high activity against UDP (>1000 U/mg). Computational design further led to the creation of a double mutant with a 2566-fold increase in thermostability at 50 °C. The enhanced UDP-glucose regeneration system increased the production rate of nucleoside disaccharide synthesis by 25-fold. In addition, our UDP-glucose regeneration system is expected to be applied to other glycosyl transfer reactions.
Collapse
Affiliation(s)
- Chuanqi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Miaozi Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zonglin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feiyan Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhimin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Li T, Borg AJE, Krammer L, Weber H, Breinbauer R, Nidetzky B. Discovery, characterization, and comparative analysis of new UGT72 and UGT84 family glycosyltransferases. Commun Chem 2024; 7:147. [PMID: 38942997 PMCID: PMC11213884 DOI: 10.1038/s42004-024-01231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Glycosylated derivatives of natural product polyphenols display a spectrum of biological activities, rendering them critical for both nutritional and pharmacological applications. Their enzymatic synthesis by glycosyltransferases is frequently constrained by the limited repertoire of characterized enzyme-catalyzed transformations. Here, we explore the glycosylation capabilities and substrate preferences of newly identified plant uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) within the UGT72 and UGT84 families, with particular focus on natural polyphenol glycosylation from UDP-glucose. Four UGTs are classified according to their phylogenetic relationships and reaction products, identifying them as biocatalysts for either glucoside (UGT72 enzymes) or glucose ester (UGT84 members) formation from selected phenylpropanoid compounds. Detailed kinetic evaluations expose the unique attributes of these enzymes, including their specific activities and regio-selectivities towards diverse polyphenolic substrates, with product characterizations validating the capacity of UGT84 family members to perform di-O-glycosylation on flavones. Sequence analysis coupled with structural predictions through AlphaFold reveal an unexpected absence of a conserved threonine residue across all four enzymes, a trait previously linked to pentosyltransferases. This comparative analysis broadens the understood substrate specificity range for UGT72 and UGT84 enzymes, enhancing our understanding of their utility in the production of natural phenolic glycosides. The findings from this in-depth characterization provide valuable insights into the functional versatility of UGT-mediated reactions.
Collapse
Affiliation(s)
- Tuo Li
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010, Graz, Austria
| | - Leo Krammer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Hansjörg Weber
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.
| |
Collapse
|
5
|
Matera A, Dulak K, Werner H, Sordon S, Huszcza E, Popłoński J. Investigation on production and reaction conditions of sucrose synthase based glucosylation cascade towards flavonoid modification. Bioorg Chem 2024; 146:107287. [PMID: 38503024 DOI: 10.1016/j.bioorg.2024.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Hanna Werner
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
6
|
Liu S, Li D, Qin Z, Zeng W, Zhou J. Enhancing Glycosylation of Flavonoids by Engineering the Uridine Diphosphate Glucose Supply in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17842-17851. [PMID: 37941337 DOI: 10.1021/acs.jafc.3c05264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Glycosylation can enhance the solubility and stability of flavonoids. The main limitation of the glycosylation process is low intracellular uridine diphosphate glucose (UDPG) availability. This study aimed to create a glycosylation platform strain in Escherichia coli BL21(DE3) by multiple metabolic engineering of the UDPG supply. Glycosyltransferase TcCGT1 was introduced to synthesize vitexin and orientin from apigenin and luteolin, respectively. To further expand this glycosylation platform strain, not only were UDP rhamnose and UDP galactose synthesis pathways constructed, but rhamnosyltransferase (GtfC) and galactosyltransferase (PhUGT) were also introduced, respectively. In a 5 L bioreactor with apigenin, luteolin, kaempferol, and quercetin as glycosyl acceptors, vitexin, orientin, afzelin, quercitrin, hyperoside, and trifolin glycosylation products reached 17.2, 36.5, 5.2, 14.1, 6.4, and 11.4 g/L, respectively, the highest titers reported to date for all. The platform strain has great potential for large-scale production of glycosylated flavonoids.
Collapse
Affiliation(s)
- Shike Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
7
|
Zhao L, Ma Z, Wang Q, Shen Y, Zhang L, Chen L, Shi G, Ding Z. Highly Efficient Production of UDP-Glucose from Sucrose via the Semirational Engineering of Sucrose Synthase and a Cascade Route Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12549-12557. [PMID: 37552844 DOI: 10.1021/acs.jafc.3c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Nucleotide sugars are essential precursors for carbohydrate synthesis but are in scarce supply. Uridine diphosphate (UDP)-glucose is a core building block in nucleotide sugar preparation, making its efficient synthesis critical. Here, a process for producing valuable UDP-glucose and functional mannose from sucrose was established and improved via a semirational sucrose synthase (SuSy) design and the accurate D-mannose isomerase (MIase) cascade. Engineered SuSy exhibited enzyme activity 2.2-fold greater than that of the WT. The structural analysis identified a latch-hinge combination as the hotspot for enhancing enzyme activity. Coupling MIase, process optimization, and reaction kinetic analysis revealed that MIase addition during the high-speed UDP-glucose synthesis phase distinctly accelerated the entire process. The simultaneous triggering of enzyme modules halved the reaction time and significantly increased the UDP-glucose yield. A maximum UDP-glucose yield of 83%, space-time yield of 70 g/L/h, and mannose yield of 32% were achieved. This novel and efficient strategy for sucrose value-added exploitation has industrial promise.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Chen K, Lin L, Ma R, Ding J, Pan H, Tao Y, Li Y, Jia H. Identification of sucrose synthase from Micractinium conductrix to favor biocatalytic glycosylation. Front Microbiol 2023; 14:1220208. [PMID: 37649634 PMCID: PMC10465243 DOI: 10.3389/fmicb.2023.1220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a unique glycosyltransferase (GT) for developing cost-effective glycosylation processes. Up to now, some SuSys derived from plants and bacteria have been used to recycle uridine 5'-diphosphate glucose in the reactions catalyzed by Leloir GTs. In this study, after sequence mining and experimental verification, a SuSy from Micractinium conductrix (McSuSy), a single-cell green alga, was overexpressed in Escherichia coli, and its enzymatic properties were characterized. In the direction of sucrose cleavage, the specific activity of the recombinant McSuSy is 9.39 U/mg at 37°C and pH 7.0, and the optimum temperature and pH were 60°C and pH 7.0, respectively. Its nucleotide preference for uridine 5'-diphosphate (UDP) was similar to plant SuSys, and the enzyme activity remained relatively high when the DMSO concentration below 25%. The mutation of the predicted N-terminal phosphorylation site (S31D) significantly stimulated the activity of McSuSy. When the mutant S31D of McSuSy was applied by coupling the engineered Stevia glycosyltransferase UGT76G1 in a one-pot two-enzyme reaction at 10% DMSO, 50 g/L rebaudioside E was transformed into 51.06 g/L rebaudioside M in 57 h by means of batch feeding, with a yield of 76.48%. This work may reveal the lower eukaryotes as a promising resource for SuSys of industrial interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | | |
Collapse
|
9
|
Han R, Fang H, Fan Z, Ji Y, Schwaneberg U, Ni Y. Coupled reaction of glycosyltransferase and sucrose synthase for high-yielding and cost-effective synthesis of rosin. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Zhao L, Ma Z, Wang Q, Hu M, Zhang J, Chen L, Shi G, Ding Z. Engineering the Thermostability of Sucrose Synthase by Reshaping the Subunit Interaction Contributes to Efficient UDP-Glucose Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3832-3841. [PMID: 36795895 DOI: 10.1021/acs.jafc.2c08642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The restricted availability of UDP-glucose, an essential precursor that targets oligo/polysaccharide and glycoside synthesis, makes its practical application difficult. Sucrose synthase (Susy), which catalyzes one-step UDP-glucose synthesis, is a promising candidate. However, due to poor thermostability of Susy, mesophilic conditions are required for synthesis, which slow down the process, limit productivity, and prevent scaled and efficient UDP-glucose preparation. Here, we obtained an engineered thermostable Susy (mutant M4) from Nitrosospira multiformis through automated prediction and greedy accumulation of beneficial mutations. The mutant improved the T1/2 value at 55 °C by 27-fold, resulting in UDP-glucose synthesis at 37 g/L/h of space-time yield that met industrial biotransformation standards. Furthermore, global interaction between mutant M4 subunits was reconstructed by newly formed interfaces according to molecular dynamics simulations, with residue Trp162 playing an important role in strengthening the interface interaction. This work enabled effective, time-saving UDP-glucose production and paved the way for rational thermostability engineering of oligomeric enzymes.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Manfeng Hu
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingxiang Zhang
- School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Enzyme cascades for the synthesis of nucleotide sugars: Updates to recent production strategies. Carbohydr Res 2023; 523:108727. [PMID: 36521208 DOI: 10.1016/j.carres.2022.108727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Nucleotide sugars play an elementary role in nature as building blocks of glycans, polysaccharides, and glycoconjugates used in the pharmaceutical, cosmetics, and food industries. As substrates of Leloir-glycosyltransferases, nucleotide sugars are essential for chemoenzymatic in vitro syntheses. However, high costs and the limited availability of nucleotide sugars prevent applications of biocatalytic cascades on a large industrial scale. Therefore, the focus is increasingly on nucleotide sugar synthesis strategies to make significant application processes feasible. The chemical synthesis of nucleotide sugars and their derivatives is well established, but the yields of these processes are usually low. Enzyme catalysis offers a suitable alternative here, and in the last 30 years, many synthesis routes for nucleotide sugars have been discovered and used for production. However, many of the published procedures shy away from assessing the practicability of their processes. With this review, we give an insight into the development of the (chemo)enzymatic nucleotide sugar synthesis pathways of the last years and present an assessment of critical process parameters such as total turnover number (TTN), space-time yield (STY), and enzyme loading.
Collapse
|
12
|
Matera A, Dulak K, Sordon S, Waśniewski K, Huszcza E, Popłoński J. Evaluation of double expression system for co-expression and co-immobilization of flavonoid glucosylation cascade. Appl Microbiol Biotechnol 2022; 106:7763-7778. [PMID: 36334126 PMCID: PMC9668961 DOI: 10.1007/s00253-022-12259-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
Glucosylation cascade consisting of Leloir glycosyltransferase and sucrose synthase with in situ regeneration system of expensive and low available nucleotide sugars is a game-changing strategy for enzyme-based production of glycoconjugates of relevant natural products. We designed a stepwise approach including co-expression and one-step purification and co-immobilization on glass-based EziG resins of sucrose synthase from Glycine max (GmSuSy) with promiscuous glucosyltransferase YjiC from Bacillus licheniformis to produce efficient, robust, and versatile biocatalyst suited for preparative scale flavonoid glucosylation. The undertaken investigations identified optimal reaction conditions (30 °C, pH 7.5, and 10 mM Mg2+) and the best-suited carrier (EziG Opal). The prepared catalyst exhibited excellent reusability, retaining up to 96% of initial activity after 12 cycles of reactions. The semi-preparative glucosylation of poorly soluble isoflavone Biochanin A resulted in the production of 73 mg Sissotrin (Biochanin A 7-O-glucoside). Additionally, the evaluation of the designed double-controlled, monocistronic expression system with two independently induced promoters (rhaBAD and trc) brought beneficial information for dual-expression plasmid design. KEY POINTS: • Simultaneous and titratable expression from two independent promoters is possible, although full control over the expression is limited. • Designed catalyst managed to glucosylate poorly soluble isoflavone. • The STY of Sissotrin using the designed catalyst reached 0.26 g/L∙h∙g of the resin.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Kacper Waśniewski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
13
|
Recent applications of ionic liquid-based tags in glycoscience. Carbohydr Res 2022; 520:108643. [PMID: 35977445 DOI: 10.1016/j.carres.2022.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
The functionalization of glycosides with ionic compounds such as ionic liquids provides enhanced polarity for the labelled glycans thanks to the presence of a permanent positive charge. The chemical derivatisation of glycans with ionic liquids constitutes an emerging strategy to boost the detection sensitivity in MS applications. This allows the straightforward monitoring and detection of the presence of labelled glycans in complex matrices and in those cases where very limited amounts of material were available such as in biological samples and chemoenzymatic reactions. The use of ionic liquid based derivatisation agents can be further exploited for the labelling of live cells via metabolic oligosaccharide engineering for the detection of cancer biomarkers and for the tuning of live cells-surface properties with implications in cancer prognosis and progression. In this mini-review we summarise the latest development of the ionic liquid based derivatisation agents in glycoscience focussing on their use for sensitive MS applications.
Collapse
|
14
|
Liu H, Nidetzky B. Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural C-glycoside nothofagin. Biotechnol Bioeng 2021; 118:4402-4413. [PMID: 34355386 PMCID: PMC9291316 DOI: 10.1002/bit.27908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023]
Abstract
C‐glycosyltransferase (CGT) and sucrose synthase (SuSy), each fused to the cationic binding module Zbasic2, were co‐immobilized on anionic carrier (ReliSorb SP400) and assessed for continuous production of the natural C‐glycoside nothofagin. The overall reaction was 3ʹ‐C‐β‐glycosylation of the polyphenol phloretin from uridine 5ʹ‐diphosphate (UDP)‐glucose that was released in situ from sucrose and UDP. Using solid catalyst optimized for total (∼28 mg/g) as well as relative protein loading (CGT/SuSy = ∼1) and assembled into a packed bed (1 ml), we demonstrate flow synthesis of nothofagin (up to 52 mg/ml; 120 mM) from phloretin (≥95% conversion) solubilized by inclusion complexation in hydroxypropyl β‐cyclodextrin. About 1.8 g nothofagin (90 ml; 12–26 mg/ml) were produced continuously over 90 reactor cycles (2.3 h/cycle) with a space‐time yield of approximately 11 mg/(ml h) and a total enzyme turnover number of up to 2.9 × 103 mg/mg (=3.8 × 105 mol/mol). The co‐immobilized enzymes exhibited useful effectiveness (∼40% of the enzymes in solution), with limitations on the conversion rate arising partly from external liquid–solid mass transfer of UDP under packed‐bed flow conditions. The operational half‐life of the catalyst (∼200 h; 30°C) was governed by the binding stability of the glycosyltransferases (≤35% loss of activity) on the solid carrier. Collectively, the current study shows integrated process technology for flow synthesis with co‐immobilized sugar nucleotide‐dependent glycosyltransferases, using efficient glycosylation from sucrose via the internally recycled UDP‐glucose. This provides a basis from engineering science to promote glycosyltransferase applications for natural product glycosides and oligosaccharides.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
15
|
Liu S, Lyu Y, Yu S, Cheng J, Zhou J. Efficient Production of Orientin and Vitexin from Luteolin and Apigenin Using Coupled Catalysis of Glycosyltransferase and Sucrose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6578-6587. [PMID: 34061537 DOI: 10.1021/acs.jafc.1c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Orientin and vitexin are flavone 8-C-glycosides that exhibit many biological characteristics. This study aimed to establish a two-enzyme-coupled catalytic strategy to enhance the biosynthesis of orientin and vitexin from apigenin and luteolin, respectively. The C-glucosyltransferase (TcCGT1) gene from Trollius chinensis was cloned and expressed in Escherichia coli BL21(DE3). The optimal activity of TcCGT1 was achieved at pH 9.0 and 37 °C. TcCGT1 was relatively stable over the pH range of 7.0-10.0 at a temperature lower than 45 °C. The coupled catalytic strategy of TcCGT1 and different sucrose synthases was adopted to enhance the production of orientin and vitexin. By optimizing the coupling reaction conditions, orientin and vitexin production successfully achieved 2324.4 and 5524.1 mg/L with a yield of 91.4 and 89.3% (mol/mol), respectively. The coupled catalytic strategy proposed in this study might serve as a promising candidate for the large-scale production of orientin and vitexin in the future.
Collapse
Affiliation(s)
- Shike Liu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jie Cheng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Jung J, Schmölzer K, Schachtschabel D, Speitling M, Nidetzky B. Selective β-Mono-Glycosylation of a C15-Hydroxylated Metabolite of the Agricultural Herbicide Cinmethylin Using Leloir Glycosyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5491-5499. [PMID: 33973475 PMCID: PMC8278484 DOI: 10.1021/acs.jafc.1c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Cinmethylin is a well-known benzyl-ether derivative of the natural terpene 1,4-cineole that is used industrially as a pre-emergence herbicide in grass weed control for crop protection. Cinmethylin detoxification in plants has not been reported, but in animals, it prominently involves hydroxylation at the benzylic C15 methyl group. Here, we show enzymatic β-glycosylation of synthetic 15-hydroxy-cinmethylin to prepare a putative phase II detoxification metabolite of the cinmethylin in plants. We examined eight Leloir glycosyltransferases for reactivity with 15-hydroxy cinmethylin and revealed the selective formation of 15-hydroxy cinmethylin β-d-glucoside from uridine 5'-diphosphate (UDP)-glucose by the UGT71E5 from safflower (Carthamus tinctorius). The UGT71E5 showed a specific activity of 431 mU/mg, about 300-fold higher than that of apple (Malus domestica) UGT71A15 that also performed the desired 15-hydroxy cinmethylin mono-glycosylation. Bacterial glycosyltransferases (OleD from Streptomyces antibioticus, 2.9 mU/mg; GT1 from Bacillus cereus, 60 mU/mg) produced mixtures of 15-hydroxy cinmethylin mono- and disaccharide glycosides. Using UDP-glucose recycling with sucrose synthase, 15-hydroxy cinmethylin conversion with UGT71E5 efficiently provided the β-mono-glucoside (≥95% yield; ∼9 mM) suitable for biological studies.
Collapse
Affiliation(s)
- Jihye Jung
- Austrian
Centre of Industrial Biotechnology, Graz A-8010, Austria
| | | | | | | | - Bernd Nidetzky
- Austrian
Centre of Industrial Biotechnology, Graz A-8010, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, Graz A-8010, Austria
| |
Collapse
|
17
|
Wang L, Jiang S, Sun Y, Yang Z, Chen Z, Wang H, Wei D. Switching the secondary and natural activity of Nitrilase from Acidovorax facilis 72 W for the efficient production of 2-picolinamide. Biotechnol Lett 2021; 43:1617-1624. [PMID: 33961157 DOI: 10.1007/s10529-021-03137-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/22/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Catalytic promiscuity, or the ability to catalyze a secondary reaction, provides new opportunities for industrial biocatalysis by expanding the range of biocatalytic reactions. Some nitrilases converting nitriles to amides, referred to as the secondary activity, show great potential for amides production. And our goal was exploiting the amide-forming potential of nitrilases. RESULTS In this study, we characterized and altered the secondary activity of nitrilase from Acidovorax facilis 72 W (Nit72W) towards different substrates. We increased the secondary activity of Nit72W towards 2-cyanopyridine by 196-fold and created activity toward benzonitrile and p-nitrophenylacetonitrile by modifying the active pocket. Surprisingly, the best mutant, W188M, completely converted 250 mM 2-cyanopyridine to more than 98% 2-picolinamide in 12 h with a specific activity of 90 U/mg and showed potential for industrial applications. CONCLUSIONS Nit72W was modified to increase its secondary activity for the amides production, especially 2-picolinamide.
Collapse
Affiliation(s)
- Liuzhu Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shuiqin Jiang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yangyang Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zeyu Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhi Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
18
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
19
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
20
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
21
|
Zhang L, Ren S, Liu X, Liu X, Guo F, Sun W, Feng X, Li C. Mining of UDP-glucosyltrfansferases in licorice for controllable glycosylation of pentacyclic triterpenoids. Biotechnol Bioeng 2020; 117:3651-3663. [PMID: 32716052 DOI: 10.1002/bit.27518] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/18/2022]
Abstract
Pentacyclic triterpenoids have wide applications in the pharmaceutical industry. The precise glucosylation at C-3 OH of pentacyclic triterpenoids mediated by uridine 5'-diphospho-glucosyltransferase (UDP-glucosyltransferase [UGT]) is an important way to produce valuable derivatives with various improved functions. However, most reported UGTs suffer from low regiospecificity toward the OH and COOH groups of pentacyclic triterpenoids, which significantly decreases the reaction efficiency. Here, two new UGTs (UGT73C33 and UGT73F24) were discovered in Glycyrrhiza uralensis. UGT73C33 showed high activity but poor regioselectivity toward the C-3 OH and C-30 COOH of pentacyclic triterpenoid, producing three glucosides. UGT73F24 showed rigid regioselectivity toward C-3 OH of typical pentacyclic triterpenoids producing only C-3 O-glucosylated derivatives. In addition, UGT73C33 and UGT73F24 showed a broad substrate scope toward typical flavonoids with various sugar donors. Next, the substrate recognition mechanism of UGT73F24 toward glycyrrhetinic acid (GA) and UDP-glucose was investigated. Two key residues, I23 and L84, were identified to determine activity, and site-directed mutagenesis of UGT73F24-I23G/L84N increased the activity by 4.1-fold. Furthermore, three in vitro GA glycosylation systems with UDP-recycling were constructed, and high yields of GA-3-O-Glc (1.25 mM), GA-30-O-Glc (0.61 mM), and GA-di-Glc (0.26 mM) were obtained. The de novo biosynthesis of GA-3-O-glucose (26.31 mg/L) was also obtained in engineered yeast.
Collapse
Affiliation(s)
- Liang Zhang
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Shichao Ren
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiaofei Liu
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiaochen Liu
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Fang Guo
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Wentao Sun
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Xudong Feng
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Kumpf A, Kowalczykiewicz D, Szymańska K, Mehnert M, Bento I, Łochowicz A, Pollender A, Jarzȩbski A, Tischler D. Immobilization of the Highly Active UDP-Glucose Pyrophosphorylase From Thermocrispum agreste Provides a Highly Efficient Biocatalyst for the Production of UDP-Glucose. Front Bioeng Biotechnol 2020; 8:740. [PMID: 32714915 PMCID: PMC7343719 DOI: 10.3389/fbioe.2020.00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Biocatalysis that produces economically interesting compounds can be carried out by using free enzymes or microbial cells. However, often the cell metabolism does not allow the overproduction or secretion of activated sugars and thus downstream processing of these sugars is complicated. Here enzyme immobilization comes into focus in order to stabilize the enzyme as well as to make the overall process economically feasible. Besides a robust immobilization method, a highly active and stable enzyme is needed to efficiently produce the product of choice. Herein, we report on the identification, gene expression, biochemical characterization as well as immobilization of the uridine-5′-diphosphate-glucose (UDP-glucose) pyrophosphorylase originating from the thermostable soil actinobacterium Thermocrispum agreste DSM 44070 (TaGalU). The enzyme immobilization was performed on organically modified mesostructured cellular foams (MCF) via epoxy and amino group to provide a stable and active biocatalyst. The soluble and highly active TaGalU revealed a Vmax of 1698 U mg–1 (uridine-5′-triphosphate, UTP) and a Km of 0.15 mM (UTP). The optimum reaction temperature was determined to be 50°C. TaGalU was stable at this temperature for up to 30 min with a maximum loss of activity of 65%. Interestingly, immobilized TaGalU was stable at 50°C for at least 120 min without a significant loss of activity, which makes this enzyme an interesting biocatalyst for the production of UDP-glucose.
Collapse
Affiliation(s)
- Antje Kumpf
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany.,Department of Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany.,EMBL Hamburg, Hamburg, Germany
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, Poland
| | - Maria Mehnert
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Aleksandra Łochowicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - André Pollender
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Andrzej Jarzȩbski
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, Poland.,Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland
| | - Dirk Tischler
- Department of Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
23
|
Ma W, Zhao L, Ma Y, Li Y, Qin S, He B. Oriented efficient biosynthesis of rare ginsenoside Rh2 from PPD by compiling UGT-Yjic mutant with sucrose synthase. Int J Biol Macromol 2020; 146:853-859. [DOI: 10.1016/j.ijbiomac.2019.09.208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
|
24
|
Biocatalytic Synthesis of Calycosin-7-O-β-D-Glucoside with Uridine Diphosphate–Glucose Regeneration System. Catalysts 2020. [DOI: 10.3390/catal10020258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calycosin-7-O-β-D-glucoside (Cy7G) is one of the principal components of Radix astragali. This isoflavonoid glucoside is regarded as an indicator to assess the quality of R. astragali and exhibits diverse pharmacological activities. In this study, uridine diphosphate-dependent glucosyltransferase (UGT) UGT88E18 was isolated from Glycine max and expressed in Escherichia coli. Recombinant UGT88E18 could selectively and effectively glucosylate the C7 hydroxyl group of calycosin to synthesize Cy7G. A one-pot reaction by coupling UGT88E18 to sucrose synthase (SuSy) from G. max was developed. The UGT88E18–SuSy cascade reaction could recycle the costly uridine diphosphate glucose (UDPG) from cheap sucrose and catalytic amounts of uridine diphosphate (UDP). The important factors for UGT88E18–SuSy cascade reaction, including UGT88E18/SuSy ratios, different temperatures, and pH values, different concentrations of dimethyl sulfoxide (DMSO), UDP, sucrose, and calycosin, were optimized. We produced 10.5 g L−1 Cy7G in the optimal reaction conditions by the stepwise addition of calycosin. The molar conversion of calycosin was 97.5%, with a space–time yield of 747 mg L−1 h−1 and a UDPG recycle of 78 times. The present study provides a new avenue for the efficient and cost-effective semisynthesis of Cy7G and other valuable isoflavonoid glucosides by UGT–SuSy cascade reaction.
Collapse
|
25
|
Hu Y, Xue J, Min J, Qin L, Zhang J, Dai L. Biocatalytic synthesis of ginsenoside Rh2 using Arabidopsis thaliana glucosyltransferase-catalyzed coupled reactions. J Biotechnol 2020; 309:107-112. [PMID: 31926981 DOI: 10.1016/j.jbiotec.2020.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
Abstract
Ginsenoside Rh2, a rare protopanaxadiol (PPD)-type triterpene saponin isolated from Panax ginseng, exhibits notable anticancer and immune-system-enhancing activities. Glycosylation catalyzed by uridine diphosphate-dependent glucosyltransferase (UGT) is the final biosynthetic step of ginsenoside Rh2. In this study, UGT73C5 isolated from Arabidopsis thaliana was demonstrated to selectively transfer a glucosyl moiety to the C3 hydroxyl group of PPD to synthesize ginsenoside Rh2. UGT73C5 was coupled with sucrose synthase (SuSy) from A. thaliana to regenerate costly uridine diphosphate glucose (UDPG) from cheap sucrose and catalytic amounts of uridine diphosphate (UDP). The UGT73C5/SuSy ratio, temperature, pH, cofactor UDP, and PPD concentrations for UGT73C5-SuSy coupled reactions were optimized. Through the stepwise addition of PPD, the maximal ginsenoside Rh2 production was 3.2 mg mL-1, which was the highest yield reported to date. These promising results provided an efficient and cost-effective approach to semisynthesize the highly valuable ginsenoside Rh2.
Collapse
Affiliation(s)
- Yumei Hu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xue
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lujiao Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Juankun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
26
|
Kumpf A, Partzsch A, Pollender A, Bento I, Tischler D. Two Homologous Enzymes of the GalU Family in Rhodococcus opacus 1CP- RoGalU1 and RoGalU2. Int J Mol Sci 2019; 20:ijms20225809. [PMID: 31752319 PMCID: PMC6888414 DOI: 10.3390/ijms20225809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023] Open
Abstract
Uridine-5’-diphosphate (UDP)-glucose is reported as one of the most versatile building blocks within the metabolism of pro- and eukaryotes. The activated sugar moiety is formed by the enzyme UDP-glucose pyrophosphorylase (GalU). Two homologous enzymes (designated as RoGalU1 and RoGalU2) are encoded by most Rhodococcus strains, known for their capability to degrade numerous compounds, but also to synthesize natural products such as trehalose comprising biosurfactants. To evaluate their functionality respective genes of a trehalose biosurfactant producing model organism—Rhodococcus opacus 1CP—were cloned and expressed, proteins produced (yield up to 47 mg per L broth) and initially biochemically characterized. In the case of RoGalU2, the Vmax was determined to be 177 U mg−1 (uridine-5’-triphosphate (UTP)) and Km to be 0.51 mM (UTP), respectively. Like other GalUs this enzyme seems to be rather specific for the substrates UTP and glucose 1-phosphate, as it accepts only dTTP and galactose 1-phoshate in addition, but both with solely 2% residual activity. In comparison to other bacterial GalU enzymes the RoGalU2 was found to be somewhat higher in activity (factor 1.8) even at elevated temperatures. However, RoGalU1 was not obtained in an active form thus it remains enigmatic if this enzyme participates in metabolism.
Collapse
Affiliation(s)
- Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| | - Anett Partzsch
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - Isabel Bento
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| |
Collapse
|
27
|
Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A, Tischler D, Schoevaart R, Hanefeld U, Hagedoorn PL. Leloir Glycosyltransferases in Applied Biocatalysis: A Multidisciplinary Approach. Int J Mol Sci 2019; 20:ijms20215263. [PMID: 31652818 PMCID: PMC6861944 DOI: 10.3390/ijms20215263] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Enzymes are nature’s catalyst of choice for the highly selective and efficient coupling of carbohydrates. Enzymatic sugar coupling is a competitive technology for industrial glycosylation reactions, since chemical synthetic routes require extensive use of laborious protection group manipulations and often lack regio- and stereoselectivity. The application of Leloir glycosyltransferases has received considerable attention in recent years and offers excellent control over the reactivity and selectivity of glycosylation reactions with unprotected carbohydrates, paving the way for previously inaccessible synthetic routes. The development of nucleotide recycling cascades has allowed for the efficient production and reuse of nucleotide sugar donors in robust one-pot multi-enzyme glycosylation cascades. In this way, large glycans and glycoconjugates with complex stereochemistry can be constructed. With recent advances, LeLoir glycosyltransferases are close to being applied industrially in multi-enzyme, programmable cascade glycosylations.
Collapse
Affiliation(s)
- Luuk Mestrom
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Marta Przypis
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Stefan R Marsden
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Isabel Bento
- EMBL Hamburg, Notkestraβe 85, 22607 Hamburg, Germany.
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland.
| | - Katarzyna Szymańska
- Department of Chemical and Process Engineering, Silesian University of Technology, Ks. M. Strzody 7, 44-100 Gliwice, Poland.
| | | | - Dirk Tischler
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| | - Rob Schoevaart
- ChiralVision, J.H. Oortweg 21, 2333 CH Leiden, The Netherlands.
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Section Biocatalysis, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
28
|
Artificial Fusion of mCherry Enhances Trehalose Transferase Solubility and Stability. Appl Environ Microbiol 2019; 85:AEM.03084-18. [PMID: 30737350 DOI: 10.1128/aem.03084-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 11/20/2022] Open
Abstract
LeLoir glycosyltransferases are important biocatalysts for the production of glycosidic bonds in natural products, chiral building blocks, and pharmaceuticals. Trehalose transferase (TreT) is of particular interest since it catalyzes the stereo- and enantioselective α,α-(1→1) coupling of a nucleotide sugar donor and monosaccharide acceptor for the synthesis of disaccharide derivatives. Heterologously expressed thermophilic trehalose transferases were found to be intrinsically aggregation prone and are mainly expressed as catalytically active inclusion bodies in Escherichia coli To disfavor protein aggregation, the thermostable protein mCherry was explored as a fluorescent protein tag. The fusion of mCherry to trehalose transferase from Pyrobaculum yellowstonensis (PyTreT) demonstrated increased protein solubility. Chaotropic agents like guanidine or the divalent cations Mn(II), Ca(II), and Mg(II) enhanced the enzyme activity of the fusion protein. The thermodynamic equilibrium constant, K eq, for the reversible synthesis of trehalose from glucose and a nucleotide sugar was determined in both the synthesis and hydrolysis directions utilizing UDP-glucose and ADP-glucose, respectively. UDP-glucose was shown to achieve higher conversions than ADP-glucose, highlighting the importance of the choice of nucleotide sugars for LeLoir glycosyltransferases under thermodynamic control.IMPORTANCE The heterologous expression of proteins in Escherichia coli is of great relevance for their functional and structural characterization and applications. However, the formation of insoluble inclusion bodies is observed in approximately 70% of all cases, and the subsequent effects can range from reduced soluble protein yields to a complete failure of the expression system. Here, we present an efficient methodology for the production and analysis of a thermostable, aggregation-prone trehalose transferase (TreT) from Pyrobaculum yellowstonensis via its fusion with mCherry as a thermostable fluorescent protein tag. This fusion strategy allowed for increased enzyme stability and solubility and could be applied to other (thermostable) proteins, allowing rapid visualization and quantification of the mCherry-fused protein of interest. Finally, we have demonstrated that the enzymatic synthesis of trehalose from glucose and a nucleotide sugar is reversible by approaching the thermodynamic equilibrium in both the synthesis and hydrolysis directions. Our results show that uridine establishes an equilibrium constant which is more in favor of the product trehalose than when adenosine is employed as the nucleotide under identical conditions. The influence of different nucleotides on the reaction can be generalized for all LeLoir glycosyltransferases under thermodynamic control as the position of the equilibrium depends solely on the reaction conditions and is not affected by the nature of the catalyst.
Collapse
|
29
|
Huang K, Parmeggiani F, Ledru H, Hollingsworth K, Mas Pons J, Marchesi A, Both P, Mattey AP, Pallister E, Bulmer GS, van Munster JM, Turnbull WB, Galan MC, Flitsch SL. Enzymatic synthesis of N-acetyllactosamine from lactose enabled by recombinant β1,4-galactosyltransferases. Org Biomol Chem 2019; 17:5920-5924. [DOI: 10.1039/c9ob01089k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthesis of LacNAc with reversible GalTs.
Collapse
|
30
|
Fischöder T, Wahl C, Zerhusen C, Elling L. Repetitive Batch Mode Facilitates Enzymatic Synthesis of the Nucleotide Sugars UDP-Gal, UDP-GlcNAc, and UDP-GalNAc on a Multi-Gram Scale. Biotechnol J 2018; 14. [PMID: 30367549 DOI: 10.1002/biot.201800386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/04/2018] [Indexed: 01/02/2023]
Abstract
The availability of nucleotide sugars is considered as bottleneck for Leloir-glycosyltransferases mediated glycan synthesis. A breakthrough for the synthesis of nucleotide sugars is the development of salvage pathway like enzyme cascades with high product yields from affordable monosaccharide substrates. In this regard, the authors aim at high enzyme productivities of these cascades by a repetitive batch approach. The authors report here for the first time that the exceptional high enzyme cascade stability facilitates the synthesis of Uridine-5'-diphospho-α-d-galactose (UDP-Gal), Uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), and Uridine-5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in a multi-gram scale by repetitive batch mode. The authors obtained 12.8 g UDP-Gal through a high mass based total turnover number (TTNmass ) of 494 [gproduct /genzyme ] and space-time-yield (STY) of 10.7 [g/L*h]. Synthesis of UDP-GlcNAc in repetitive batch mode gave 11.9 g product with a TTNmass of 522 [gproduct /genzyme ] and a STY of 9.9 [g/L*h]. Furthermore, the scale-up to a 200 mL scale using a pressure operated concentrator was demonstrated for a UDP-GalNAc producing enzyme cascade resulting in an exceptional high STY of 19.4 [g/L*h] and 23.3 g product. In conclusion, the authors demonstrate that repetitive batch mode is a versatile strategy for the multi-gram scale synthesis of nucleotide sugars by stable enzyme cascades.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Claudia Wahl
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Christian Zerhusen
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| | - Lothar Elling
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelstrasse 20, Aachen 52074, Germany
| |
Collapse
|
31
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
32
|
Nidetzky B, Gutmann A, Zhong C. Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00710] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
33
|
Dai L, Liu C, Li J, Dong C, Yang J, Dai Z, Zhang X, Sun Y. One-Pot Synthesis of Ginsenoside Rh2 and Bioactive Unnatural Ginsenoside by Coupling Promiscuous Glycosyltransferase from Bacillus subtilis 168 to Sucrose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2830-2837. [PMID: 29484884 DOI: 10.1021/acs.jafc.8b00597] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ginsenosides, the major effective ingredients of Panax ginseng, exhibit various biological properties. UDP-glycosyltransferase (UGT)-mediated glycosylation is the last biosynthetic step of ginsenosides and contributes to their immense structural and functional diversity. In this study, UGT Bs-YjiC from Bacillus subtilis 168 was demonstrated to transfer a glucosyl moiety to the free C3-OH and C12-OH of protopanaxadiol (PPD) and PPD-type ginsenosides to synthesize natural and unnatural ginsenosides. In vitro assays showed that unnatural ginsenoside F12 (3- O-β-d-glucopyranosyl-12- O-β-d-glucopyranosyl-20( S)-protopanaxadiol) exhibited remarkable activity against diverse human cancer cell lines. A one-pot reaction by coupling Bs-YjiC to sucrose synthase (SuSy) was performed to regenerate UDP-glucose from sucrose and UDP. With PPD as the aglycon, an unprecedented high yield of ginsenosides F12 (3.98 g L-1) and Rh2 (0.20 g L-1) was obtained by optimizing the conversion conditions. This study provides an efficient approach for the biosynthesis of ginsenosides using a UGT-SuSy cascade reaction.
Collapse
Affiliation(s)
- Longhai Dai
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Can Liu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture , Beijing University of Agriculture , Beijing , China
| | - Jiao Li
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Caixia Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy , Tianjin Medical University , Tianjin 300070 , China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Zhubo Dai
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Xueli Zhang
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes , Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , Tianjin 300308 , China
| |
Collapse
|
34
|
Rother C, Gutmann A, Gudiminchi R, Weber H, Lepak A, Nidetzky B. Biochemical Characterization and Mechanistic Analysis of the Levoglucosan Kinase from Lipomyces starkeyi. Chembiochem 2018; 19:596-603. [DOI: 10.1002/cbic.201700587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Christina Rother
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Ramakrishna Gudiminchi
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Hansjörg Weber
- Graz University of Technology, NAWI Graz; Stremayrgasse 9 8010 Graz Austria
| | - Alexander Lepak
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
35
|
Trobo-Maseda L, Orrego AH, Moreno-Pérez S, Fernández-Lorente G, Guisan JM, Rocha-Martin J. Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Appl Microbiol Biotechnol 2017; 102:773-787. [PMID: 29177938 DOI: 10.1007/s00253-017-8649-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5'-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 °C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Sonia Moreno-Pérez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, 28670, Madrid, Spain
| | - Gloria Fernández-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
36
|
Gutmann A, Lepak A, Diricks M, Desmet T, Nidetzky B. Glycosyltransferase cascades for natural product glycosylation: Use of plant instead of bacterial sucrose synthases improves the UDP-glucose recycling from sucrose and UDP. Biotechnol J 2017; 12. [PMID: 28429856 DOI: 10.1002/biot.201600557] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 02/02/2023]
Abstract
Natural product glycosylations by Leloir glycosyltransferases (GTs) require expensive nucleotide-activated sugars as substrates. Sucrose synthase (SuSy) converts sucrose and uridine 5'-diphosphate (UDP) into UDP-glucose. Coupling of SuSy and GT reactions in one-pot cascade transformations creates a UDP cycle, which regenerates the UDP-glucose continuously and so makes it an expedient donor for glucoside production. Here we compare SuSys with divergent kinetic characteristics for UDP-glucose recycling in the synthesis of the natural C-glucoside nothofagin. Development of a fast reversed-phase ion-pairing HPLC method, quantifying all relevant reactants from the coupled conversion in a single run, was key to dissect the main factors of recycling efficiency. Limitations due to high KM , both for UDP and sucrose, were revealed for the bacterial SuSy from Acidithiobacillus caldus. The L637M-T640V double mutant of this SuSy with a 60-fold reduced KM for UDP substantially improved UDP-glucose recycling. The SuSy from Glycine max (soybean) was nevertheless the most active enzyme at the UDP (≤ 0.5 mM) and sucrose (≤ 1 M) concentrations used. It was also unexpectedly stable at up to 50°C where spontaneous decomposition of UDP-glucose started to become problematic. The herein gained in-depth understanding of requirements for UDP-glucose regeneration supports development of efficient GT-SuSy cascades.
Collapse
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Alexander Lepak
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Ghent University, Ghent, Belgium
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
37
|
Orrego AH, Trobo-Maseda L, Rocha-Martin J, Guisan JM. Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzyme Microb Technol 2017; 105:51-58. [PMID: 28756861 DOI: 10.1016/j.enzmictec.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 11/25/2022]
Abstract
Sucrose synthases (SuSys) can be used to synthesize cost-effective uridine 5'-diphosphate glucose (UDP-glc) or can be coupled to glycosyltransferases (GTs) for the continuous recycling of UDP-glc. In this study, we present the first report of the immobilization-stabilization of a SuSy by multipoint covalent attachment. This stabilization strategy is very complex for multimeric enzymes because a very intense multipoint attachment can promote a dramatic loss of activity and/or stability. The homotetrameric SuSy from Nitrosomonas europaea (SuSyNe) was immobilized on a glyoxyl agarose support through two different orientations. The first occurred at pH 8.5 through the surface area containing the greatest number of amino termini from several enzyme subunits. The second orientation occurred at pH 10 through the region of the whole enzyme containing the highest number of Lys residues. The multipoint covalent immobilization of SuSy on glyoxyl agarose at pH 10 provided a very significant stabilization factor under reaction conditions (almost 1000-fold more stable than soluble enzyme). Unfortunately, this important enzyme rigidification led to a dramatic loss of catalytic activity. A less stabilized conjugate, which was 65-fold more stable than the soluble form, preserved 64% of its initial catalytic activity. This derivative could be used for 3 reaction cycles and yielded approximately 210mM of UDP-glc per cycle. This optimal biocatalyst was modified with a polycationic polymer, polyethyleneimine (PEI), increasing its stability in the presence of the organic co-solvents necessary to glycosylate apolar antioxidants by GTs coupled to SuSy.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Lara Trobo-Maseda
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| | - Jose M Guisan
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| |
Collapse
|
38
|
Dai L, Li J, Yao P, Zhu Y, Men Y, Zeng Y, Yang J, Sun Y. Exploiting the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis and its application in synthesis of glycosides. J Biotechnol 2017; 248:69-76. [DOI: 10.1016/j.jbiotec.2017.03.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 03/11/2017] [Indexed: 12/24/2022]
|
39
|
Kulmer ST, Gutmann A, Lemmerer M, Nidetzky B. Biocatalytic Cascade of Polyphosphate Kinase and Sucrose Synthase for Synthesis of Nucleotide-Activated Derivatives of Glucose. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sandra T. Kulmer
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Martin Lemmerer
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
40
|
Schmölzer K, Lemmerer M, Gutmann A, Nidetzky B. Integrated process design for biocatalytic synthesis by a Leloir Glycosyltransferase: UDP-glucose production with sucrose synthase. Biotechnol Bioeng 2016; 114:924-928. [PMID: 27775150 DOI: 10.1002/bit.26204] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023]
Abstract
Nucleotide sugar-dependent ("Leloir") glycosyltransferases (GTs), represent a new paradigm for the application of biocatalytic glycosylations to the production of fine chemicals. However, it remains to be shown that GT processes meet the high efficiency targets of industrial biotransformations. We demonstrate in this study of uridine-5'-diphosphate glucose (UDP-glc) production by sucrose synthase (from Acidithiobacillus caldus) that a holistic process design, involving coordinated development of biocatalyst production, biotransformation, and downstream processing (DSP) was vital for target achievement at ∼100 g scale synthesis. Constitutive expression in Escherichia coli shifted the recombinant protein production mainly to the stationary phase and enhanced the specific enzyme activity to a level (∼480 U/gcell dry weight ) suitable for whole-cell biotransformation. The UDP-glc production had excellent performance metrics of ∼100 gproduct /L, 86% yield (based on UDP), and a total turnover number of 103 gUDP-glc /gcell dry weight at a space-time yield of 10 g/L/h. Using efficient chromatography-free DSP, the UDP-glc was isolated in a single batch with ≥90% purity and in 73% isolated yield. Overall, the process would allow production of ∼0.7 kg of isolated product/L E. coli bioreactor culture, thus demonstrating how integrated process design promotes the practical use of a GT conversion. Biotechnol. Bioeng. 2017;114: 924-928. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Martin Lemmerer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010, Graz, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria.,Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010, Graz, Austria
| |
Collapse
|